Какие свойства ему характерны be oh 2
В гидроксид бериллия Это химическое соединение, состоящее из двух молекул гидроксида (ОН) и одной молекулы бериллия (Ве). Его химическая формула - Be (OH).2 и он характеризуется тем, что является амфотерным видом. Обычно его можно получить в результате реакции между монооксидом бериллия и водой в соответствии со следующей химической реакцией: BeO + H2О → Ве (ОН)2
С другой стороны, это амфотерное вещество имеет линейную молекулярную конфигурацию. Однако из гидроксида бериллия можно получить различные структуры: альфа- и бета-формы, в виде минерала и в паровой фазе, в зависимости от используемого метода.
Термохимические свойства
Энтальпия образования: -902,5 кДж / моль
Энергия Гиббса: -815,0 кДж / моль.
Энтропия образования: 45,5 Дж / моль
Теплоемкость: 62,1 Дж / моль
Удельная теплоемкость: 1,443 Дж / К
Стандартная энтальпия образования: -20,98 кДж / г
Получение
Оксид бериллия (BeO) - наиболее широко используемое химическое соединение бериллия высокой чистоты в промышленности. Он характеризуется как бесцветное твердое вещество с электроизоляционными свойствами и высокой теплопроводностью.
В этом смысле процесс его синтеза (по техническому качеству) в первичной промышленности осуществляется следующим образом:
Конечный продукт (BeO) используется для изготовления специальных керамических изделий промышленного назначения.
Получение металлического бериллия
Во время добычи и обработки минералов бериллия образуются примеси, такие как оксид бериллия и гидроксид бериллия. Последний подвергают серии превращений до получения металлического бериллия.
Be (OH) реагирует2 с раствором бифторида аммония:
(NH4)2BeF4 подвергается повышению температуры, подвергаясь термическому разложению:
Бериллий используется в металлических сплавах, производстве электронных компонентов, производстве экранов и радиационных окон, используемых в рентгеновских аппаратах.
Относительная молекулярная масса Mr = 9,012; относительная плотность для твердого и жидкого состояния d = 1,85; tпл = 1287º C; tкип = 2507º C.
1. В результате электролиза расплава хлорида бериллия образуются бериллий и хлор :
2. Расплав фторида бериллия подвергают электролизу , в результате чего на выходе образуется бериллий и фтор:
BeO + Mg = MgO + Be
BeF2 + Mg = Be + MgF2
1.2. Бериллий сгорает в кислороде (воздухе) при 900º С с образованием оксида бериллия:
2Be + O2 = 2BeO
1.3. Бериллий активно реагирует при комнатной температуре с фтором (комнатная температура) , хлором (250º С), бромом (480º С) и йодом (480º С) . При этом образуются фторид бериллия, хлорид бериллия, бромид бериллия, йодид бериллия :
Be + Br2 = BeBr2
1.4. С серой бериллий реагирует при температуре 1150º C с образованием сульфида бериллия:
Be + S = BeS
2Be + C = Be2C
2. Бериллий активно взаимодействует со сложными веществами:
2.1. Бериллий при кипении реагирует с водой . Взаимодействие бериллия с водой приводит к образованию гидроксида бериллия и газа водорода:
2.2. Бериллий взаимодействует с кислотами:
2.2.1. Бериллий реагирует с разбавленной соляной кислотой, при этом образуются хлорид бериллия и водород :
Be + 2HCl = BeCl2 + H2 ↑
2.2.2. Реагируя с разбавленной и горячей азотной кислотой бериллий образует нитрат бериллия, газ оксид азота (II) и воду:
2.2.3. В результате реакции концентрированной фтороводородной кислоты и бериллия образуется осадок тетрафторобериллат водорода и газ водород:
2.3. Бериллий может взаимодействовать с основаниями:
Бериллий взаимодействует с гидроксидом натрия в растворе , при этом образуется тетрагидроксобериллат натрия и водород:
2.5. Бериллий может вступать в реакцию с оксидами :
В результате взаимодействия бериллия и оксида магния при температуре 1075º С образуется оксид бериллия и магний:
Be + MgO = BeO + Mg
3. Бериллий взаимодействует с органическими веществами :
Щелочноземельные металлы расположены во второй группе главной подгруппе периодической системы химических элементов Д.И. Менделеева (или просто во 2 группе в длиннопериодной форме ПСХЭ). На практике к щелочноземельным металлам относят только кальций Ca, стронций Sr, барий Ba и радий Ra. Бериллий Be по свойствам больше похож на алюминий, магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них. Однако, согласно номенклатуре ИЮПАК, щелочноземельными принято считать все металлы II группы главной подгруппы.
Электронное строение и закономерности изменения свойств
Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов: ns 2 , на внешнем энергетическом уровне в основном состоянии находится 2 s-электрона. Следовательно, типичная степень окисления щелочноземельных металлов в соединениях +2.
Рассмотрим некоторые закономерности изменения свойств щелочноземельных металлов.
Физические свойства
Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.
Нахождение в природе
Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочноземельные металлы:
Магнезит MgCO3 – карбонат магния.
Кальцит CaCO3 – карбонат кальция.
Гипс CaSO4 · 2H2O – дигидрат сульфата кальция.
Витерит BaCO3 – карбонат бария.
Способы получения
Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:
или восстановлением прокаленного доломита в электропечах при 1200–1300°С:
2(CaO · MgO) + Si → 2Mg + Ca2SiO4
Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:
Барий получают восстановлением оксида бария алюминием в вакууме при 1200 °C:
4BaO+ 2Al → 3Ba + Ba(AlO2)2
Качественные реакции
Качественная реакция на ионы магния : взаим одействие с щелочами. Ионы магния осаждаются щелочами с образованием белого осадка гидроксида магния:
Качественная реакция на ионы кальция, стронция, бария : взаим одействие с карбонатами. При взаимодействии солей кальция, стронция и бария с карбонатами выпадает белый осадок карбоната кальция, стронция или бария :
Ca 2+ + CO3 2- → CaCO3↓
Ba 2+ + CO3 2- → BaCO3↓
Качественная реакция на ионы стронция и бария : взаим одействие с карбонатами. При взаимодействии солей стронция и бария с сульфатами выпадает белый осадок сульфата бария и сульфата стронция :
Ba 2+ + SO4 2- → BaSO4↓
Sr 2+ + SO4 2- → SrSO4↓
Также осадки белого цвета образуются при взаимодействии солей кальция, стронция и бария с сульфитами и фосфатами.
Например , при взаимодействии хлорида кальция с фосфатом натрия образуется белый осадок фосфата кальция:
Химические свойства
1.1. Щелочноземельные металлы реагируют с галогенами с образованием галогенидов при нагревании.
Например , бериллий взаимодействует с хлором с образованием хлорида бериллия:
1.2. Щелочноземельные металлы реагируют при нагревании с серой и фосфором с образованием сульфидов и фосфоридов.
Например , кальций взаимодействует с серой при нагревании:
Ca + S → CaS
Кальций взаимодействует с фосфором с образованием фосфидов:
1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:
Остальные щелочноземельные металлы реагируют с азотом при нагревании.
1.5. Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов.
Например , кальций взаимодействует с углеродом с образованием карбида кальция:
Ca + 2C → CaC2
2Be + C → Be2C
1.6. Бериллий сгорает на воздухе при температуре около 900°С:
2Be + O2 → 2BeO
Магний горит на воздухе при 650°С с выделением большого количества света. При этом образуются оксиды и нитриды:
2Mg + O2 → 2MgO
Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются оксиды и нитриды.
Видеоопыт : горение кальция на воздухе можно посмотреть здесь.
2. Щелочноземельные металлы взаимодействуют со сложными веществами:
2.1. Щелочноземельные металлы реагируют с водой . Взаимодействие с водой приводит к образованию щелочи и водорода. Бериллий с водой не реагирует. Магний реагирует с водой при кипячении. Кальций, стронций и барий реагируют с водой при комнатной температуре.
Например , кальций реагирует с водой с образованием гидроксида кальция и водорода:
2 Ca 0 + 2 H2 + O = 2 Ca + ( OH)2 + H2 0
2.2. Щелочноземельные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной, разбавленной серной кислотой и др.). При этом образуются соль и водород.
Например , магний реагирует с соляной кислотой :
2Mg + 2HCl → MgCl2 + H2↑
2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.
Например , при взаимодействии кальция с концентрированной серной кислотой образуется сульфат кальция, сера и вода:
2.4. Щелочноземельные металлы реагируют с азотной кислотой . При взаимодействии кальция и магния с концентрированной или разбавленной азотной кислотой образуется оксид азота (I):
При взаимодействии щелочноземельных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:
2.5. Щелочноземельные металлы могут восстанавливать некоторые неметаллы (кремний, бор, углерод) из оксидов.
Например , при взаимодействии кальция с оксидом кремния (IV) образуются кремний и оксид кальция:
2Ca + SiO2 → 2CaO + Si
Магний горит в атмосфере углекислого газа . При этом образуется сажа и оксид магния:
2Mg + CO2 → 2MgO + C
2.6. В расплаве щелочноземельные металлы могут вытеснять менее активные металлы из солей и оксидов . Обратите внимание! В растворе щелочноземельные металлы будут взаимодействовать с водой, а не с солями других металлов.
Например , кальций вытесняет медь из расплава хлорида меди (II):
Ca + CuCl2 → CaCl2 + Cu
Оксиды щелочноземельных металлов
Способы получения
2Ca + O2 → 2CaO
Например , нитрат кальция разлагается на оксид кальция, оксид азота (IV) и кислород:
3. Оксиды магния и бериллия можно получить термическим разложением гидроксидов :
Химические свойства
1. Оксиды кальция, стронция, бария и магния взаимодействуют с кислотными и амфотерными оксидами :
Например , оксид магния взаимодействует с углекислым газом с образованием карбоната магния:
2. Оксиды щелочноземельных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).
Например , оксид кальция взаимодействует с соляной кислотой с образованием хлорида кальция и воды:
CaO + 2HCl → CaCl2 + H2O
3. Оксиды кальция, стронция и бария активно взаимодействуют с водой с образованием щелочей.
Например , оксид кальция взаимодействует с водой с образованием гидроксида кальция:
CaO + H2O → 2Ca(OH)2
Оксид магния реагирует с водой при нагревании:
MgO + H2O → Mg(OH)2
Оксид бериллия не взаимодействует с водой.
4. Оксид бериллия взаимодействует с щелочами и основными оксидами.
При взаимодействии оксида бериллия с щелочами в расплаве или с основными оксидами образуются соли-бериллаты.
Например , оксид натрия реагирует с оксидом бериллия с образованием бериллата натрия:
Например , гидроксид натрия реагирует с оксидом бериллия в расплаве с образованием бериллата натрия:
При взаимодействии оксида бериллия с щелочами в растворе образуются комплексные соли.
Например , оксид бериллия реагирует с гидроксидом калия с растворе с образованием тетрагидроксобериллата калия:
Гидроксиды щелочноземельных металлов
Способы получения
1. Гидроксиды кальция, стронция и бария получают при взаимодействии соответствующих оксидов с водой .
Например , оксид кальция (негашеная известь) при взаимодействии с водой образует гидроксид кальция (гашеная известь):
Оксид магния взаимодействует с водой только при нагревании:
2. Гидроксиды кальция, стронция и бария получают при взаимодействии соответствующих металлов с водой.
Например , кальций реагирует с водой с образованием гидроксида кальция и водорода:
Магний взаимодействует с водой только при кипячении:
3. Гидроксиды кальция и магния можно получить при взаимодействии солей кальция и магния с щелочами .
Например , нитрат кальция с гидроксидом калия образует нитрат калия и гидроксид кальция:
Химические свойства
1. Гидроксиды кальция, стронция и бария реагируют с всеми кислотами (и сильными, и слабыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.
Гидроксид магния взаимодействует только с сильными кислотами.
Например , гидроксид кальция с соляной кислотой реагирует с образова-нием хлорида кальция:
2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.
Например , гидроксид бария с углекислым газом реагирует с образова-нием карбонатов или гидрокарбонатов:
3. Гидроксиды кальция, стронция и бария реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.
Например , гидроксид бария с оксидом алюминия реагирует в расплаве с образованием алюминатов:
4. Гидроксиды кальция, стронция и бария взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.
Например : гидроксид кальция реагирует с гидрокарбонатом кальция с образованием карбоната кальция:
5. Гидроксиды кальция, стронция и бария взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода). Взаимодействие щелочей с неметаллами подробно рассмотрено в статье про щелочные металлы.
6. Гидроксиды кальция, стронция и бария взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:
В растворе образуются комплексная соль и водород:
Например , хлорид железа (II) реагирует с гидроксидом бария с образованием хлорида бария и осадка гидроксида железа (II):
Также с гидроксидами кальция, стронция и бария взаимодействуют соли аммония.
Например , при взаимодействии бромида аммония и гидроксида кальция образуются бромид кальция, аммиак и вода:
8. Гидроксид кальция разлагается при нагревании до 580 о С, гидроксиды магния и бериллия разлагаются при нагревании:
9. Гидроксиды кальция, стронция и бария проявляют свойства сильных оснований . В воде практически полностью диссоциируют , образуя щелочную среду и меняя окраску индикаторов.
Например , гидроксид бериллия реагирует с расплавом гидроксида натрия:
При взаимодействии гидроксида бериллия с избытком раствора щелочи образуется комплексная соль:
Соли щелочноземельных металлов
Нитраты щелочноземельных металлов
Например , нитрат кальция разлагается при нагревании на нитрит кальция и молекулярный кислород:
Карбонаты щелочноземельных металлов
1. Карбонаты щелочноземельных металлов при нагревании разлагаются на оксид и углекислый газ.
Например , карбонат кальция разлагается при температуре 1200 о С на оксид кальция и углекислый газ:
2. Карбонаты щелочноземельных металлов под действием воды и углекислого газа превращаются в растворимые в воде гидрокарбонаты.
Например , карбонат кальция взаимодействует с углекислым газом и водой с образованием гидрокарбоната кальция:
3. Карбонаты щелочноземельных металлов взаимодействуют с более сильными кислотами с образованием новой соли, углекислого газа и воды.
Более сильные кислоты вытесняют менее сильные из солей.
Например , карбонат магния взаимодействует с соляной кислотой:
Менее летучие оксиды вытесняют более летучие оксиды из солей при сплавлении.
Например , карбонат кальция взаимодействует с оксидом алюминия при сплавлении:
Жесткость воды
Постоянная и временная жесткость
Временная (карбонатная) жесткость обусловлена присутствием гидрокарбонатов кальция Ca(HCO3)2 и магния Mg(HCO3)2 в воде.
Постоянная (некарбонатная) жесткость обусловлена присутствием солей, не выделяющихся при кипячении из раствора: хлоридов (CaCl2) и сульфатов (MgSO4) кальция и магния.
Способы устранения жесткости
Существуют химические и физические способы устранения жесткости. Химические способы устранения временной жесткости:
1. Кипячение. При кипячении гидрокарбонаты кальция и магния распадаются на нерастворимые карбонаты, углекислый газ и воду:
2. Добавление извести (гидроксида кальция). При добавлении щелочи растворимые гидрокарбонаты переходят в нерастворимые карбонаты:
1. Добавление соды (карбоната натрия). Карбонат натрия связывает ионы кальция и магния в нерастворимые карбонаты:
CaCl2 + Na2CO3 → CaCO3↓+ 2NaCl
2. Добавление фосфатов. Фосфаты также связывают ионы кальция и магния:
гидроксид бериллия представляет собой химическое соединение, состоящее из двух молекул гидроксида (ОН) и молекулы бериллия (Ве). Его химическая формула Be (OH)2 и он характеризуется как амфотерный вид. Как правило, он может быть получен в результате реакции между моноксидом бериллия и водой в соответствии со следующей химической реакцией: BeO + H2O → Be (OH)2
С другой стороны, это амфотерное вещество имеет молекулярную конфигурацию линейного типа. Однако могут быть получены различные структуры гидроксида бериллия: альфа и бета форма, как минеральная, так и в паровой фазе, в зависимости от используемого метода..
- 1 Химическая структура
- 1.1 Бериллий гидроксид альфа
- 1.2 Бета-бериллиевый гидроксид
- 1.3 Гидроксид бериллия в минералах
- 1.4 Пар бериллиевого гидроксида
- 2.1 Внешний вид
- 2.2 Термохимические свойства
- 2.3 Растворимость
- 2.4 Риски, связанные с воздействием
- 4.1 Получение металлического бериллия
Риски воздействия
Законный допустимый предел воздействия на человека (PEL или OSHA) гидроксида бериллия, установленный для максимальной концентрации в пределах 0,002 мг / м 3 и 0,005 мг / м 3 составляет 8 часов, а для концентрации 0,0225 мг / м 3 максимальное время 30 минут.
Эти ограничения связаны с тем, что бериллий классифицируется как канцероген типа A1 (канцероген для человека, исходя из количества данных эпидемиологических исследований).
Свойства
Как минерал Be (OH)2 (бегоит) имеет твердость 4, а его плотность составляет 1,91 г / см 3 и 1,93 г / см 3 .
вид
Гидроксид бериллия представляет собой белое твердое вещество, которое в альфа-форме имеет студенистый и аморфный вид. С другой стороны, бета-форма этого соединения состоит из четко определенной, ромбической и стабильной кристаллической структуры.
Можно сказать, что морфология минерала Be (OH)2 он разнообразен, поскольку может быть найден в виде сетчатых, древовидных кристаллов или сферических агрегатов. Точно так же он бывает белого, розового, голубоватого и даже бесцветного цвета и с жирным стекловидным блеском.
получение
Оксид бериллия (BeO) - химическое соединение высокочистого бериллия, наиболее используемое в промышленности. Он характеризуется как бесцветное твердое вещество со свойствами электрической изоляции и высокой теплопроводностью..
В этом смысле процесс его синтеза (по техническому качеству) в первичной промышленности осуществляется следующим образом:
- Гидроксид бериллия растворяют в серной кислоте (Н2SW4).
- Когда реакцию проводят, раствор фильтруют, так что нерастворимые примеси оксида или сульфата удаляются таким образом..
- Фильтрат подвергают выпариванию для концентрирования продукта, который охлаждают до получения кристаллов сульфата бериллия BeSO4.
- БеСО4 кальцинируют при определенной температуре от 1100 ° C до 1400 ° C.
Конечный продукт (BeO) используется для изготовления специальных керамических изделий промышленного назначения..
Получение металлического бериллия
При добыче и переработке бериллиевых минералов образуются примеси, такие как оксид бериллия и гидроксид бериллия. Последний подвергается серии превращений до получения металлического бериллия.
Be (OH) реагирует2 с раствором бифторида аммония:
(NH4)2BeF4 он подвергается повышению температуры, подвергаясь термическому разложению:
Наконец, восстановление фторида бериллия при температуре 1300 ° C магнием (Mg) приводит к металлическому бериллию:
Бериллий используется в металлических сплавах, производстве электронных компонентов, производстве радиационных экранов и окон, используемых в рентгеновских аппаратах..
Бета-гидроксид бериллия
Вырождение этого альфа-продукта формирует метастабильную тетрагональную кристаллическую структуру, которая по прошествии длительного периода времени превращается в ромбическую структуру, называемую бета (β) гидроксидом бериллия.
Эта бета-форма также получается в виде осадка из раствора бериллия натрия путем гидролиза в условиях, близких к температуре плавления.
Химическая структура
Это химическое соединение может быть найдено четырьмя различными способами:
Бериллий гидроокись альфа
При добавлении любого основного реагента, такого как гидроксид натрия (NaOH), к раствору соли бериллия, получается альфа (α) форма гидроксида бериллия. Пример показан ниже:
2NaOH (разбавленный) + BeCl2 → Be (OH)2↓ + 2NaCl
Бета-гидроксид бериллия
Вырождение этого альфа-продукта формирует метастабильную тетрагональную кристаллическую структуру, которая через длительный период времени превращается в ромбическую структуру, называемую бета-гидроксидом бериллия (β).
Эта бета-форма также получается в виде осадка из раствора бериллия натрия гидролизом в условиях, близких к температуре плавления..
Гидроксид бериллия в минералах
Хотя это не обычно, гидроксид бериллия встречается как кристаллический минерал, известный как бехоит (называемый таким образом в связи с его химическим составом).
Встречается в гранитных пегматитах, образующихся при превращении гадолинита (минералов группы силикатов) в вулканические фумаролы..
Этот относительно новый минерал был впервые обнаружен в 1964 году и в настоящее время обнаружен только в гранитных пегматитах, расположенных в штатах Техас и Юта в Соединенных Штатах..
Паровая гидроокись бериллия
При температуре выше 1200 ° C (2190 ° C) в паровой фазе существует гидроксид бериллия. Получается в результате реакции между водяным паром и оксидом бериллия (BeO).
Аналогично, полученный пар имеет парциальное давление 73 Па, измеренное при температуре 1500 ° С..
Гидроксид бериллия в минералах
Хотя это необычно, гидроксид бериллия встречается в виде кристаллического минерала, известного как бегоит (названный в честь его химического состава).
Он образуется в гранитных пегматитах, образованных преобразованием гадолинита (минералы из группы силикатов) в вулканические фумаролы.
Этот относительно новый минерал был впервые обнаружен в 1964 году, а в настоящее время они обнаружены только в гранитных пегматитах, расположенных в штатах Техас и Юта в США.
Альфа-гидроксид бериллия
Добавление любого основного реагента, такого как гидроксид натрия (NaOH), к раствору соли бериллия дает альфа (α) форму гидроксида бериллия. Пример показан ниже:
2NaOH (разбавленный) + BeCl2 → Be (ОН)2↓ + 2NaCl
свойства
Гидроксид бериллия имеет молярную массу или приблизительную молекулярную массу 43,0268 г / моль и плотность 1,92 г / см. 3 . Его температура плавления находится при температуре 1000 ° С, при которой начинается его разложение..
В качестве минерала, Be (OH)2 (Behoita) имеет твердость 4, а его плотность составляет 1,91 г / см. 3 и 1,93 г / см 3 .
внешний вид
Гидроксид бериллия представляет собой белое твердое вещество, которое в своей альфа-форме имеет желатиновый и аморфный вид. С другой стороны, бета-форма этого соединения имеет четко выраженную орторомбическую и стабильную кристаллическую структуру..
Можно сказать, что морфология минерала Be (OH)2 он разнообразен, потому что его можно найти в виде ретикулярных кристаллов, древесных или сферических агрегатов. Точно так же это прибывает в белый, розовый, голубоватый и даже бесцветный и с жирным стекловидным блеском.
Термохимические свойства
Энтальпия образования: -902,5 кДж / моль
Энергия Гиббса: -815,0 кДж / моль
Энтропия образования: 45,5 Дж / моль
Теплоемкость: 62,1 Дж / моль
Удельная теплоемкость: 1443 Дж / К
Стандартная энтальпия образования: -20,98 кДж / г
растворимость
Гидроксид бериллия по своей природе амфотерный, поэтому он способен отдавать или принимать протоны и растворять как кислые, так и щелочные среды в кислотно-щелочной реакции с образованием соли и воды..
В этом смысле растворимость Be (OH)2 в воде ограничен продуктом растворимости Kps(H 2 O), что равно 6,92 × 10 -22 .
Риски подверженности
Законно допустимый предел воздействия на человека (PEL или OSHA) вещества, содержащего гидроксид бериллия, установлен для максимальной концентрации от 0,002 мг / м. 3 и 0,005 мг / м 3 составляет 8 часов, а для концентрации 0,0225 мг / м 3 максимум 30 минут.
Эти ограничения связаны с тем, что бериллий классифицируется как канцерогенный агент типа А1 (канцерогенный агент у людей, на основании количества данных эпидемиологических исследований).
Приложения
Использование гидроксида бериллия в качестве сырья для обработки некоторых продуктов очень ограничено (и необычно). Однако это соединение, используемое в качестве основного реагента для синтеза других соединений и получения металлического бериллия.
приложений
Использование гидроксида бериллия в качестве сырья для обработки какого-либо продукта очень ограничено (и необычно). Однако это соединение используется в качестве основного реагента для синтеза других соединений и получения металлического бериллия..
Растворимость
Гидроксид бериллия является амфотерным по своему характеру, поэтому он способен отдавать или принимать протоны и растворяется как в кислой, так и в основной среде в кислотно-щелочной реакции с образованием соли и воды.
Пары гидроксида бериллия
Химическая структура
Это химическое соединение можно найти в четырех различных формах:
Читайте также: