Производная функции 1 sin х
Производная функции является одним из основных понятий математики. А нахождение производной получило название дифференцирования, характеризующее скорость изменения функции (в данной точке). При решении высшей математики очень часто приходится вычислять производную от математической функции.
Для простых математических функций это уже не составляет никакого труда, так для производных разработаны и доступны таблицы. Однако если требуется найти производную сложной математической функции, придется затратить немало времени и усилий. Как раз в этом случае отличным выходом станет наш онлайн калькулятор, которые способен вычислять производные функции любой сложности.
Знаки операций:
+ - сложение,
- - вычитание,
* - умножение,
/ - деление,
^ - возведение в степень.
Знак умножения нужно вводить только между числами, во всех остальных случаях его можно не вводить.
Список функций:
Функция | Описание | Пример ввода | Результат ввода |
---|---|---|---|
pi | Число \(\pi\) | pi | $$ \pi $$ |
e | Число \(e\) | e | $$ e $$ |
e^x | Степень числа \(e\) | e^(2x) | $$ e^ $$ |
exp(x) | Степень числа \(e\) | exp(1/3) | $$ \sqrt[3] $$ |
|x| abs(x) | Модуль (абсолютное значение) числа \(x\) | |x-1| abs(cos(x)) | \( |x-1| \) \( |\cos(x)| \) |
sin(x) | Синус | sin(x-1) | $$ sin(x-1) $$ |
cos(x) | Косинус | 1/(cos(x))^2 | $$ \frac $$ |
tg(x) | Тангенс | x*tg(x) | $$ x \cdot tg(x) $$ |
ctg(x) | Котангенс | 3ctg(1/x) | $$ 3 ctg \left( \frac \right) $$ |
arcsin(x) | Арксинус | arcsin(x) | $$ arcsin(x) $$ |
arccos(x) | Арккосинус | arccos(x) | $$ arccos(x) $$ |
arctg(x) | Арктангенс | arctg(x) | $$ arctg(x) $$ |
arcctg(x) | Арккотангенс | arcctg(x) | $$ arcctg(x) $$ |
sqrt(x) | Квадратный корень | sqrt(1/x) | $$ \sqrt<\frac> $$ |
root(n,x) | Корень степени n root(2,x) эквивалентно sqrt(x) | root(4,exp(x)) | $$ \sqrt[4] < e^> $$ |
x^(1/n) | Корень степени n x^(1/2) эквивалентно sqrt(x) | (cos(x))^(1/3) | $$ \sqrt[\Large 3 \normalsize] $$ |
ln(x) log(x) log(e,x) | Натуральный логарифм (основание - число e ) | 1/ln(3-x) | $$ \frac $$ |
log(10,x) | Десятичный логарифм числа x | log(10,x^2+x) | $$ log_(x^2+x) $$ |
log(a,x) | Логарифм x по основанию a | log(3,cos(x)) | $$ log_3(cos(x)) $$ |
sh(x) | Гиперболический синус | sh(x-1) | $$ sh(x-1) $$ |
ch(x) | Гиперболический косинус | ch(x) | $$ ch(x) $$ |
th(x) | Гиперболический тангенс | th(x) | $$ th(x) $$ |
cth(x) | Гиперболический котангенс | cth(x) | $$ cth(x) $$ |
Почему решение на английском языке?
При решении этой задачи используется большой и дорогой модуль одного "забугорного" сервиса. Решение он выдает в виде изображения и только на английском языке. Изменить это, к сожалению, нельзя. Ничего лучше мы найти не смогли. Зато он выводит подробное и очень качественное решение в том виде в котором оно принято в высших учебных заведениях. Единственное неудобство - на английском языке, но это не большая цена за качество.
Некоторые пояснения по выводу решения.
Вывод | Перевод, пояснение |
---|---|
derivative | производная |
Find the derivative of . with respect to x via implicit differentiation. | Находим производную . по x с помощью неявного дифференцирования. |
\(\large\frac\) или \(\large\fracu\) | Это производная функции \(u\) по переменной \(x\). В общеобразовательных школах чаще пишут "штрих": \(u'_x\) или просто \(u'\) |
\(\large\frac\) или \(\large\frace^u\) | Это производная функции \(e^u\) по переменной \(u\). |
Express \(x^x\) as a power of \(e\) | Представим \(x^x\) как степень \(e\) |
Factor out constants | Выносим константы за знак дифференциала |
Simplify . using the identity . | Упрощаем . используя равенство . |
Using the chain rule | Используем правило дифференцирования сложной (дословно - "цепи") функции |
Using the product rule | Используем правило дифференцирования произведения |
Using the quotient rule | Используем правило дифференцирования частного (дроби) |
Using the power rule | Используем правило дифференцирования степени |
Differentiate the sum term by term | Дифференцируем сумму почленно |
The derivative of x is 1 | Производная x это 1 |
Simplify the expression | Упрощаем выражение |
Answer | Ответ |
\(log(x)\) | Натуральный логарифм, основание - число e. У нас пишут \(ln(x)\) |
\(arccos(x)\) или \(cos^(x)\) | Арккосинус. У нас пишут \( arccos(x) \) |
\(arcsin(x)\) или \(sin^(x)\) | Арксинус. У нас пишут \( arcsin(x) \) |
\(tan(x)\) | Тангенс. У нас пишут \(tg(x) = \frac\) |
\(arctan(x)\) или \(tan^(x)\) | Арктангенс. У нас пишут \(arctg(x)\) |
\(cot(x)\) | Котангенс. У нас пишут \(ctg(x) = \frac\) |
\(arccot(x)\) или \(cot^(x)\) | Арккотангенс. У нас пишут \(arcctg(x)\) |
\(sec(x)\) | Секанс. У нас пишут также \(sec(x) = \frac\) |
\(csc(x)\) | Косеканс. У нас пишут \(cosec(x) = \frac\) |
\(cosh(x)\) | Гиперболический косинус. У нас пишут \(ch(x) = \frac> \) |
\(sinh(x)\) | Гиперболический синус. У нас пишут \(sh(x) = \frac> \) |
\(tanh(x)\) | Гиперболический тангенс. У нас пишут \(th(x) = \frac>> \) |
\(coth(x)\) | Гиперболический котангенс. У нас пишут \(cth(x) = \frac \) |
Если вам что-то осталось не понятно обязательно напишите об этом в Обратной связи и мы дополним эту таблицу.
При помощи нашего калькулятора вы можете найти производную онлайн как от элементарной функции, так и от сложной, не имеющей решения в аналитическом виде.
Калькулятор поможет найти производную функции онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.
Для того, чтобы найти производную функции нужно написать в строке: f[x], x. Если Вам требуется найти производную n-го порядка, то следует написать: f[x], . В том случае, если Вам требуется найти частную производную функции напишите в окне гаджета: f[x, y, z,…,t], j, где — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], , где означает тоже, что и Выше.
Важно подчеркнуть, что калькулятор выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.
Данный онлайн калькулятор предназначен для решения производных функций первого порядка.
Производная служит обобщенным понятием скорости изменения функции. Производная f’(x) функции f(x) в точке x – это предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю. Нахождение производной функции называется дифференцированием функции.
Вам нет необходимости знать различные таблицы и формулы производных, так как для нахождения производной онлайн нужно ввести только исходную функцию, которую следует дифференцировать. В ответе выводится как найденная производная функция, так и график этой функции.
Калькулятор поможет найти производную функции первого порядка онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.
Для того, чтобы найти производную функции нужно написать в строке: f[x], x. Если Вам требуется найти производную n-го порядка, то следует написать: f[x], . В том случае, если Вам требуется найти частную производную функции напишите в окне гаджета: f[x, y, z,…,t], j, где — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], , где означает тоже, что и Выше.
Важно подчеркнуть, что калькулятор выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.
Читайте также: