Производная функции f x sin x в точке с абсциссой x п 2 равна
Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Статью из энциклопедии о касательной прямой вы можете посмотреть здесь (статья из Википедии).
Если вам нужно найти производную функции, то для этого у нас есть задача Найти производную.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> Введите выражение функции \( f(x)\) и число \(x_0\) - абсциссу точки в которой нужно построить касательную Найти уравнение касательной
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу. Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек.
Угловой коэффициент прямой
Напомним, что графиком линейной функции \( y=kx+b\) является прямая. Число \(k=tg \alpha \) называют угловым коэффициентом прямой, а угол \( \alpha \) - углом между этой прямой и осью Ox
Уравнение касательной к графику функции
Если точка М(а; f(a)) принадлежит графику функции у = f(x) и если в этой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то из геометрического смысла производной следует, что угловой коэффициент касательной равен f'(a). Далее мы выработаем алгоритм составления уравнения касательной к графику любой функции.
Пусть даны функция у = f(x) и точка М(а; f(a)) на графике этой функции; пусть известно, что существует f'(a). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид y = kx + b, поэтому задача состоит в нахождении значений коэффициентов k и b.
С угловым коэффициентом k все понятно: известно, что k = f'(a). Для вычисления значения b воспользуемся тем, что искомая прямая проходит через точку М(а; f(a)). Это значит, что если подставить координаты точки М в уравнение прямой, получим верное равенство: \(f(a)=ka+b \), т.е. \( b = f(a) - ka \).
Осталось подставить найденные значения коэффициентов k и b в уравнение прямой:
Нами получено уравнение касательной к графику функции \( y = f(x) \) в точке \( x=a \).
Алгоритм нахождения уравнения касательной к графику функции \( y=f(x) \)
1. Обозначить абсциссу точки касания буквой \( a \)
2. Вычислить \( f(a) \)
3. Найти \(f'(x) \) и вычислить \(f'(a) \)
4. Подставить найденные числа \( a, f(a), f'(a) \) в формулу \( y=f(a)+ f'(a)(x-a) \)
Угловой коэффициент касательной к графику функции f(x) в точке с абсциссой х0 равен значению производной данной функции в данной точке.
Следовательно, для вычисления углового коэффициента касательной к графику функции у = sinх в точке с абсциссой х0 = π/4 необходимо вычислить значение производной данной функции в точке х0 = π/4.
Находим производную данной функции:
Вычисляем, чему равна полученная производной в точке х0 = π/4:
Ответ: угловой коэффициент касательной к графику функции у = sinх в точке с абсциссой х0 = π/4 равен √2/2.
Этот математический калькулятор онлайн поможет вам если нужно найти производную функции. Программа решения производной не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения производной функции.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Вы можете посмотреть теорию о производной функции и правила дифференцирования и таблицу производных, т.е. список формул для нахождения производных от некоторых элементарных функций.
Если вам нужно найти уравнение касательной к графику функции, то для этого у нас есть задача Уравнение касательной к графику функции.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> --> Введите выражение функции Найти производную функции f(x)
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу. Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек.
Определение производной
Определение. Пусть функция \( y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \( x_0 \). Дадим аргументу приращение \( \Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \( \Delta y \) (при переходе от точки \( x_0 \) к точке \( x_0 + \Delta x \) ) и составим отношение \( \frac \). Если существует предел этого отношения при \( \Delta x \rightarrow 0 \), то указанный предел называют производной функции \( y=f(x) \) в точке \( x_0 \) и обозначают \( f'(x_0) \).
Для обозначения производной часто используют символ \( y' \). Отметим, что \( y' = f(x) \) - это новая функция, но, естественно, связанная с функцией \( y = f(x) \), определенная во всех точках \(x\), в которых существует указанный выше предел. Эту функцию называют так: производная функции \( y = f(x) \).
Геометрический смысл производной состоит в следующем. Если к графику функции \( y = f(x) \) в точке с абсциссой \( x=a \) можно провести касательную, непараллельную оси \(y\), то \( f(a) \) выражает угловой коэффициент касательной:
\( k = f'(a) \)
Поскольку \( k = tg(a) \), то верно равенство \( f'(a) = tg(a) \) .
А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \( y = f(x) \) имеет производную в конкретной точке \( x \):
$$ \lim_ \frac = f'(x) $$
Это означает, что около точки \(x\) выполняется приближенное равенство \( \frac \approx f'(x) \), т.е. \( \Delta y \approx f'(x) \cdot \Delta x \).
Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке \(x\).
Например, для функции \( y = x^2 \) справедливо приближенное равенство \( \Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.
Как найти производную функции у = f(x) ?
1. Зафиксировать значение \( x \), найти \( f(x) \)
2. Дать аргументу \( x \) приращение \( \Delta x \), перейти в новую точку \( x+ \Delta x \), найти \( f(x+ \Delta x) \)
3. Найти приращение функции: \( \Delta y = f(x + \Delta x) - f(x) \)
4. Составить отношение \( \frac \)
5. Вычислить $$ \lim_ \frac $$
Этот предел и есть производная функции в точке \(x\).
Если функция \(y=f(x)\) имеет производную в точке \(x\), то ее называют дифференцируемой в точке \(x\). Процедуру нахождения производной функции \(y=f(x)\) называют дифференцированием функции \(y=f(x)\).
Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.
Пусть функция \(y=f(x)\) дифференцируема в точке \(x\). Тогда к графику функции в точке \( M(x; \; f(x)) \) можно провести касательную, причем, напомним, угловой коэффициент касательной равен \( f'(x) \). Такой график не может «разрываться» в точке \(M\), т. е. функция обязана быть непрерывной в точке \(x\).
Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция \(y=f(x)\) дифференцируема в точке \(x\), то выполняется приближенное равенство \( \Delta y \approx f'(x) \cdot \Delta x \). Если в этом равенстве \( \Delta x \) устремить к нулю, то и \( \Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.
Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.
Обратное утверждение неверно. Например: функция \( y=|x|\) непрерывна везде, в частности в точке \(x=0\), но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.
Еще один пример. Функция \( y=\sqrt[3] \) непрерывна на всей числовой прямой, в том числе в точке \(x=0\). И касательная к графику функции существует в любой точке, в том числе в точке \(x=0\). Но в этой точке касательная совпадает с осью \(y\), т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид \(x=0\). Углового коэффициента у такой прямой нет, значит, не существует и \( f'(0) \)
Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?
Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.
Правила дифференцирования
Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.
Если \(C\) — постоянное число и \( f=f(x), \; g=g(x) \) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
БАЗА ЗАДАНИЙ
Задание № 6. Производная функции.
1. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .
2. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .
3. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .
4. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .
5. На рисунке изображены график дифференцируемой функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0..
6. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .
7. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .
8. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .
9. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .
10. На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x 0 . Найдите значение производной функции f(x) в точке x 0 .
11. На рисунке изображен график функции y=f(x). Прямая, проходящая через начало координат, касается графика этой функции в точке с абсциссой 8. Найдите значение производной в точке 8.
12. На рисунке изображён график дифференцируемой функции y=f(x), определённой на интервале (− 5; 5). Найдите точку из отрезка [− 2; 4], в которой производная функции f(x) равна 0.
13. На рисунке изображён график дифференцируемой функции y=f(x), определённой на интервале (1; 10). Найдите точку из отрезка [2; 6], в которой производная функции f(x) равна 0.
14. На рисунке изображён график дифференцируемой функции y=f(x), определённой на интервале (− 11; − 2). Найдите точку из отрезка [− 10; − 4], в которой производная функции f(x) равна 0.
15. На рисунке изображён график дифференцируемой функции y=f(x), определённой на интервале (− 11; − 1). Найдите точку из отрезка [− 7; − 2], в которой производная функции f(x) равна 0.
16. На рисунке изображён график функции y=f(x), определённой на интервале (− 5; 9). Найдите количество точек, в которых производная функции f(x) равна 0.
17. На рисунке изображён график функции y=f(x), определённой на интервале (− 5; 8). Найдите количество точек, в которых производная функции f(x) равна 0.
18. На рисунке изображён график функции y=f(x), определённой на интервале (− 3; 8). Найдите количество точек, в которых производная функции f(x) равна 0.
19. На рисунке изображён график функции y=f(x), определённой на интервале (− 6; 6). Найдите количество решений уравнения f '(x)=0 на отрезке [− 4,5; 2,5].
20. На рисунке изображён график функции y=f '(x) — производной функции f(x), определённой на интервале (2; 13). Найдите точку максимума функции f(x).
21. На рисунке изображён график функции y=f '(x) — производной функции f(x), определённой на интервале (− 6; 3). Найдите точку минимума функции f(x).
22. На рисунке изображён график функции y=f '(x) — производной функции f(x), определённой на интервале (1; 10). Найдите точку минимума функции f(x).
23. На рисунке изображён график функции y=f '(x) — производной функции f(x), определённой на интервале (− 5; 5). Найдите точку максимума функции f(x).
24. На рисунке изображён график функции y=f(x), определённой на интервале (− 7; 7). Определите количество целых точек, в которых производная функции положительна.
25. На рисунке изображён график функции y=f(x), определённой на интервале (− 7; 7). Определите количество целых точек, в которых производная функции отрицательна.
Читайте также: