Решить уравнение sin квадрат x sinx 0
Найди верный ответ на вопрос ✅ «sin в квадрате x - sinx=0 . » по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Периметр прямоугольника 6,6 дм. Одна сторона больше другой на 0,9 дм. найдите площадь прямоугольника.
Турист проплыл по течению 240 км, затратив на этот путь 12 часов, при этом скорость течения равнялась 3 км/ч. Далее он продолжил путь по озеру, затратив на весь путь по нему 4 часа. Найдите расстояние, которое турист проплыл по озеру.
или
$$w_ = 1$$
$$w_ = 0$$
делаем обратную замену
$$\sin <\left(x \right)>= w$$
Дано уравнение
$$\sin <\left(x \right)>= w$$
- это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = 2 \pi n + \operatorname<\left(w \right)>$$
$$x = 2 \pi n - \operatorname <\left(w \right)>+ \pi$$
Или
$$x = 2 \pi n + \operatorname<\left(w \right)>$$
$$x = 2 \pi n - \operatorname <\left(w \right)>+ \pi$$
, где n - любое целое число
подставляем w:
$$x_ = 2 \pi n + \operatorname <\left(w_\right)>$$
$$x_ = 2 \pi n + \operatorname<\left(1 \right)>$$
$$x_ = 2 \pi n + \frac<\pi>$$
$$x_ = 2 \pi n + \operatorname <\left(w_\right)>$$
$$x_ = 2 \pi n + \operatorname<\left(0 \right)>$$
$$x_ = 2 \pi n$$
$$x_ = 2 \pi n - \operatorname <\left(w_\right)> + \pi$$
$$x_ = 2 \pi n - \operatorname <\left(1 \right)>+ \pi$$
$$x_ = 2 \pi n + \frac<\pi>$$
$$x_ = 2 \pi n - \operatorname <\left(w_\right)> + \pi$$
$$x_ = 2 \pi n - \operatorname <\left(0 \right)>+ \pi$$
$$x_ = 2 \pi n + \pi$$
или
$$w_ = 1$$
$$w_ = 0$$
делаем обратную замену
$$\sin <\left(x \right)>= w$$
Дано уравнение
$$\sin <\left(x \right)>= w$$
- это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = 2 \pi n + \operatorname<\left(w \right)>$$
$$x = 2 \pi n - \operatorname <\left(w \right)>+ \pi$$
Или
$$x = 2 \pi n + \operatorname<\left(w \right)>$$
$$x = 2 \pi n - \operatorname <\left(w \right)>+ \pi$$
, где n - любое целое число
подставляем w:
$$x_ = 2 \pi n + \operatorname <\left(w_\right)>$$
$$x_ = 2 \pi n + \operatorname<\left(1 \right)>$$
$$x_ = 2 \pi n + \frac<\pi>$$
$$x_ = 2 \pi n + \operatorname <\left(w_\right)>$$
$$x_ = 2 \pi n + \operatorname<\left(0 \right)>$$
$$x_ = 2 \pi n$$
$$x_ = 2 \pi n - \operatorname <\left(w_\right)> + \pi$$
$$x_ = 2 \pi n - \operatorname <\left(1 \right)>+ \pi$$
$$x_ = 2 \pi n + \frac<\pi>$$
$$x_ = 2 \pi n - \operatorname <\left(w_\right)> + \pi$$
$$x_ = 2 \pi n - \operatorname <\left(0 \right)>+ \pi$$
$$x_ = 2 \pi n + \pi$$
Алгоритм решения таков, что мы сводим равенство с более простому — выражаем разницу через произведение.
1) Вынесем sin x за скобки. Получим равенство sin x * ( 2 * sin x - 1 ) = 0
Равенство исполняется, когда одно из его составляющих множетелей равно 0. Рассмотрим два варианта:
2. 2 * sin x - 1 = 0
x = (-1)^k * arksin (1/2) + Пk, k є Z.
Пояснение: и в 1 и во 2 случае, для получения результата, мы пользовались формулами простейших тригонометрических уровнений.
Читайте также: