Сложной функцией является 4x2 3x ln x sin x
y=sin (5x-2x³+3). Внутренняя функция u=5x-2x³+3, внешняя функция f=sin u.
y=sin (x/7). Внутренняя функция u=x/7, внешняя функция f=sin u.
y=ctg(√x). u=√x, f=ctg u.
Здесь u=9x³-12x+5, f=√u.
y=arcsin (17-5x³). u=17-5x³, f=arcsin u.
1) y=cos³(3x-12). Здесь внутренняя функция u =cos(3x-12), а внешняя функция f=u³. Но внутренняя функция y=cos(3x-12), в свою очередь, тоже является сложной функцией. Для нее внутренняя функция u=3x-12, а внешняя f=cos x.
Сначала рассмотрим эту функцию, как логарифм сложной функции. Тогда внутренняя функция
В свою очередь, функция
(50 БАЛЛОВ)Спрос семьи Мартинсон на бананы, в зависимости от их цены, показан в таблице выше Ответьте на вопросы!Увеличивается ли спрос на бананы по м … ере роста цен на бананы?Как, по вашему мнению, связаны эти значения - прямо или обратно пропорционально?
в) Жаяу жүргіншінің жылдамдығы жылдамдығынан 3 есе кем. Велосипедшінің жылдамдығын тап, ШЫҒАРМАШЫЛЫҚ ЖҰМЫС. Шартын
Решите два уравнения по методу Гаусса,ответы уравнения даны в низу.
(45 баллов.) Постройте график функции y= - 2/x Задайте значения аргументов, при которых значения в функции отрицательны
Составить уравнение директрисы параболы у^2=1,5х. Построить график Даю 20 баллов
В этой статье мы будем говорить о таком важном математическом понятии, как сложная функция, и учиться находить производную сложной функции.
Прежде чем учиться находить производную сложной функции, давайте разберемся с понятием сложной функции, что это такое, "с чем ее едят", и "как правильно ее готовить".
Рассмотрим произвольную функцию, например, такую:
Заметим, что аргумент , стоящий в правой и левой части уравнения функции - это одно и то же число, или выражение.
Вместо переменной мы можем поставить, например, такое выражение: . И тогда мы получим функцию
.
Назовем выражение промежуточным аргументом, а функцию - внешней функцией. Это не строгие математические понятия, но они помогают уяснить смысл понятия сложной функции.
Строгое определение понятия сложной функции звучит так:
Пусть функция определена на множестве и - множество значений этой функции. Пусть, множество (или его подмножество) является областью определения функции . Поставим в соответствие каждому из число . Тем самым на множестве будет задана функция . Ее называют композицией функций или сложной функцией.
В этом определении, если пользоваться нашей терминологией, - внешняя функция, - промежуточный аргумент.
Производная сложной функции находится по такому правилу:
Чтобы было более понятно, я люблю записывать это правило в виде такой схемы:
В этом выражении с помощью обозначена промежуточная функция.
Итак. Чтобы найти производную сложной функции, нужно
1. Определить, какая функция является внешней и найти по таблице производных соответствующую производную.
2. Определить промежуточный аргумент.
В этой процедуре наибольшие затруднения вызывает нахождение внешней функции. Для этого используется простой алгоритм:
а. Запишите уравнение функции.
б. Представьте, что вам нужно вычислить значение функции при каком-то значении х. Для этого вы подставляете это значение х в уравнение функции и производите арифметические действия. То действие, которое вы делаете последним и есть внешняя функция.
Например, в функции
последнее действие - возведение в степень.
Найдем производную этой функции. Для этого запишем промежуточный аргумент
^2" />
как
Ищем в таблице производных производную показательной функции:
(1)
.
таблице производных производную синуса:
Подставим полученное значение производной в выражение (1):
И, наконец, упростим выражение, вспомнив формулу синуса двойного аргумента:
Заметим, что функции иногда похожи на матрешку: промежуточный аргумент сам является сложной функции. Но тогда при нахождении производной промежуточного аргумента, нужно вновь применить правило нахождения производной сложной функции.
Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:
Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.
Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.
Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:
Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.
Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.
Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1.
Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.
Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.
Производные основных элементарных функций
Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Приведем несколько формул, которых достаточно для решения большинства задач.
Читайте также: