Найти дифференциал dz функции z sin 2 3x 2 2y 2
Смешанные частные производные функции z(x,y) находятся по формулам:
Правила ввода функции, заданной в явном виде
- Примеры
x 2 +xy ≡ x^2+x*y .
cos 2 (2x+y) ≡ (cos(2*x+y))^2
≡ (x-y)^(2/3)
Правила ввода функции, заданной в неявном виде
- Все переменные выражаются через x,y,z
- Примеры
≡ x^2/(z+y)
cos 2 (2x+zy) ≡ (cos(2*x+z*y))^2
≡ z+(x-y)^(2/3)
Частные производные функции нескольких переменных
Ели одному из аргументов функции z = f(x,y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: Δxz=f(x+Δx,y)-f(x,y) – это частное приращение функции z по аргументу x ; Δyz=f(x,y+Δy)-f(x,y) – это частное приращение функции z по аргументу у .Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:
– это частная производная функции z по аргументу x ;
– это частная производная функции z по аргументу у .
Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.
Пример 1 . z=2x 5 +3x 2 y+y 2 –4x+5y-1
Пример 2 . Найти частные производные функции z = f(x;y) в точке A(x0;y0).
Дифференциалом функции называется главная (линейная по ) часть приращения функции. Чтобы понять данное определение, рассмотрим следующий рисунок.
На рисунке изображён график функции и касательной к ней в точке . Дадим аргументу функции некоторое приращение , тогда функция также получит некоторое приращение . Величина называется дифференциалом функции . При этом, из графика следует, что равно приращению ординаты касательной, проведённой в точке к функции . Именно поэтому дифференциалом называют линейную часть приращения функции, т.е. приращение ординаты касательной.
Из рисунка следует, что угол наклона касательной , который она образует с положительным направлением оси и - равны. Кроме того, тангенс угла наклона касательной равен значению производной функции в точке касания:
Из треугольника следует, что:
Таким образом, дифференциал функции выражается следующей формулой:
Рассмотрим ещё такой момент: из рисунка следует, что , причем . Причем, чем меньше , тем меньший вклад в величину вносит значение . Т.е. при достаточно малых значениях , можно считать, что . Данное соотношение позволяет вычислять приближенное значение функции в точке , если известно её значение в точке .
Дифференциал высшего порядка (например порядка ) определяется как дифференциал от дифференциала -ого порядка:
Например, дифференциал второго порядка вычисляется следующим образом:
Аналогичным образом получаем формулу для вычисления дифференциала -ого порядка:
где - -ая производная функции по переменной .
Пару слов стоит сказать о вычислении дифференциала функции многих переменных, который в этом случае называется полным дифференциалом. Полный дифференциал функции, зависящей от -переменных определяется по формуле:
Выражения для дифференциалов высших порядков функции многих переменных можно получить исходя из общей формулы:
В общем случае, для возведения суммы в -ую степень необходимо воспользоваться формулой бинома Ньютона. Рассмотрим процесс получения формулы полного дифференциала второго порядка функции двух переменных:
Наш онлайн калькулятор способен вычислить дифференциалы разных порядков для любых функций одной или нескольких переменных с описанием подробного решения на русском языке.
определены в некоторой окрестности точки M ( x 0 , y 0 ) и непрерывны в этой точке, выполняется равенство:
По аналогии, можно ввести производные более высоких порядков, например, запись
означает, что мы должны продифференцировать функцию по переменной два раза, а затем по переменной три раза, т.е. фактически:
Иногда, для обозначения частных производных некоторой функции z = f ( x , y ) используют запись вида: f x ' ( x , y ) и f y ' ( x , y ) , указывая переменную по которой происходит дифференцирование. Таким образом можно обозначать и смешанные производные: f xy '' ( x , y ) и f yx '' ( x , y ) а также вторые производные и производные более высокого порядка: f xx '' ( x , y ) и f xxy ''' ( x , y ) соответственно. Следующие обозначения эквиваленты:
В нашем онлайн калькуляторе для обозначения частных производных используются символы:
. Пример подробного решения, выдаваемого нашим онлайн сервисом, можно посмотреть здесь .
Полный дифференциал для функции двух переменных:
Вместе с этим калькулятором также используют следующие:
Точки разрыва функции
Построение графика функции методом дифференциального исчисления
Экстремум функции двух переменных
Вычисление интегралов
Пример . Найти производные и дифференциалы данных функций.
а) y=4 tg2 x
Решение:
дифференциал:
б)
Решение:
дифференциал:
в) y=arcsin 2 (lnx)
Решение:
дифференциал:
г)
Решение:
=
дифференциал:
Читайте также: