Решить уравнение sin x cos x
2Дианочка ответ неверный т. к. на множитель содержащий в себе неизвестное (х) делить нельзя - теряются корни
в данном случае необходимо сначало воспользоваться формулами приведения: cosx=sin(x+pi/2)
А затем получившееся выражение решить по формуле суммы синусов:
sinx+sin(x+pi/2)=2*sin((x+x+pi/2)/2)*cos((x-x-pi/2)/2)
итого если упростить:
2*sin(x+pi/4)*cos(-pi/4)=0
Далее преобразуем cos(-pi/4)= - (корень из 2х) /2, затем двойки сокращаются и мы получаем
- sin(x+pi/4)*(корень из 2)=0
Ну а дальше сама. . думаю справишься
Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> --> Введите тригонометрическое уравнение
Решить уравнение
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу. Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек.
Тригонометрические уравнения
Уравнение cos(х) = а
Из определения косинуса следует, что \( -1 \leqslant \cos \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.
Уравнение cos x = а, где \( |a| \leqslant 1 \), имеет на отрезке \( 0 \leqslant x \leqslant \pi \) только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> \right] \); если a
Уравнение sin(х) = а
Из определения синуса следует, что \( -1 \leqslant \sin \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.
Уравнение sin х = а, где \( |a| \leqslant 1 \), на отрезке \( \left[ -\frac<\pi>; \; \frac<\pi> \right] \) имеет только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> \right] \); если а
Уравнение tg(х) = а
Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.
Уравнение tg x = а для любого a имеет на интервале \( \left( -\frac<\pi>; \; \frac<\pi> \right) \) только один корень. Если \( |a| \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> \right) \); если а
Решение тригонометрических уравнений
Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.
Уравнения, сводящиеся к квадратным
Решить уравнение 2 cos 2 (х) - 5 sin(х) + 1 = 0
Заменяя cos 2 (х) на 1 - sin 2 (х), получаем
2 (1 - sin 2 (х)) - 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) - 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y - 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = - 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; \( x = (-1)^n \text(0,5) + \pi n = (-1)^n \frac<\pi> + \pi n, \; n \in \mathbb \)
Ответ \( x = (-1)^n \frac<\pi> + \pi n, \; n \in \mathbb \)
Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) - 4 = 0
Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 - sin 2 (6х)) + 4 sin(6х) - 4 = 0 => 3 sin 2 (6х) - 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 - 4y +1 =0, откуда y1 = 1, y2 = 1/3
2) \( sin(6x) = \frac<1> \Rightarrow 6x = (-1)^n \text \frac<1> +\pi n \Rightarrow \)
\( \Rightarrow x = \frac \text \frac<1> +\frac<\pi n>, \; n \in \mathbb \)
1> Ответ \( x = \frac<\pi> +\frac<\pi n>, \;\; x = \frac \text \frac +\frac<\pi n>, \; n \in \mathbb \)
Уравнение вида a sin(x) + b cos(x) = c
Решить уравнение 2 sin(x) + cos(x) - 2 = 0
Используя формулы \( \sin(x) = 2\sin\frac \cos\frac, \; \cos(x) = \cos^2 \frac -\sin^2 \frac \) и записывая правую часть уравпения в виде \( 2 = 2 \cdot 1 = 2 \left( \sin^2 \frac + \cos^2 \frac \right) \) получаем
\( 4\sin\fracПоделив это уравнение на \( \cos^2 \frac \) получим равносильное уравнение \( 3 \text^2\frac - 4 \text\frac +1 = 0 \)
Обозначая \( \text\frac = y \) получаем уравнение 3y 2 - 4y + 1 = 0, откуда y1=1, y1= 1/3
В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях \( a \neq 0, \; b \neq 0, \; c \neq 0, \; c^2 \leqslant b^2+c^2 \) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на \( \sqrt \):
\( \sin x \cos \varphi + \cos x \sin \varphi = \frac> \)
откуда Изложенный метод преобразования уравнения вида a sin(x) + b cos(x) = c к простейшему тригонометрическому уравнению называется методом введения вспомогательного угла.
Решить уравнение 4 sin(x) + 3 cos(x) = 5
Здесь a = 4, b = 3, \( \sqrt = 5 \). Поделим обе части уравнения на 5:
\( \frac<4>\sin(x) + \frac\cos(x) = 1 \)Введём вспомогательный аргумент \( \varphi \), такой, что \( \cos \varphi = \frac<4>, \; \sin \varphi = \frac \) Исходное уравнение можно записать в виде
\( \sin x \cos \varphi + \cos x \sin \varphi = 1, \;\; \sin(x+\varphi) = 1 \)
откуда4>
Уравнения, решаемые разложением левой части на множители
Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.
Решить уравнение sin(2х) - sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) - sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x - 1) = 0
Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х - х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0
Следовательно, первая серия корней содержится во второй.
Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) - sin 2 (x), то
cos(2x) = 1 - sin 2 (x) - sin 2 (x), cos(2x) = 1 - 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 - cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 - cos(2x)) + 2 (1 - cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0
Знаки операций:
+ - сложение,
- - вычитание,
* - умножение,
/ - деление,
^ - возведение в степень.
Знак умножения нужно вводить только между числами, во всех остальных случаях его можно не вводить.
Список функций:
Функция | Описание | Пример ввода | Результат ввода |
---|---|---|---|
pi | Число \(\pi\) | pi | $$ \pi $$ |
e | Число \(e\) | e | $$ e $$ |
e^x | Степень числа \(e\) | e^(2x) | $$ e^ $$ |
exp(x) | Степень числа \(e\) | exp(1/3) | $$ \sqrt[3] $$ |
|x| abs(x) | Модуль (абсолютное значение) числа \(x\) | |x-1| abs(cos(x)) | \( |x-1| \) \( |\cos(x)| \) |
sin(x) | Синус | sin(x-1) | $$ sin(x-1) $$ |
cos(x) | Косинус | 1/(cos(x))^2 | $$ \frac $$ |
tg(x) | Тангенс | x*tg(x) | $$ x \cdot tg(x) $$ |
ctg(x) | Котангенс | 3ctg(1/x) | $$ 3 ctg \left( \frac \right) $$ |
arcsin(x) | Арксинус | arcsin(x) | $$ arcsin(x) $$ |
arccos(x) | Арккосинус | arccos(x) | $$ arccos(x) $$ |
arctg(x) | Арктангенс | arctg(x) | $$ arctg(x) $$ |
arcctg(x) | Арккотангенс | arcctg(x) | $$ arcctg(x) $$ |
sqrt(x) | Квадратный корень | sqrt(1/x) | $$ \sqrt<\frac> $$ |
root(n,x) | Корень степени n root(2,x) эквивалентно sqrt(x) | root(4,exp(x)) | $$ \sqrt[4] < e^> $$ |
x^(1/n) | Корень степени n x^(1/2) эквивалентно sqrt(x) | (cos(x))^(1/3) | $$ \sqrt[\Large 3 \normalsize] $$ |
ln(x) log(x) log(e,x) | Натуральный логарифм (основание - число e ) | 1/ln(3-x) | $$ \frac $$ |
log(10,x) | Десятичный логарифм числа x | log(10,x^2+x) | $$ log_(x^2+x) $$ |
log(a,x) | Логарифм x по основанию a | log(3,cos(x)) | $$ log_3(cos(x)) $$ |
sh(x) | Гиперболический синус | sh(x-1) | $$ sh(x-1) $$ |
ch(x) | Гиперболический косинус | ch(x) | $$ ch(x) $$ |
th(x) | Гиперболический тангенс | th(x) | $$ th(x) $$ |
cth(x) | Гиперболический котангенс | cth(x) | $$ cth(x) $$ |
Почему решение на английском языке?
При решении этой задачи используется большой и дорогой модуль одного "забугорного" сервиса. Решение он выдает в виде изображения и только на английском языке. Изменить это, к сожалению, нельзя. Ничего лучше мы найти не смогли. Зато он выводит подробное и очень качественное решение в том виде в котором оно принято в высших учебных заведениях. Единственное неудобство - на английском языке, но это не большая цена за качество.
Некоторые пояснения по выводу решения.
Вывод | Перевод, пояснение |
---|---|
Solve for x over the real numbers | Решить относительно х в действительных числах (бывают ещё комплексные) |
Multiply both sides by . | Умножаем обе части на . |
Simplify and substitute . | Упрощаем и делаем подстановку . |
Simplify trigonometric functions | Упрощаем тригонометрические функции |
Bring . together using the commom denominator . | Приводим . к общему знаменателю . |
The left hand side factors into a product with two terms | Левая часть разбивается на множители как два многочлена |
Split into two equations | Разделяем на два уравнения |
Take the square root of both sides | Извлекаем квадратный корень из обоих частей |
Subtract . from both sides | Вычитаем . из обеих частей уравнения |
Add . to both sides | Прибавляем . к обоим частям уравнения |
Multiply both sides by . | Умножаем обе части уравнения на . |
Divide both sides by . | Делим обе части уравнения на . |
Substitute . Then . | Делаем подстановку . Тогда . |
Substitute back for . | Обратная подстановка для . |
. has no solution since for all . | . не имеет решения для всех . |
Take the inverse sine of both sides | Извлекаем обратный синус (арксинус) из обоих частей |
Simplify the expression | Упрощаем выражение |
Answer | Ответ |
\(log(x)\) | Натуральный логарифм, основание - число e. У нас пишут \(ln(x)\) |
\(arccos(x)\) или \(cos^(x)\) | Арккосинус. У нас пишут \( arccos(x) \) |
\(arcsin(x)\) или \(sin^(x)\) | Арксинус. У нас пишут \( arcsin(x) \) |
\(tan(x)\) | Тангенс. У нас пишут \(tg(x) = \frac\) |
\(arctan(x)\) или \(tan^(x)\) | Арктангенс. У нас пишут \(arctg(x)\) |
\(cot(x)\) | Котангенс. У нас пишут \(ctg(x) = \frac\) |
\(arccot(x)\) или \(cot^(x)\) | Арккотангенс. У нас пишут \(arcctg(x)\) |
\(sec(x)\) | Секанс. У нас пишут также \(sec(x) = \frac\) |
\(csc(x)\) | Косеканс. У нас пишут \(cosec(x) = \frac\) |
\(cosh(x)\) | Гиперболический косинус. У нас пишут \(ch(x) = \frac> \) |
\(sinh(x)\) | Гиперболический синус. У нас пишут \(sh(x) = \frac> \) |
\(tanh(x)\) | Гиперболический тангенс. У нас пишут \(th(x) = \frac>> \) |
\(coth(x)\) | Гиперболический котангенс. У нас пишут \(cth(x) = \frac \) |
Если вам что-то осталось не понятно обязательно напишите об этом в Обратной связи и мы дополним эту таблицу.
How do you plot the graph of y = \sin(x)+\cos(x) by converting it to another form?
What is the area bounded by the two graphs y =\sin x and y =\sin x\cos2x? (0\le x\le\pi)
Once you arrived to =\int^\pi_0\sin x (2\sin^2x) dx you do the following \int_0^ <\pi >2 \sin (x) \left(1-\cos ^2(x)\right) \, dx and then substitute \cos(x)=u\rightarrow -\sin(x)\,dx=du The .
In which point the tangent of y= \sin x - \cos x is parallel with y = x?
The function y = x \sin x \cos x is:? A) even b) odd c) periodic d) positive for all x e) negative for all x
Aside from the other three answers given up to this point, here’s another helpful thing to keep in mind about identifying even and odd functions. For a long time after learning about even and odd .
Let P=\cos x\sin y\cos z=\frac\bigg[2\cos x \sin y\bigg] = \frac\bigg[\sin(x+y)-\sin(x-y)\bigg]\leq \frac\cdot \sin (x+y) So P\leq \frac=\frac(1+\cos 2z)\leq \frac\bigg[1+\cos 2\cdot \frac<\pi>\bigg] = \frac> .\cos>
Читайте также: