Разрешающая способность оптического телескопа равна 0 2 определить его проницающую силу
Основные формулы, показывающие на что примерно способен телескоп.
Не забывайте только, что это теория, на деле всё сильно зависит от качества изделия, правильности настройки и состояния атмосферы.
Кратность или увеличение телескопа (Г)
Г=F/f, где F - фокусное расстояние объектива, f - фокусное расстояние окуляра.
F вы изменить чаще всего не можете, но имея окуляры с разным f, вы сможете менять кратность или увеличение телескопа Г.
Максимальное увеличение (Г max)
Максимальное увеличение телескопа ограничено диаметром объектива. Принято считать, что Г max=2*D, но из-за поправок на искажения, точности изготовления и настройки, лучше немного занизить эту величину:
Гmax = 1,5*D, где D - диаметр объектива или главного зеркала (апертура).
А если труба окажется способна на большее - пусть это лучше сюрпризом будет, чем наоборот. Используя линзу Барлоу, можно поднять максимальное увеличение телескопа в разы, но в итоге вы получите всего-лишь размытое пятно больших размеров и никаких дополнительных деталей.
Есть, правда, другой подход: немного более крупные размеры часто позволяют лучше расмотреть тот же объект, несмотря на то, что деталей на нём не прибавится. Наверное поэтому и советуют обычную формулу: Г max=2*D. То есть, это зависит от объекта и вашего вкуса.
Светосила
Светосила телескопа определяется в виде отношения D:F. Если не особо заморачиваться, то чем меньше это отношение, тем лучше телескоп подходит для наблюдения галактик и туманностей (например 1:5). А более длиннофокусный телескоп с соотношением вроде 1:12 лучше подходит для наблюдения Луны.
Разрешающая способность (b)
Разрешающая способность телескопа - наименьший угол между такими двумя близкими звездами, когда они уже видны как две, а не сливаются зрительно в одну. Проще говоря, под разрешающей способностью можно понимать "чёткость" изображения (да простят меня профессионалы-оптики. ).
b=138/D, где D - апертура объектива. Измеряется в секундах (точнее в секундах дуги).
Из-за атмосферы эта величина нечасто бывает меньше 1" (1 секунды). Например, на Луне 1" соответствует кратеру диаметром около 2 км.
Для длиннофокусных объективов, со значением светосилы 1:12 и более длинных, формула немного другая: b=116/D (по Данлопу).
Из сказанного выше видно, что в обычных условиях минимальная разрешающая способность в 1" достигается при апертуре 150мм у рефлекторов и около 125мм у планетников-рефракторов. Более апертуристые телескопы дают более чёткое изображение только в теории, ну или высоко в горах, где чистая атмосфера, либо в те редкие дни, когда "с погодой везёт".
Однако, не забывайте, что чем больше телескоп, тем ярче изображение, тем виднее более тусклые детали и объекты. Поэтому, с точки зрения обычного наблюдателя, изображение у больших телескопов всё равно оказывается лучше, чем у маленьких.
Вдобавок, в короткие промежутки времени атмосфера над вами может успокоиться настолько, что большой телескоп покажет картинку более чёткую, чем при том самом пределе в 1", а вот маленький телескоп упрётся в это ограничение и будет очень обидно.
Так что, нет особого смысла ограничиваться 150-ю миллиметрами ;)
Предельная звёздная величина (m)
Предельная звёздная величина, которая видна в телескоп, в зависимости от апертуры:
m=2.1+5*lg(D), где D – диаметр телескопа в мм., lg - логарифм.
Если возьмётесь расчитывать, то увидите, что предельная звёздная величина, доступная нашему глазу через самый большой "магазинный" телескоп с апертурой 300мм - около 14,5 m . Более слабые объекты ищутся через фотографирование и последующую компьютерную обработку кадров.
Приведу для справки таблицу соответствия апертуры телескопа D и предельной звёздной величины:
D, мм | m | D, мм | m |
---|---|---|---|
32 | 9,6 | 132 | 12.7 |
50 | 10,6 | 150 | 13 |
60 | 11 | 200 | 13,6 |
70 | 11,3 | 250 | 14,1 |
80 | 11,6 | 300 | 14,5 |
90 | 11,9 | 350 | 14,8 |
114 | 12,4 | 400 | 15,1 |
125 | 12,6 | 500 | 15,6 |
На деле значения будут немного отличаться из-за разницы световых потерь в разных конструкция телескопов.
При одинаковой апертуре D, выше всего предельная звёздная величина в линзовых телекопах-рефракторах.
В зеркальных рефлекторах потери выше - очень грубо можно отнять 10-15%.
В катадиопртиках потери самые большие, соответственно и предельная звёздная величина самая маленькая.
Также велики потери в биноклях из-за наличия нескольких преломляющих призм - их я имел ввиду, дав диаметры 32 и 50 мм. То есть, в биноклях предельная звёздная величина будет гораздо меньше табличной. На сколько - зависит от качества марки бинокля, в частности от качества просветляющего покрытия всех поверхностей - это нельзя предсказать для всех моделей.
Сложные и дорогие окуляры тоже задерживают свет за счёт большего количества линз - неизбежная плата за качество изображения (хотя, их качественные просветляющие покрытия частично снижают этот недостаток).
То есть, при одинаковой апертуре, в линзовый телескоп-рефрактор с самым простеньким окуляром вы увидите максимум возможного при данном D.
Но, поскольку, рефракторы больших диаметров дороги, то за те же деньги можно взять гораздо более апертуристый рефлектор и увидеть значительно больше.
Выходной зрачок
Выходной зрачок телескопа = D/Г
Хорошо, когда выходной зрачок телескопа равен 6 мм., это значит, что весь свет собираемый объективом попадёт в глаз (6 мм. - примерный диаметр человеческого зрачка в темноте). Если выходной зрачок окажется больше, то часть света потеряется, подобно тому, как если бы мы задиафрагмировали объектив.
На деле удобнее считать "от обратного". Например:
Для моего телескопа с апертурой D=250мм, максимальное увеличение без потери яркости = 250мм/6мм = 41,67 крат. То есть, при увеличении 41,67 выходной зрачок будет равен 6 мм.
Ну, и какой окуляр мне нужен для этого телескопа, чтобы получить это самое "равнозрачковое увеличение"?
Вспоминаем: f=F/Г.
Тогда: фокусное расстояние F моего Добсона": 1255мм. "Г" уже нашли: 41,67 крат.
Получается, что мне нужен окуляр f=1255/41,67=30,1мм. Да, примерно такой окуляр и шёл в комплекте :).
42 крата - это совсем немного, но достаточно для рассматривания звёздных полей, а вот уже для Андромеды маловато.
(Берём окуляр с фокусом покороче. Ура, получается крупнее! Но. темнее. И чем больше кратность, тем темнее будет картинка.)
Это был расчёт для довольно апертуристого телескопа, а какая будет кратность для равнозрачковости в рядовые телескопы - посчитайте сами: одни слёзы. Поэтому и говорят, что "апертура рулит" - чем она выше, там картинка ярче при одинаковой кратности (при одинаковой конструкции телескопов).
Поле зрения телескопа
Поле зрения телескопа = поле зрения окуляра / Г
Поле зрения окуляра указано в его паспорте, а увеличение Г телескопа с данным окуляром мы уже знаем как расчитать: Г=F/f.
Чем полезно знание поля зрения телескопа?
Чем больше поле зрения телескопа, тем больший кусок неба виден, но тем мельче объекты.
Зная какое поле (угол) захватит ваш телескоп при заданном увеличении, и зная уговые размеры искомого объекта, можно прикинуть какую часть поля зрения займёт этот объект, то есть прикинуть общий вид того, что вы увидите в окуляре.
Если вы ищете объект не по координатам, а по картам, то полезно сделать из проволоки колечки, которые соответствуют на карте угловым полям зрения ваших окуляров в составе данного телескопа. Тогда гораздо легче ориентироваться: двигая телескоп от звезды к звезде и одновременно перемещая колечко на карте, вы легко можете сверять оба изображения.
Теперь, когда примерно ясна взаимосвязь характеристик телескопа, можно другими глазами посмотреть на то, что можно увидеть в телескопы разных размеров.
Помогите подобрать прибор под задачу. Лампа накаливания в помещении олеблется под действием акустической речевой волны. Амплитуда колебаний на частоте 600 Гц спектрального ядра речи составляет 100 мкм. С какими параметрами нужен телескоп для того, чтобы увидеть колебания с расстояния 10 м извне помещения через окноВладимир, 19 июля 2020 г.
Владимир, юмор оценил, разработками шпионского оборудования не занимаюсь :)
Николай, 19 July, 2020
Как решить эту задачу,не понимаю.
Фотоаппаратом с фокусным расстоянием объектива 9 см фотографировали далекие предметы на максимально близком для данного аппарата расстоянии 81 см. Определить, на сколько при этом пришлось выдвинуть вперед объектив.
Матвей, 25 июня 2020 г.
В таком виде я тоже условие не понимаю. Но, если предположить, что в задаче пропущено, что сначала просто фоткали далёкие предметы, а потом на максимально близком для данного фотоаппарата, то это похоже на задачу на формулу тонкой линзы:
1/f2 = 1/F-1/d2 = 1/9-1/81 = 9/81-1/81 = 8/81;
f2 = 81/8 = 10.125 см
f2-f1= 10.125-9 = 1.125см
Если что, я не виноват :)
Николай, 26 June, 2020
Как определить (по какой формуле) диапазон телескопа, если он необходим для наблюдения за звездами с атмосферной температурой, например, 10000:К?
Елена, 22 мая 2020 г.
Хорошо бы знать исходную причину этого вопроса. Не зная подробностей. В целом, 10000К - это белая звезда, видна в телескоп в зависимости от видимой звёздной величины. А, например, красный цвет нами различается хуже - нужен телескоп с несколько большей апертурой. В Сети можно найти кривую чувствительности человеческого глаза и вывести какую-нибудь формулу. Но, на деле, в ней будет мало ценности - любители обычно смотрят в то, что есть, а не выбирают телескоп из длинного ряда конкретно для каждой звезды.
Николай, 26 May, 2020
В тексте ошибка: "Г max=1,5*D, где D - фокусное расстояние объектива". Думаю должно быть: D - апертура объектива или главного зеркала.
Максим, 30 апреля 2020 г.
Максим, спасибо за внимательность :) Да, в это месте я опечатался, D - апертура, как и было сказано в начале статьи. Поправил.
Николай, 12 May, 2020
А мой телескоп наверное самый такой простой. Levenhuk Skyline 76*700AZ очень обидно то,что я могу посмотреть только окружность звезды я середина её тёмная. почему?ответьте если можно.
Татьяна, 16 февраля 2020 г.
Татьяна, звезда в любительский телескоп должна быть видна как точка. На деле - куча отклонений из-за разных искажений. Похоже, что у Вас просто фокус не настроен (не наведена резкость), поэтому вместо звезды-точки Вы видите «бублик». Посмотрите в Интернете что такое «предфокал» и «зафокал» для телескопа-рефлектора - в Сети куча фоток - это когда телескоп просто расфокусирован, по моему как раз ваш случай. Потом, когда справитесь с фокусировкой, почитайте в Интернете «как юстировать зеркальный телескоп» - это много раз описано. Да, к сожалению зеркальные телескопы вроде вашего, требуют тонкой ручной настройки. С линзовыми проще, поэтому новичкам зеркальные обычно не советуют. Короче - покрутите колесо настройки фокусёра вперёд и назад. Это двойное колёсико, находится на узле, в который Вы устанавливаете окуляр. Теоретически возможно, что Вы его крутите, но не хватает «хода» фокусёра, но это вряд ли - разве что при использовании нестандартного сменного окуляра или если Вы неправильно вставили окуляр (всякое бывает. ). Попробуйте сначала со стандартным, который был при покупке.
Николай, 16 February, 2020
Вы пишете в статье: "6 мм. - примерный диаметр человеческого зрачка в темноте". Но, я встречала упоминания, что в темноте зрачок у нас 8 мм. Так сколько же на самом деле?
Елена Александровна, 16 августа 2019 г.
8мм. - это для идеального случая: глаза совершенно здоровы, глазные мышцы работают на "все сто", а измерения проводятся В ПОЛНОЙ ТЕМНОТЕ. В жизни всё не так: наши глазные мышцы редко работают как надо. Увы, но обычно это 7мм. Кроме того, из окуляра телескопа идёт довольно много света - там нет полной темноты. В итоге зрачок ещё сильнее уменьшается. Вот и получается около 6мм. А, если Вы на Луну смотрите, то и того меньше :)
Николай, 16 August, 2019
Большое спасибо за статью и другие статьи вашего сайта, очень понятно и подробно, спасибо.
Александр, 16 августа 2019 г.
Пожалуйста. Спрашивайте, если что :)
Николай, 16 August, 2019
Замечательная статья. Благодарю. Celestron 120/1000 OMNI
Андрей, 24 ноября 2018 г.
Очень интересно и подробно всё описано. Для меня это очень нужная статья, т.к. недавно начал заниматься астрономией. Мой телескоп: Sturman HQ1400150EQ. Спасибо вам большое!
Виктор, 9 ноября 2018 г.
Ответ:
Пожалуйста :) У вас аппертура 150 мм и экваториальная монтировка - хорошее начало для дипская. Главное чтобы место наблюдения было без сильной засветки. Успехов!
Николай.
Цель: рассмотреть строение и принцип действия телескопов различных видов, научиться вычислять характеристики телескопа.
Средства обучения: методические рекомендации по выполнению практических работ, калькулятор.
Место проведения: учебная аудитория.
Виды самостоятельной работы:
решение тренировочных заданий.
Краткая теоретическая справка
Телескоп − оптический прибор, увеличивает угол зрения, под которым видны небесные тела (разрешающая способность), и собирает во много раз больше света, чем глаз наблюдателя (проникающая сила).
Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооруженному глазу. Чем более слабые объекты дает возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.
Принцип работы телескопа
Параллельные лучи света (например, от звезды) падают на объектив. Объектив строит изображение в фокальной плоскости. Лучи света, параллельные главной оптической оси, собираются в фокусе F, лежащем на этой оси. Другие пучки света собираются вблизи фокуса – выше или ниже. Это изображение с помощью окуляра рассматривает наблюдатель.
Основные характеристики телескопов.
1) Апертура телескопа (D) − это диаметр главного зеркала телескопа или его собирающей линзы.
Чем больше апертура, тем больше света соберёт объектив и тем более слабые объекты будут видны.
2) Фокусное расстояние телескопа (F) − это расстояние, на котором зеркало или линза объектива строит изображение бесконечно удаленного объекта. Чем больше фокусное расстояние телескопа, тем качественнее изображение.
3) Увеличение (или кратность) телескопа (W) показывает, во сколько раз телескоп может увеличить объект или угол, под которым наблюдатель видит объект. Оно равно отношению фокусных расстояний объектива F и окуляра f.
Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, но звезды из-за их колоссальной удаленности все равно видны в телескоп, как светящиеся точки.
F вы изменить чаще всего не можете, но имея окуляры с разным f, вы сможете менять кратность или увеличение телескопа Г. Имея сменные окуляры, можно с одним и тем же объективом получать различное увеличение. Поэтому возможности телескопа в астрономии принято характеризовать не увеличением, а диаметром его объектива.
4) Разрешающая способность – минимальный угол между двумя звездами, видимыми раздельно (чёткость изображения).
Разрешающая способность можно вычислить по формуле:
где δ – угловое разрешение в секундах, D – диаметр объектива в миллиметрах.
Расстояние между объектами на небе в астрономии измеряются углом, который образовывается лучами, проведенными из точки, в которой находится наблюдатель к объектам. Это расстояние называют угловым, и выражают в градусах и долях градуса.
Угловой размер центрального пятна (теоретическое угловое разрешение):
где δ – угловое разрешение в секундах, λ - длина волны излучения, D – диаметр объектива в миллиметрах.
Чем меньше размер изображения светящейся точки (звезды), которое дает объектив телескопа, тем лучше его разрешающая способность. Минимальный размер изображения звезды (в секундах дуги) можно рассчитать по формуле:
где λ – длина световой волны, a D – диаметр объектива.
5) Проницающая сила телескопа характеризуется предельной звездной величиной m самой слабой звезды, которую можно увидеть в данный инструмент при наилучших условиях наблюдений. Для таких условий проницающую силу можно определить по формуле:
m = 2,1 + 5 lg D
где D – диаметр объектива в миллиметрах, m − предельная звездная величина.
6) Относительное отверстие – отношение диаметра D к фокусному расстоянию F:
7) Часто вместо относительного отверстия используется понятие светосилы, равной (D/F) 2 . Светосила характеризует освещенность, создаваемую объективом в фокальной плоскости.
8) Относительным фокусным расстоянием телескопа (обозначается перевернутой буквой А) называется величина, обратная относительному отверстию:
Виды телескопов.
Если в качестве объектива телескопа используется линза, то он называется рефрактор (от латинского слова refracto – преломляю), а если вогнутое зеркало, – то рефлектор (reflecto – отражаю). В зеркально-линзовых телескопах используется комбинация зеркала и линз.
Телескоп – рефрактор использует преломление света. Лучи, которые идут от небесных светил собираются линзой или системой линз.
Главная часть простейшего рефрактора – объектив – двояковыпуклая линза, установленная в передней части телескопа. Объектив собирает излучение. Чем больше размеры объектива D, тем больше собирает излучения телескоп, тем более слабые источники могут быть обнаружены им. Расстояние от объектива до главного фокуса называется главным фокусным расстоянием F.
Телескоп – рефлектор использует отражение света. В них используют вогнутое зеркало, способное фокусировать отраженные лучи.
Основным элементом рефлектора является зеркало – отражающая поверхность сферической, параболической или гиперболической формы. Обычно оно делается из стеклянной или кварцевой заготовки круглой формы и затем покрывается отражающим покрытием (тонкий слой серебра или алюминия).
В настоящее время используются различные типы зеркально-линзовых телескопов.
Телескопы бывают самыми разными − оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения ИСЗ), радиотелескопы, инфракрасные, нейтринные, рентгеновские. При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи:
создать максимально резкое изображение и, при визуальных наблюдениях, увеличить угловые расстояния между объектами (звездами, галактиками и т. п.);
собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.
Современные телескопы часто используются для того, чтобы сфотографировать изображение, которое дает объектив. Телескопы, приспособленные для фотографирования небесных объектов, называются астрографами.
С помощью телескопов производятся не толь визуальные и фотографические наблюдения, но преимущественно высокочастотные фотоэлектрические и спектральные наблюдения. Сведения о температуре, химическом составе, магнитных полях небесных тел, а также об их движении получают из спектральных наблюдений. Кроме света, небесные тела излучают электромагнитные волны большей длины волны, чем свет (инфракрасное излучение, радиоволны), или меньшей (УФ, рентгеновское излучение и гамма лучи).
Радиоизлучение из космоса достигает поверхности Земли без значительного поглощения. Для его приема построены самые крупные астрономические инструменты – радиотелескопы.
Современные инфракрасные, рентгеновские и гамма обсерватории вынесены за пределы земной атмосферы. Приборы для исследования этих видов излучения обычно тоже называют телескопами, хотя по своему устройству они порой значительно отличаются от оптических телескопов. Как правило, они устанавливаются на искусственных спутниках, орбитальных станциях и других космических аппаратах, поскольку сквозь земную атмосферу эти излучения практически не проникают. Она их рассеивает и поглощает.
Задания для аудиторной работы
Изучите материал краткой теоретической справки и заполните таблицу 1 «Характеристики телескопов».
Цель: рассмотреть строение и принцип действия телескопов различных видов, научиться вычислять характеристики телескопа.
Средства обучения: методические рекомендации по выполнению практических работ, калькулятор.
Место проведения: учебная аудитория.
Виды самостоятельной работы:
решение тренировочных заданий.
Краткая теоретическая справка
Телескоп − оптический прибор, увеличивает угол зрения, под которым видны небесные тела (разрешающая способность), и собирает во много раз больше света, чем глаз наблюдателя (проникающая сила).
Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооруженному глазу. Чем более слабые объекты дает возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.
Принцип работы телескопа
Параллельные лучи света (например, от звезды) падают на объектив. Объектив строит изображение в фокальной плоскости. Лучи света, параллельные главной оптической оси, собираются в фокусе F, лежащем на этой оси. Другие пучки света собираются вблизи фокуса – выше или ниже. Это изображение с помощью окуляра рассматривает наблюдатель.
Основные характеристики телескопов.
1) Апертура телескопа (D) − это диаметр главного зеркала телескопа или его собирающей линзы.
Чем больше апертура, тем больше света соберёт объектив и тем более слабые объекты будут видны.
2) Фокусное расстояние телескопа (F) − это расстояние, на котором зеркало или линза объектива строит изображение бесконечно удаленного объекта. Чем больше фокусное расстояние телескопа, тем качественнее изображение.
3) Увеличение (или кратность) телескопа (W) показывает, во сколько раз телескоп может увеличить объект или угол, под которым наблюдатель видит объект. Оно равно отношению фокусных расстояний объектива F и окуляра f.
Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, но звезды из-за их колоссальной удаленности все равно видны в телескоп, как светящиеся точки.
F вы изменить чаще всего не можете, но имея окуляры с разным f, вы сможете менять кратность или увеличение телескопа Г. Имея сменные окуляры, можно с одним и тем же объективом получать различное увеличение. Поэтому возможности телескопа в астрономии принято характеризовать не увеличением, а диаметром его объектива.
4) Разрешающая способность – минимальный угол между двумя звездами, видимыми раздельно (чёткость изображения).
Разрешающая способность можно вычислить по формуле:
где δ – угловое разрешение в секундах, D – диаметр объектива в миллиметрах.
Расстояние между объектами на небе в астрономии измеряются углом, который образовывается лучами, проведенными из точки, в которой находится наблюдатель к объектам. Это расстояние называют угловым, и выражают в градусах и долях градуса.
Угловой размер центрального пятна (теоретическое угловое разрешение):
где δ – угловое разрешение в секундах, λ - длина волны излучения, D – диаметр объектива в миллиметрах.
Чем меньше размер изображения светящейся точки (звезды), которое дает объектив телескопа, тем лучше его разрешающая способность. Минимальный размер изображения звезды (в секундах дуги) можно рассчитать по формуле:
где λ – длина световой волны, a D – диаметр объектива.
5) Проницающая сила телескопа характеризуется предельной звездной величиной m самой слабой звезды, которую можно увидеть в данный инструмент при наилучших условиях наблюдений. Для таких условий проницающую силу можно определить по формуле:
m = 2,1 + 5 lg D
где D – диаметр объектива в миллиметрах, m − предельная звездная величина.
6) Относительное отверстие – отношение диаметра D к фокусному расстоянию F:
7) Часто вместо относительного отверстия используется понятие светосилы, равной (D/F) 2 . Светосила характеризует освещенность, создаваемую объективом в фокальной плоскости.
8) Относительным фокусным расстоянием телескопа (обозначается перевернутой буквой А) называется величина, обратная относительному отверстию:
Виды телескопов.
Если в качестве объектива телескопа используется линза, то он называется рефрактор (от латинского слова refracto – преломляю), а если вогнутое зеркало, – то рефлектор (reflecto – отражаю). В зеркально-линзовых телескопах используется комбинация зеркала и линз.
Телескоп – рефрактор использует преломление света. Лучи, которые идут от небесных светил собираются линзой или системой линз.
Главная часть простейшего рефрактора – объектив – двояковыпуклая линза, установленная в передней части телескопа. Объектив собирает излучение. Чем больше размеры объектива D, тем больше собирает излучения телескоп, тем более слабые источники могут быть обнаружены им. Расстояние от объектива до главного фокуса называется главным фокусным расстоянием F.
Телескоп – рефлектор использует отражение света. В них используют вогнутое зеркало, способное фокусировать отраженные лучи.
Основным элементом рефлектора является зеркало – отражающая поверхность сферической, параболической или гиперболической формы. Обычно оно делается из стеклянной или кварцевой заготовки круглой формы и затем покрывается отражающим покрытием (тонкий слой серебра или алюминия).
В настоящее время используются различные типы зеркально-линзовых телескопов.
Телескопы бывают самыми разными − оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения ИСЗ), радиотелескопы, инфракрасные, нейтринные, рентгеновские. При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи:
создать максимально резкое изображение и, при визуальных наблюдениях, увеличить угловые расстояния между объектами (звездами, галактиками и т. п.);
собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.
Современные телескопы часто используются для того, чтобы сфотографировать изображение, которое дает объектив. Телескопы, приспособленные для фотографирования небесных объектов, называются астрографами.
С помощью телескопов производятся не толь визуальные и фотографические наблюдения, но преимущественно высокочастотные фотоэлектрические и спектральные наблюдения. Сведения о температуре, химическом составе, магнитных полях небесных тел, а также об их движении получают из спектральных наблюдений. Кроме света, небесные тела излучают электромагнитные волны большей длины волны, чем свет (инфракрасное излучение, радиоволны), или меньшей (УФ, рентгеновское излучение и гамма лучи).
Радиоизлучение из космоса достигает поверхности Земли без значительного поглощения. Для его приема построены самые крупные астрономические инструменты – радиотелескопы.
Современные инфракрасные, рентгеновские и гамма обсерватории вынесены за пределы земной атмосферы. Приборы для исследования этих видов излучения обычно тоже называют телескопами, хотя по своему устройству они порой значительно отличаются от оптических телескопов. Как правило, они устанавливаются на искусственных спутниках, орбитальных станциях и других космических аппаратах, поскольку сквозь земную атмосферу эти излучения практически не проникают. Она их рассеивает и поглощает.
Задания для аудиторной работы
Изучите материал краткой теоретической справки и заполните таблицу 1 «Характеристики телескопов».
Цель: рассмотреть строение и принцип действия телескопов различных видов, научиться вычислять характеристики телескопа.
Средства обучения: методические рекомендации по выполнению практических работ, калькулятор.
Место проведения: учебная аудитория.
Виды самостоятельной работы:
решение тренировочных заданий.
Краткая теоретическая справка
Телескоп − оптический прибор, увеличивает угол зрения, под которым видны небесные тела (разрешающая способность), и собирает во много раз больше света, чем глаз наблюдателя (проникающая сила).
Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечить возможность изучать его мелкие детали, недоступные невооруженному глазу. Чем более слабые объекты дает возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.
Принцип работы телескопа
Параллельные лучи света (например, от звезды) падают на объектив. Объектив строит изображение в фокальной плоскости. Лучи света, параллельные главной оптической оси, собираются в фокусе F, лежащем на этой оси. Другие пучки света собираются вблизи фокуса – выше или ниже. Это изображение с помощью окуляра рассматривает наблюдатель.
Основные характеристики телескопов.
1) Апертура телескопа (D) − это диаметр главного зеркала телескопа или его собирающей линзы.
Чем больше апертура, тем больше света соберёт объектив и тем более слабые объекты будут видны.
2) Фокусное расстояние телескопа (F) − это расстояние, на котором зеркало или линза объектива строит изображение бесконечно удаленного объекта. Чем больше фокусное расстояние телескопа, тем качественнее изображение.
3) Увеличение (или кратность) телескопа (W) показывает, во сколько раз телескоп может увеличить объект или угол, под которым наблюдатель видит объект. Оно равно отношению фокусных расстояний объектива F и окуляра f.
Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, но звезды из-за их колоссальной удаленности все равно видны в телескоп, как светящиеся точки.
F вы изменить чаще всего не можете, но имея окуляры с разным f, вы сможете менять кратность или увеличение телескопа Г. Имея сменные окуляры, можно с одним и тем же объективом получать различное увеличение. Поэтому возможности телескопа в астрономии принято характеризовать не увеличением, а диаметром его объектива.
4) Разрешающая способность – минимальный угол между двумя звездами, видимыми раздельно (чёткость изображения).
Разрешающая способность можно вычислить по формуле:
где δ – угловое разрешение в секундах, D – диаметр объектива в миллиметрах.
Расстояние между объектами на небе в астрономии измеряются углом, который образовывается лучами, проведенными из точки, в которой находится наблюдатель к объектам. Это расстояние называют угловым, и выражают в градусах и долях градуса.
Угловой размер центрального пятна (теоретическое угловое разрешение):
где δ – угловое разрешение в секундах, λ - длина волны излучения, D – диаметр объектива в миллиметрах.
Чем меньше размер изображения светящейся точки (звезды), которое дает объектив телескопа, тем лучше его разрешающая способность. Минимальный размер изображения звезды (в секундах дуги) можно рассчитать по формуле:
где λ – длина световой волны, a D – диаметр объектива.
5) Проницающая сила телескопа характеризуется предельной звездной величиной m самой слабой звезды, которую можно увидеть в данный инструмент при наилучших условиях наблюдений. Для таких условий проницающую силу можно определить по формуле:
m = 2,1 + 5 lg D
где D – диаметр объектива в миллиметрах, m − предельная звездная величина.
6) Относительное отверстие – отношение диаметра D к фокусному расстоянию F:
7) Часто вместо относительного отверстия используется понятие светосилы, равной (D/F) 2 . Светосила характеризует освещенность, создаваемую объективом в фокальной плоскости.
8) Относительным фокусным расстоянием телескопа (обозначается перевернутой буквой А) называется величина, обратная относительному отверстию:
Виды телескопов.
Если в качестве объектива телескопа используется линза, то он называется рефрактор (от латинского слова refracto – преломляю), а если вогнутое зеркало, – то рефлектор (reflecto – отражаю). В зеркально-линзовых телескопах используется комбинация зеркала и линз.
Телескоп – рефрактор использует преломление света. Лучи, которые идут от небесных светил собираются линзой или системой линз.
Главная часть простейшего рефрактора – объектив – двояковыпуклая линза, установленная в передней части телескопа. Объектив собирает излучение. Чем больше размеры объектива D, тем больше собирает излучения телескоп, тем более слабые источники могут быть обнаружены им. Расстояние от объектива до главного фокуса называется главным фокусным расстоянием F.
Телескоп – рефлектор использует отражение света. В них используют вогнутое зеркало, способное фокусировать отраженные лучи.
Основным элементом рефлектора является зеркало – отражающая поверхность сферической, параболической или гиперболической формы. Обычно оно делается из стеклянной или кварцевой заготовки круглой формы и затем покрывается отражающим покрытием (тонкий слой серебра или алюминия).
В настоящее время используются различные типы зеркально-линзовых телескопов.
Телескопы бывают самыми разными − оптические (общего астрофизического назначения, коронографы, телескопы для наблюдения ИСЗ), радиотелескопы, инфракрасные, нейтринные, рентгеновские. При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи:
создать максимально резкое изображение и, при визуальных наблюдениях, увеличить угловые расстояния между объектами (звездами, галактиками и т. п.);
собрать как можно больше энергии излучения, увеличить освещенность изображения объектов.
Современные телескопы часто используются для того, чтобы сфотографировать изображение, которое дает объектив. Телескопы, приспособленные для фотографирования небесных объектов, называются астрографами.
С помощью телескопов производятся не толь визуальные и фотографические наблюдения, но преимущественно высокочастотные фотоэлектрические и спектральные наблюдения. Сведения о температуре, химическом составе, магнитных полях небесных тел, а также об их движении получают из спектральных наблюдений. Кроме света, небесные тела излучают электромагнитные волны большей длины волны, чем свет (инфракрасное излучение, радиоволны), или меньшей (УФ, рентгеновское излучение и гамма лучи).
Радиоизлучение из космоса достигает поверхности Земли без значительного поглощения. Для его приема построены самые крупные астрономические инструменты – радиотелескопы.
Современные инфракрасные, рентгеновские и гамма обсерватории вынесены за пределы земной атмосферы. Приборы для исследования этих видов излучения обычно тоже называют телескопами, хотя по своему устройству они порой значительно отличаются от оптических телескопов. Как правило, они устанавливаются на искусственных спутниках, орбитальных станциях и других космических аппаратах, поскольку сквозь земную атмосферу эти излучения практически не проникают. Она их рассеивает и поглощает.
Задания для аудиторной работы
Изучите материал краткой теоретической справки и заполните таблицу 1 «Характеристики телескопов».
Читайте также: