X sin x решить уравнение
Данный калькулятор предназначен для решения тригонометрических уравнений.
Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неизвестного аргумента. Под тригонометрическими функциями понимают математические функции от величины угла. Как правило, тригонометрические функции определяются как отношения сторон прямоугольного треугольника или длины определенных отрезков в единичной окружности.
К основным видам тригонометрических уравнений относят простейшие уравнения, содержащие модуль, с параметрами, с целой и дробной частью, со сложными аргументами, с обратными тригонометрическими функциями.
С помощью калькулятора можно вычислить корни тригонометрического уравнения.
Для получения полного хода решения нажимаем в ответе Step-by-step.
Здравствуйте!
Помогите разобраться, как решать тригонометрические уравнения sin x = x.
Спасибо!
В простейших тригонометрических уравнениях вида sin x = x принято использовать разные переменные для аргумента функции и значения, которому эта функция равна.
Будем использовать следующий вид для таких уравнений:
Если , то корнем уравнения будет .
Чтобы убедиться, что решение правильное, подставим его в уравнение:
У данного уравнение есть еще одно решение:
Используем формулу приведения для синуса:
Доброй ночи!
Помогите мне разобраться с таким тригонометрическим уравнением: sin x + cos x = 0 решить уравнение
Заранее спасибо Вам за помощь в этом нелёгком деле, хотя на первый взгляд здесь нет ничего сложного!
На первый взгляд кажется, что решение невозможно, но это ошибочно, так как все забывают про такое свойство как деление на какой-то член. В нашем случае, мы можем поделить две части уравнения на cos x, который не должен равняться нулю, так как на ноль делить нельзя.
И получим следующее:
Так как если sin x поделить на cos x, мы получим tg x.
Теперь известные члены перенесём вправо с изменением знаков и получим:
У нас получилось простейшее тригонометрическое уравнение. Для решения этого уравнения есть определённое правило решения подобных уравнений, которое примет такой общий вид:
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
Если бы у нас было классическое число из таблицы, которое нужно было бы найти, то мы бы с Вами воспользовались уже известной Вам таблицей. И уже исходя из этого получили бы какое-то значение, которое могли бы с Вами использовать.
И мы бы С вами продолжали решать наше уравнение. Но так как с этим не сложилось, то мы с Вами просто напросто ничего не меняем и записываем ответ в таком виде: :
Знаки операций:
+ - сложение,
- - вычитание,
* - умножение,
/ - деление,
^ - возведение в степень.
Знак умножения нужно вводить только между числами, во всех остальных случаях его можно не вводить.
Список функций:
Функция | Описание | Пример ввода | Результат ввода |
---|---|---|---|
pi | Число \(\pi\) | pi | $$ \pi $$ |
e | Число \(e\) | e | $$ e $$ |
e^x | Степень числа \(e\) | e^(2x) | $$ e^ $$ |
exp(x) | Степень числа \(e\) | exp(1/3) | $$ \sqrt[3] $$ |
|x| abs(x) | Модуль (абсолютное значение) числа \(x\) | |x-1| abs(cos(x)) | \( |x-1| \) \( |\cos(x)| \) |
sin(x) | Синус | sin(x-1) | $$ sin(x-1) $$ |
cos(x) | Косинус | 1/(cos(x))^2 | $$ \frac $$ |
tg(x) | Тангенс | x*tg(x) | $$ x \cdot tg(x) $$ |
ctg(x) | Котангенс | 3ctg(1/x) | $$ 3 ctg \left( \frac \right) $$ |
arcsin(x) | Арксинус | arcsin(x) | $$ arcsin(x) $$ |
arccos(x) | Арккосинус | arccos(x) | $$ arccos(x) $$ |
arctg(x) | Арктангенс | arctg(x) | $$ arctg(x) $$ |
arcctg(x) | Арккотангенс | arcctg(x) | $$ arcctg(x) $$ |
sqrt(x) | Квадратный корень | sqrt(1/x) | $$ \sqrt<\frac> $$ |
root(n,x) | Корень степени n root(2,x) эквивалентно sqrt(x) | root(4,exp(x)) | $$ \sqrt[4] < e^> $$ |
x^(1/n) | Корень степени n x^(1/2) эквивалентно sqrt(x) | (cos(x))^(1/3) | $$ \sqrt[\Large 3 \normalsize] $$ |
ln(x) log(x) log(e,x) | Натуральный логарифм (основание - число e ) | 1/ln(3-x) | $$ \frac $$ |
log(10,x) | Десятичный логарифм числа x | log(10,x^2+x) | $$ log_(x^2+x) $$ |
log(a,x) | Логарифм x по основанию a | log(3,cos(x)) | $$ log_3(cos(x)) $$ |
sh(x) | Гиперболический синус | sh(x-1) | $$ sh(x-1) $$ |
ch(x) | Гиперболический косинус | ch(x) | $$ ch(x) $$ |
th(x) | Гиперболический тангенс | th(x) | $$ th(x) $$ |
cth(x) | Гиперболический котангенс | cth(x) | $$ cth(x) $$ |
Почему решение на английском языке?
При решении этой задачи используется большой и дорогой модуль одного "забугорного" сервиса. Решение он выдает в виде изображения и только на английском языке. Изменить это, к сожалению, нельзя. Ничего лучше мы найти не смогли. Зато он выводит подробное и очень качественное решение в том виде в котором оно принято в высших учебных заведениях. Единственное неудобство - на английском языке, но это не большая цена за качество.
Некоторые пояснения по выводу решения.
Вывод | Перевод, пояснение |
---|---|
Solve for x over the real numbers | Решить относительно х в действительных числах (бывают ещё комплексные) |
Multiply both sides by . | Умножаем обе части на . |
Simplify and substitute . | Упрощаем и делаем подстановку . |
Simplify trigonometric functions | Упрощаем тригонометрические функции |
Bring . together using the commom denominator . | Приводим . к общему знаменателю . |
The left hand side factors into a product with two terms | Левая часть разбивается на множители как два многочлена |
Split into two equations | Разделяем на два уравнения |
Take the square root of both sides | Извлекаем квадратный корень из обоих частей |
Subtract . from both sides | Вычитаем . из обеих частей уравнения |
Add . to both sides | Прибавляем . к обоим частям уравнения |
Multiply both sides by . | Умножаем обе части уравнения на . |
Divide both sides by . | Делим обе части уравнения на . |
Substitute . Then . | Делаем подстановку . Тогда . |
Substitute back for . | Обратная подстановка для . |
. has no solution since for all . | . не имеет решения для всех . |
Take the inverse sine of both sides | Извлекаем обратный синус (арксинус) из обоих частей |
Simplify the expression | Упрощаем выражение |
Answer | Ответ |
\(log(x)\) | Натуральный логарифм, основание - число e. У нас пишут \(ln(x)\) |
\(arccos(x)\) или \(cos^(x)\) | Арккосинус. У нас пишут \( arccos(x) \) |
\(arcsin(x)\) или \(sin^(x)\) | Арксинус. У нас пишут \( arcsin(x) \) |
\(tan(x)\) | Тангенс. У нас пишут \(tg(x) = \frac\) |
\(arctan(x)\) или \(tan^(x)\) | Арктангенс. У нас пишут \(arctg(x)\) |
\(cot(x)\) | Котангенс. У нас пишут \(ctg(x) = \frac\) |
\(arccot(x)\) или \(cot^(x)\) | Арккотангенс. У нас пишут \(arcctg(x)\) |
\(sec(x)\) | Секанс. У нас пишут также \(sec(x) = \frac\) |
\(csc(x)\) | Косеканс. У нас пишут \(cosec(x) = \frac\) |
\(cosh(x)\) | Гиперболический косинус. У нас пишут \(ch(x) = \frac> \) |
\(sinh(x)\) | Гиперболический синус. У нас пишут \(sh(x) = \frac> \) |
\(tanh(x)\) | Гиперболический тангенс. У нас пишут \(th(x) = \frac>> \) |
\(coth(x)\) | Гиперболический котангенс. У нас пишут \(cth(x) = \frac \) |
Если вам что-то осталось не понятно обязательно напишите об этом в Обратной связи и мы дополним эту таблицу.
Читайте также: