Sbl ip20 driver 40w схема подключения
Светодиоды экономичны и долговечны. Но люстра или фонарь часто перестают гореть, хотя все элементы целы. Чтобы восстановить работоспособность различных устройств, необходим ремонт драйвера светодиодного светильника. В большинстве случаев он и является основной причиной неисправности.
Ремонт драйвера (LED) фонарей
Ремонт переносного источника света зависит от его схемотехнического решения. Если фонарь не горит или светит слабо, сначала проверяют элементы питания и меняют их, если это нужно.
После этого в драйверах с аккумуляторами проверяют тестером или мультиметром детали модуля зарядки: диоды моста, входной конденсатор, резистор и кнопку или переключатель. Если все исправно, проверяют светодиоды. Их подключают к любому источнику питания напряжением 2-3 В через резистор 30-100 Ом.
Рассмотрим четыре типичные схемы фонарей и неисправности, возникающие в них. Первые два работают от аккумуляторов, в них вставлен модуль зарядки от сети 220 В.
В первых двух вариантах светодиоды часто перегорают как по вине потребителей, так и из-за неправильного схемотехнического решения. При извлечении фонаря из розетки после зарядки от сети палец иногда соскальзывает и нажимает на кнопку. Если штыри устройства еще не отсоединились от 220 В, возникает бросок напряжения, светодиоды перегорают.
Видео: Как сделать драйвер мощного света.
Во втором варианте при нажатии кнопки аккумулятор подсоединяется к светодиодам напрямую. Это недопустимо, так как они могут выйти из строя при первом же включении.
Ели при проверке выяснилось, что матрицы сгорели – их следует заменить, а фонари доработать. В первом варианте необходимо изменить схему подключения светодиода, показывающего, что аккумулятор заряжается.
Во втором варианте вместо кнопки следует установить переключатель, а затем последовательно с каждым источником света припаять по одному добавочному резистору. Но это не всегда возможно, так как часто в фонарях устанавливают светодиодную матрицу. В таком случае к ней следует припаять один общий резистор, мощность которого зависит от типа применяемых LED элементов.
Остальные фонари питаются от батарей. В третьем варианте светодиоды могут сгореть при пробое диода VD1. Если это случилось, надо заменить все неисправные детали и установить дополнительный резистор.
Основные элементы последнего варианта фонаря (микросхема, оптрон и полевой транзистор) проверить сложно. Для этого нужны специальные приборы. Поэтому его лучше не ремонтировать, а вставить в корпус другой драйвер.
Схема подключения светодиодной ленты типа RGB.
RGB лента обладает возможностью менять цвет своего свечения. Ее часто называют многоцветными или разноцветными. Для управления работой RGB ленты необходима установка специального RGB контролера, который управляет цветностью и яркостью свечения светодиодов. Управление самим контролером осуществляется при помощи пульта дистанционного управления.
Схема подключения довольна проста.
С блока питания плюс и минус соответственно подключается ко входу контролера, а выходить уже будет один общий + черного цвета и три провода для управления каждым каналом: R- красным, G- зеленным и B- голубой.
Обращайте на класс защиты при покупке самый высокий IP: IP65 означает водонепроницаемость, что позволяет работать светодиодной ленте в воде.
Общая принципиальная схема подключения светодиодной ленты к домашней электросети 220 Вольт.
Внимание! Светодиодные светильники в отличии от аналогичных с другими типами ламп- нельзя напрямую подключать в электрическую розетку на 220 Вольт. Подключение стоит проводить только через специальный блок питания, который трансформирует напряжение до необходимого более низкого значения= 12 (реже 24) Вольт, а кроме этого преобразует переменный ток в постоянный. Величина напряжения наносится по всей ее длине ленты.
Пример самого простого варианта подключения на картинке снизу.
На «Выходе» (Output): красный- это +, а черный или синий- это минус. Подключать к светодиодной ленте необходимо правильно с соблюдением полярности, а иначе светодиоды не будут светиться.
Как правило, перед блоком питания на фазе делается разрыв при помощи выключателя, что позволяет включать и выключать блок питания и соответственно светодиодную ленту.
При покупке блока питания необходимо обратить внимание не только на необходимую величину выдаваемого им напряжения, например 12 Вольт, но и на его мощность, которая должна быть достаточной для работы одной или нескольких светодиодных лент. Рекомендую брать с 20 процентным запасом.
Как рассчитать требуемую мощность блока питания (БП). Сразу смотрим на характеристики светодиодной ленты. Например, потребляемая мощность ее равна 9 Вт/м. Значит при длине 5 метров общая мощность составит 9 умножаем на длину и получаем 45 Ватт. Для подключения одной ленты понадобится БП мощностью 45 Ватт + 20% или 54 Ватт. Выбираем и покупаем близкий по требуемой мощности блок питания. Если будем подключать 2 одинаковые ленты к одному блоку 54 умножаем на 2 и получаем 108 Ватт.
Помните, что не рекомендуется подключать к концу одной светодиодной ленты начало другой, потому что вторая лента будет светить тусклее, а последние светодиоды вообще будут еле светится. При малой мощности светодиодов, несмотря на то что у них всех яркость станется одинаковой- будут перегреваться дорожки электропитания из-за прохождения тока выше номинальных значений. А перегрев, как хорошо известно, довольно значительно сокращает время службы светодиодов. В практике распространены два проверенных и правильных способа подключения светодиодных лент, изображенных на картинке снизу.
На первом изображении- схема подключения с 2 блоками питания, каждый из которых питает отдельно ленту. Общим у них будет только электропитание 220 Вольт. Но если, необходимо подключить 2 светодиодные ленты рядом, лучше купить по-мощнее блок питания и оба начала лент подключить с соблюдением полярности к 12 Вольтовому выходу из БП, как показано на втором изображении.
Ремонт драйвера (LED) лампы
Иногда источник света отказывается работать в самый неподходящий момент. Это может произойти из-за его неправильной эксплуатации или по вине производителя (так часто бывает с китайской низкокачественной продукцией).
Самый простой драйвер для светодиодной лампы 220 В часто выполняют на обычных элементах (диодах, резисторах и т. д.). В этой схеме один или несколько светодиодов сразу выходят из строя при пробое конденсатора или одного из диодов моста. Поэтому сначала проверяют эти радиодетали.
Вместо светодиодов временно подключают обычную лампочку на 15-20 ватт (например, от холодильника). Если все детали кроме светодиода целы, она слабо горит.
Второй вариант представляет собой выпрямитель с делителем напряжения, импульсным стабилизатором на микросхеме и разделительным трансформатором. При неисправности люстры проверяют последовательно все элементы. Схема может отличаться от приведенной, но алгоритм поиска такой же.
- Сначала проверяют, поступает ли на светодиодные матрицы напряжение. Если оно есть, ищут неисправные LED детали и меняют их. Если с напряжением все в порядке, проверяют диоды моста и входные конденсаторы.
- Если они тоже целы, измеряют напряжение питания микросхемы (4-я ножка). При его отличии от 15-17 В этот элемент скорее всего неисправен, его следует заменить.
- Если микросхема целая и на ее 5 и 6-й ножках есть импульсы (проверяют осциллографом), то «виноваты» трансформатор и его цепи – конденсатор или диоды, подключенные к нему.
Замена электролитических конденсаторов в драйвере для светодиодных светильников.
Многие люди приобретают длинные цепочки светодиодов, укрепленных на гибких подложках. Это LED ленты.
Есть два варианта таких источников:
- только LED приборы без дополнительных деталей;
- изделия с подпаянными к каждому элементу или цепочкам из 4-6 светодиодов резисторами, которые рассчитаны так, чтобы при напряжении 12-36 В и номинальном токе осветительные элементы не сгорали.
В обоих случаях часто применяют драйвера, которые уже были рассмотрены выше. Но иногда питание второго варианта LED лент осуществляется с помощью модуля, представляющего собой трансформаторный блок питания.
При ремонте драйвера светодиодного светильника 36 ватт, если ни один светодиод или цепочка не горят, сначала проверяют трансформатор на обрыв. Затем диоды и конденсатор выпрямителя. Детали R1 и C1 в такой схеме портятся очень редко.
Если хоть один или несколько элементов зажглись – напряжение питания поступает. В этом случае проверяют светодиоды и меняют их.
4 способа ремонта светодиодной лентыБудет полезно ознакомиться: Ремонт драйвера для светодиодной ленты 12 В 100 Вт.
Схема подключения с диммером.
Диммер или светорегулятор позволяет плавно регулировать яркость и включить или выключить светодиодную ленту без отключения блока питания. Подключить его очень просто.
Устанавливается светорегулятор перед светодиодными лентами на выходе из блока питания с соблюдением полярности, указанной на его корпусе.
Ремонт драйвера (LED) светильника
В магазинах можно встретить светодиодные осветительные приборы с регулируемым потоком света. Одна часть таких устройств имеет отдельный пульт. Но почти у всех настольных светильников регулятор ручной, и он встроен в драйвер питания.
Основная схема этих светильников почти ничем не отличается от остальных. Чтобы осуществить ремонт драйвера светодиодной лампы, необходимо действовать по уже указанным алгоритмам.
Рекомендуем к просмотру: Ремонт светодиодного светильника АРМСТРОНГ
Хранятся в гараже у меня найденные когда-то два светодиодных светильника. Драйвера с них сняты прошлым хозяином. В одном все светодиодные линейки целы. Рассчитаны они на ток 165мА.
Пытался я его подключить к советскому трансформатору, но тут один умный читатель посоветовал собрать бестрансформаторный блок питания к нему по очень простой схеме.
Емкость гасящего конденсатора на схеме указана, но если бы ее не было, то рассчитать помогла бы формула.
формулы для расчета гасящего конденсатора бестрансформаторного бп формулы для расчета гасящего конденсатора бестрансформаторного бпРешил собирать блок питания на плате зарядного устройства снятой из остатков фонарика. Все необходимые по схеме детали на нее хорошо поместились. Диодный мост на 1n4007 оставил родной. Роль перемычки выполняет предохранитель.
Схемотехника блоков питания для светодиодных лент и не только
Светодиоды заменяют таким типы источников света, такие как люминесцентные лампы и лампы накаливания. Практически в каждом доме уже есть светодиодные лампы, они потребляют гораздо меньше двух своих предшественников (до 10 раз меньше чем лампы накаливания и от 2 до 5 раз меньше, чем КЛЛ или энергосберегающие люминесцентные лампы). В ситуациях, когда необходим длинный источник света, или нужно организовать подсветку сложной формы в ход идёт светодиодная лента.
Led лента идеальна для целого ряда ситуаций, главное её преимущество перед отдельными светодиодами и светодиодными матрицами являются источники питания. Их легче найти в продаже почти в любом магазине электротоваров, в отличие от драйверов для мощных светодиодов, к тому же подбор блока питания осуществляется только по потребляемой мощности, т.к. подавляющее большинство светодиодных лент имеют напряжение питания в 12 Вольт.
В то время как для мощных светодиодов и модулей при выборе источника питания нужно искать именно источник тока с требуемой мощностью и номинальным током, т.е. учитывать 2 параметра, что усложняет подбор.
В этой статье рассмотрены типовые схемы блоков питания и их узлы, а также советы по их ремонту для начинающих радиолюбителей и электриков.
Содержание статьи
Типы и требования к источникам питания для светодиодных лент и 12 В led ламп
Основное требование к источнику питания как для светодиодов, так и для светодиодных лент – качественная стабилизация напряжения/тока, вне зависимости от скачков сетевого напряжения, а также низкие выходные пульсации.
По типу исполнения блоки питания для LED продукции различают:
Герметичные. Они сложнее в ремонте, корпус не всегда поддаётся аккуратной разборке, а внутри и вовсе может быть залит герметиком или компаундом.
Негерметичные, для применения в помещении. Лучше поддаются ремонту, т.к. плата изымается после откручивания нескольких винтов.
По типу охлаждения:
Пассивное воздушное. Блок питания охлаждается за счёт естественной конвекции воздуха через перфорацию его корпуса. Недостаток – невозможность достигнуть высоких мощностей сохранив массогабаритные показатели;
Активное воздушное. Блок питания охлаждается с помощью кулера (небольшого вентилятора, как устанавливают на системных блоках ПК). Такой тип охлаждения позволяет достичь большей мощности при аналогичных размерах с пассивным блоком питания.
Схемы блоков питания для светодиодных лент
Стоит понимать, что нет в электронике такого понятия как «блок питания для светодиодной ленты», в принципе к любому устройству подойдёт любой блок питания с подходящим напряжением и током большим чем потребляемый прибором. Это значит, что информация описанная ниже применима к практически любым блокам питания.
Однако в обиходе проще говорить о блоке питания по его предназначению для конкретного устройства.
Общая структура импульсного блока питания
Для питания светодиодных лент и другой техники последние десятилетия применяются импульсные блоки питания (ИБП). Они отличаются от трансформаторных тем, что работают не на частоте питающего напряжения (50 Гц), а на высоких частотах (десятки и сотни килогерц).
Поэтому для его работы нужен генератор высокой частоты, в дешевых и рассчитанных на малые токи (единицы ампер) блоках питания часто встречается автогенераторная схема, она применяется в:
электронных балластах для люминесцентных ламп;
зарядных устройствах для мобильного телефона;
дешевых ИБП для светодиодных лент (10-20 вт) и других устройствах.
Схему подобного блока питания можно увидеть на рисунке (для увеличения нажмите на картинку):
Его структура следующая:
1. Голубым цветом выделен диодный мост, стоящий на входе блока питания он выпрямляет входное переменное напряжение, для питания следующих узлов постоянным напряжением величиной 220*1.41=310 В. В случае поломки – проверьте наличие и величину напряжения ДО моста и ПОСЛЕ него, если оно отсутствует – потребуется замена диодов или моста, если он собран в отельном корпусе.
На схеме не указан, но по линии 220 В может присутствовать предохранитель или низкоомный резистор, прежде чем приступать к ремонту проверьте его целостность.
2. Коричневым обведен фильтр пульсаций, его главным элементом является C4 – электролитический конденсатор. Его ёмкость зависит от того, насколько сэкономил производитель, обычно до 220 мкФ на 400 Вольт. L1 – фильтр пульсаций и электромагнитных помех, которые возникают при работе импульсного блока питания. В большинстве дешевых блоков питания он отсутствует.
Частая проблема фильтра – высыхание, взрыв или вздутие электролитического конденсатора, приводит к некачественной работе всего импульсного блока питания в целом или его полной неработоспособности. Заменить его можно таким же и большей ёмкости, но подходящим по размеру.
3. Зеленым цветом выделена силовая часть VT1 силовой транзистор, в данном случае полевой, но может быть и биполярный. T1 – импульсный трансформатор с тремя обмотками: первичной, вторичной и базовой.
Третья обмотка необходима для генерации высокочастотных колебаний – если интересен принцип работы автогенераторного блока питания лучше прочитать книги Моина, Зиновьева и другие учебники по источникам питания импульсного типа.
Импульсные трансформаторы гораздо меньше по габаритам, чем сетевые, опять же из-за работы на высоких частотах и выполнены не из железа, а из феррита. Чаще всего выходит из строя силовой ключ.
Прозвоните транзистор мультиметром в режиме проверки диодов, и вы сразу обнаружите его пробой или обрыв. Остальные элементы – это обвязка этого узла, по отдельности редко выходит из строя, в основном вслед за силовым транзистором. Однако всегда стоит убедиться в соответствии номинальным значениям резисторов и конденсаторов.
Диоды в обвязке трансформатора VD7 и VD5 выполняют роль снаббера защищая цепи от всплесков противо-ЭДС, в моменты переключения транзистора. Являются тоже довольно нагруженным и ответственным узлом.
4. Красным цветом выделена цепочка обратной связи по напряжению на базе регулируемого стабилитрона TL431 и их аналогов (любые буквы в обозначении с цифрами «431»). Дополнительная информация про TL431: Легендарные аналоговые микросхемы
В состав ОС включена оптопара U1, с её помощью в силовую часть автогенератора поступает сигнал с выхода и поддерживается стабильное выходное напряжение. В выходной части может отсутствовать напряжение из-за обрыва диода VD8, часто это сборка Шоттки, подлежит замене. Также часто вызывает проблемы вздутый электролитический конденсатор C10.
Как вы видите всё работает с гораздо меньшим количеством элементов, надёжность соответствующая…
Подборка материалов про виды, устройство и схемы светодиодных лент:
Ремонт светодиодных лент:
Более дорогие блоки питания
Схемы, которые вы увидите ниже часто встречаются в блоках питания для светодиодных лент, DVD-проигрывателей, магнитол и других маломощных устройств (десятки Ватт).
Прежде чем перейти к рассмотрению популярных схем, ознакомьтесь со структурой импульсного блока питания с ШИМ-контроллером.
Верхняя часть схемы отвечает за фильтрацию, выпрямление и сглаживание пульсаций сетевого напряжения 220, по сути аналогична как в предыдущем типе, так и в последующих.
Самое интересное – это блок ШИМ, сердце любого достойного блока питания. ШИМ-контроллер – это устройство управляющие коэффициентом заполнения импульсов выходного сигнала на основании уставки, определенной пользователем или обратной связи по току или напряжению. ШИМ может управлять как мощностью нагрузки с помощью полевого (биполярного, IGBT) ключа, так и полупроводниковым управляемым ключом в составе преобразователя с трансформатором или дросселем.
Изменяя ширину импульсов при заданной частоте – вы изменяете и действующее значение напряжение, сохраняя при этом амплитудное, вы можете проинтегрировать его с помощью C- и LC-цепей для устранения пульсаций. Такой метод называется Широтно-Импульсное Моделирование, то есть моделирование сигнала за счёт ширины импульсов (скважности/коэффициента заполнения) при постоянной их частоте.
На английском языке это звучит, как PWM-controller, или Pulse-Width Modulation controller.
На рисунке изображен биполярный ШИМ. Прямоугольные сигналы – это сигналы управления на транзисторах с контроллера, пунктиром изображена форма напряжения в нагрузке этих ключей – действующее напряжение.
Более качественные блоки питания малой средней мощности часто построены на интегральных ШИМ-котроллерах со встроенным силовым ключом. Преимущества перед автогенераторной схемой:
Рабочая частота преобразователя не зависит ни от нагрузки, ни от напряжения питания;
Более качественная стабилизация выходных параметров;
Возможность более простой и надежной настройки рабочей частоты на этапе проектирования и модернизации блока .
Ниже будут расположены несколько типовых схем блоков питания (для увеличения нажмите на картинку):
Здесь RM6203 – и контроллер и ключ в одном корпусе.
В этой схеме используется внешний MOSFET ключ.
То же самое, но на другой микросхеме.
Обратная связь осуществляется с помощью резистора, иногда оптопары подключенной к входу с названием Sense (датчик) или Feedback (обратная связь). Ремонт таких блоков питания в общем аналогичен. Если все элементы исправны, и напряжение питания поступает на микросхему (ножка Vdd или Vcc), значит дело скорее всего в ней, более точно можно определить с помощью осциллографа просмотрев сигналы на выходе (ножка drain, gate).
Практически всегда заменить такой контроллер можно любым аналогом с подобной структурой, для этого нужно сверить datasheet на тот, что установлен на плате и тот, что у вас в наличии и впаять, соблюдая распиновку, как это изображено на следующих фотографиях.
Или вот схематически изображена замена подобных микросхем.
Мощные и дорогие блоки питания
Блоки питания для светодиодных лент, а также некоторые блоки питания для ноутбуков выполняются на ШИМ-контроллере UC3842.
Схема более сложная и надежная. Основным силовым компонентом является транзистор Q2 и трансформатор. При ремонте нужно проверить фильтрующие электролитические конденсаторы, силовой ключ, диоды Шоттки в выходных цепях и выходные LC-фильтры, напряжения питания микросхемы, в остальном методы диагностики аналогичны (смотрите также - Как проверить микросхему).
Однако более подробная и точная диагностика возможна лишь с использованием осциллографа, в противном случае – проверьте короткие замыкания платы, пайку элементов и обрывы дороже. Может помочь замена подозрительных узлов на заведомо рабочие.
Более совершенные модели источников питания для светодиодных лент выполнены на практически легендарной микросхеме TL494 (любые буквы с цифрами «494») или её аналоге KA7500. Кстати на этих же контроллерах построено большинство компьютерных блоков питания AT и ATX.
Вот типовая схема блока питания на этом ШИМ-контроллере (нажмите на схему):
Такие блоки питания отличаются высокой надёжностью и стабильностью работы.
Краткий алгоритм проверки:
1. Запитываем микросхему согласно распиновки от внешнего источника питания 12-15 вольт (12 ножка – плюс, а на 7 ножку – минус).
2. На 14 ножки должно появиться напряжение 5 Вольт, которое будет оставаться стабильным при изменении питания, если оно «плавает» - микросхему под замену.
3. На 5 выводе должно быть пилообразное напряжение «увидеть» его можно только с помощью осциллографа. Если его нет или форма искажена – проверяем соответствие номинальным значениям времязадающей RC-цепи, которая подключена к 5 и 6 выводам, если нет – на схеме это R39 и C35, их под замену, если после этого ничего не изменилось – микросхема вышла из строя.
4. На выходах 8 и 11 должны быть прямоугольные импульсы, но их может не быть из-за конкретной схемы реализации обратной связи (выводы 1-2 и 15-16). Если выключить и подключить 220 В, на какое-то время они там появятся и блок снова уйдёт в защиту – это признак исправной микросхемы.
5. Проверить ШИМ можно закоротив 4 и 7 ножку, ширина импульсов увеличится, а закоротив 4 на 14 ножки – импульсы исчезнут. Если у вас получились другие результаты – проблема в МС.
Это наиболее краткая проверка данного ШИМ-контроллера, о ремонте блоков питания на их основе есть целая книга «Импульсные блоки питания для IBM PC» .
Хоть и посвящена она компьютерным блоками питания, но там много полезной информации для любого радиолюбителя.
Вывод
Схемотехника блоков питания для светодиодных лент аналогична любым блокам питания с подобными характеристиками, довольно хорошо поддаётся ремонту, модернизации и перестройки на необходимые напряжения, разумеется, в разумных пределах.
Смотрите также у нас на сайте:
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.
Сегодня большой популярностью стали пользоваться новые виды светодиодных светильников в виде тонких гибких лент длиной 5 метров, которые возможно наращивать и легко разрезать на отдельные отрезки любой длины, да же в несколько сантиметров.
Светодиодной ленте легко придать любую геометрическую форму. Она широко применяется для подсветки фасадов, рекламы и др. Многие начали активно ее использовать и в домашних условиях для освещения аквариума, подсветки в кухне, подвесного потолка и т. п.
Подробно узнайте из отдельной нашей статьи о всевозможных самых распространенных методах установки светодиодных лент. А Я далее остановлюсь на вопросах по их подключению.
Светодиодные ленты работают на пониженном напряжении 12 Вольт (реже 24 В ) от источников постоянного тока: аккумуляторной батареи или блока питания. Поэтому важно, при их подключении соблюдать полярность. Если неправильно подключите ничего страшного не случится- просто она не будет работать. Поменяйте полярность и у Вас все заработает!
Благодаря тому что светодиодные ленты работают от постоянного тока с величиной напряжения 12 Вольт- ее можно напрямую подключить к бортовой сети электропитания вашего автомобиля.
Читайте также: