Какая эра в теории большого взрыва следует после планковского момента
Исследователи из Копенгагенского университета выяснили, что произошло с определенным видом плазмы – самой первой материей во Вселенной – в течение первой микросекунды после Большого взрыва. Их открытие раскрывает часть головоломки об эволюции Вселенной, какой мы знаем ее сегодня: современная наука гласит, что около 14 миллиардов лет назад наша Вселенная перешла из гораздо более горячего и плотного состояния в радикально расширяющееся – этот процесс н назвали Большим взрывом. И хотя мы знаем, что это быстрое расширение породило частицы, атомы, звезды, галактики и жизнь на нашей планете, детали того, как именно произошло рождение Вселенной, до сих пор неизвестны. Новая работа, по мнению ее авторов, проливает свет на самые первые мгновения существования всего сущего. Полученные результаты позволили исследователям пошагово восстановить эволюцию ранней Вселенной – с помощью Большого адронного коллайдера в ЦЕРН физикам удалось воссоздать то крошечное окно времени, в котором вся Вселенная была относительно компактной.
Исследование Института Нильса Бора раскрывает новые подробности того, что произошло в первые микросекунды после Большого взрыва
История теории Большого взрыва
А вы бы смогли рассказать все это в эфире ВВС?
Самое раннее упоминание Большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном Весто Слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего Млечного Пути.
В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что Вселенная скорее находится в состоянии расширения.
В 1924 году измерения Эдвина Хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время Хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2,5-метровый телескоп Хукера в обсерватории Маунт Вилсон. К 1929 году Хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом Хаббла.
В 1927 году бельгийский математик, физик и католический священник Жорж Леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса Вселенной была сосредоточена в одной точке (атоме).
Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что Вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением Вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея Большого взрыва казалась больше теологической, нежели научной. В адрес Леметра звучала критика о предвзятости на основе религиозных предубеждений.
Следует отметить, что в то же время существовали и другие теории. Например, модель Вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям Вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.
После Второй мировой войны между сторонниками стационарной модели Вселенной (которая фактически была описана астрономом и физиком Фредом Хойлом) и сторонниками теории Большого взрыва, быстро набиравшей популярность среди научного сообщества, разгорелись жаркие дебаты. По иронии судьбы, именно Хойл вывел фразу «большой взрыв», впоследствии ставшую названием новой теории. Произошло это в марте 1949 года на британском радио BBC.
Космос настолько загадочен, что мы не сможем понять даже малую его часть.
В конце концов дальнейшие научные исследования и наблюдения все больше и больше говорили в пользу теории Большого взрыва и все чаще ставили под сомнение модель стационарной Вселенной. Обнаружение и подтверждение реликтового излучения в 1965 году окончательно укрепили Большой взрыв в качестве лучшей теории происхождения и эволюции Вселенной. С конца 60-х годов и вплоть до 1990-х астрономы и космологи провели еще больше исследований вопроса Большого взрыва и нашли решения для многих теоретических проблем, стоящих на пути у данной теории.
Среди этих решений, например, работа Стивена Хокинга и других физиков, которые доказали, что сингулярность являлась неоспоримым начальным состоянием общей относительности и космологической модели Большого взрыва. В 1981 году физик Алан Гут вывел теорию, описывающую период быстрого космического расширения (эпохи инфляции), которая решила множество ранее нерешенных теоретических вопросов и проблем.
В 1990-х наблюдался повышенный интерес к темной энергии, которую рассматривали как ключ к решению многих нерешенных вопросов космологии. Помимо желания найти ответ на вопрос о том, почему Вселенная теряет свою массу наряду с темной матерей (гипотеза была предложена еще в 1932 году Яном Оортом), также было необходимо найти объяснение тому, почему Вселенная по-прежнему ускоряется.
Дальнейший прогресс изучения обязан созданию более продвинутых телескопов, спутников и компьютерных моделей, которые позволили астрономам и космологам заглянуть дальше во Вселенной и лучше понять ее истинный возраст. Развитие космических телескопов и появление таких, как, например, Cosmic Background Explorer (или COBE), космический телескоп Хаббла, Wilkinson Microwave Anisotropy Probe (WMAP) и космическая обсерватория Планка, тоже внесло бесценный вклад в исследование вопроса.
Сегодня космологи могут с довольно высокой точностью проводить измерения различных параметров и характеристик модели теории Большого взрыва, не говоря уже о более точных вычислениях возраста окружающего нас космоса. А ведь все началось с обычного наблюдения за массивными космическими объектами, расположенными во многих световых годах от нас и медленно продолжающих от нас отдаляться. И несмотря на то, что мы понятия не имеем, чем это все закончится, чтобы выяснить это, по космологическим меркам на это потребуется не так уж и много времени.
Как появилась Вселенная?
Наиболее обоснованная теория происхождения нашей Вселенной гласит, что она родилась в процессе Большого взрыва. К такому выводу исследователи пришли, наблюдая за галактиками – они удаляются от нашей с огромной скоростью во всех направлениях, как будто движимы древней взрывной силой.
Бельгийский священник по имени Жорж Леметр впервые предложил теорию Большого взрыва в 1920-х годах, предположив, что начало Вселенной положил один-единственный атом. Эта идея получила развитие благодаря наблюдениям Эдвина Хаббла, а также открытию в 1960—х годах космического микроволнового фонового излучения (реликтового излучения или эха Большого взрыва) Арно Пензиасом и Робертом Уилсоном.
Реликтовое излучение – фоновое микроволновое излучение, одинаковое во всех направлениях. Имеет спектр, характерный для абсолютно черного тела при температуре
Дальнейшая работа ученых помогла прояснить темп Большого взрыва. Вот что пишет об этом National Geographic:
Исследователи также отмечают, что с течением времени и охлаждением материи во Вселенной начали формироваться более разнообразные виды частиц, которые в конечном итоге конденсировались в звезды и галактики. Примечательно, что к тому времени, когда возраст Вселенной составлял миллиардную долю секунды, она достаточно остыла, чтобы четыре фундаментальные силы отделились друг от друга, что позволило сформироваться фундаментальным частицам.
Предидущие исследования в этой доказали, что кварк-глюонная плазма действительно существует.
И все же во Вселенной было недостаточно жарко и многие известные сегодня частицы (например протон), просто не успели сформироваться. В дальнейшем, по мере того как Вселенная продолжала расширяться, этот обжигающе горячий первичный суп, называемый кварк-глюонной плазмой, продолжал остывать. Вот так мы и подошли к самому интересному – недавно исследователи из ЦЕРН, работающие на Большом адронном коллайдере, смогли воссоздать кварк-глюонную плазму.
Интересуетесь новостями из мира науки и высоких технологий и хотите всегда быть в курсе последних открытий? Подписывайтесь на наш новостной канал в Telegram, чтобы не пропустить ничего интересного!
Хронология событий в теории Большого Взрыва
Так все выглядело в разрезе времени.
Основываясь на знаниях о нынешнем состоянии Вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, Вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.
Все это, по догадкам ученых, началось около 13,8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом Вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков Вселенной ученые вывели и предложили хронологию событий, которые начались с Большого взрыва и привели Вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.
Эпоха инфляции
Можно попробовать визуализировать Вселенную так.
С появлением первых фундаментальных сил во Вселенной началась эпоха инфляции, которая продлилась с 10 -32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что Вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Это началось на 10 -37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение Вселенной в геометрической прогрессии. В этот же период времени Вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.
Самая первая материя во Вселенной
Итак, под кварк-глюонной плазмой исследователи понимают материю, которая существовала в течение первой микросекунды после Большого взрыва. Исследователи отмечают, что плазма, состоящая из кварков и глюонов, была разделена горячим расширением Вселенной, после чего остатки кварка преобразовались в так называемые адроны.
Адрон с тремя кварками образует протон, который является частью атомных ядер. Эти ядра являются строительными блоками, из которых состоит Земля, мы сами и окружающая нас вселенная.
Как выяснили авторы научной работы, кварк-глюонная плазма (QGP) присутствовала в первую 0,000001 секунды Большого взрыва, а затем исчезла из-за расширения Вселенной. Но с помощью БАК в ЦЕРН исследователи смогли воссоздать эту первую материю и проследить, что с ней произошло.
Галактика Млечный Путь – одна из сотен миллиардов таких же
В течение долгого времени исследователи думали, что плазма была формой газа, но новый анализ подтвердил – плазма была плавной и имела гладкую мягкую текстуру, как вода. Новые детали также продемонстрировали, показывают, что плазма со временем изменила свою форму, что удивительно и сильно отличается от любой другой известной материи.
Большой взрыв — это модель, описывающая рождения нашей Вселенной. Он произошёл 13.798 ± 0.037 миллиардов лет назад: из какого-то очень плотного и горячего состояния Вселенная начала стремительно расширяться. Об этом исходном состоянии Вселенной нам ещё очень мало известно, но все же кое-что учёные узнали. Поэтому в сегодняшней статье мы расскажем, что происходило в первые секунды после Большого взрыва.
Большой взрыв и "Планковская эпоха"
13.798 миллиардов лет назад вся масса, пространство и энергия была сконцентрирована в точку, размером в дециллион (10^33) раз меньше точки в конце этого предложения. Это была очень плотная и горячая точка, которая начала расширяться — это расширение и называют Большой взрыв.
В промежуток времени от 0 до 10^-43 секунд продолжалась "Планковская эпоха". В это время все фундаментальные взаимодействия были объединены в одно. В конце этой эпохи гравитация отделилась от остальных взаимодействий и когда возраст Вселенной перевалил 10^-35 секунд, то что осталось от остальных взаимодействий разделилось на электромагнитное, слабое и сильное ядерные взаимодействия.
Триллионная доля секунды от начала Большого взрыва
Всё это время не прекращались взаимодействие материи в виде субатомных частиц и излучения в виде фотонов. Сейчас, как и во время планковских эпохи, Вселенная — это кипящий бульон с кварками, глюонами, фотонами, лептонами, а также их античастицами и, конечно, бозонами, которые делали возможным взаимодействие между частицами. Что интересно, в настоящее время физики считают, что эти частицы являются элементарными, то есть они не имеют составных частей и, соответственно, являются неделимыми.
Некоторые учёные считают, что на ранних этапах эволюции Вселенной случился эпизод, который наделил Вселенную определённой асимметрией. То есть частиц материи оказалось чуть больше, чем частиц антиматерии. Это превосходство было очень малым — миллиард и одна частица материи на миллиард частиц антиматерии, но благодаря ему не всё вещество во Вселенной смогло аннигилировать. Это объясняет, почему в наша Вселенная сейчас практически полностью состоит из материи и не содержит больших скоплений антиматерии.
К этому времени Вселенная начала существенно остывать. Температура упала ниже триллиона Кельвинов и Вселенная расширилась до размеров нашей Солнечной системы.
Миллионная доля секунды от начала Большого взрыва
Вселенная ещё больше остыла, температура оказалась недостаточной для разделения объединяющихся кварков, поэтому нашли себе партнёров, образовав новый класс тяжёлых частиц — адроны. Началась "адронная эра". Переход от кварков к адронов привёл к появлению во Вселенной протонов и нейтронов.
С появления Вселенной прошла одна секунда
Размер Вселенной достиг нескольких световых лет. Температура всё ещё стремительно падает и сейчас составляет около миллиарда Кельвинов. Этой температуры было ещё достаточно для того, чтобы в ходе взаимодействий ещё образовывались электроны и позитроны. К счастью, соотношение электронов и позитронов тоже было миллиард и один электрон к миллиарду позитронов и их аннигиляция оставила Вселенную полную электронов.
От одной до ста секунд от рождения Вселенной
В последующие несколько секунд Вселенная ещё больше охлаждалась. Сейчас её температура составляет около ста миллионов Кельвинов. На этом этапе протоны стали объединяться с другими протонами, а также с нейтронами, образуя атомные ядра. Образовались ядра гелия — 10% от всех ядер во Вселенной, а также небольшое количество ядер дейтерия, трития, лития и более тяжёлых элементов, которые суммарно не составляют и 0,01% от всех ядер во Вселенной. Оставшиеся после этого протоны стали ядрами водорода, которые составляют 90% от всех ядер во Вселенной.
Через несколько сотен тысяч лет Вселенная остыла до температуры 3000 градусов и электроны начали оседать на ядрах, образуя атомы. После этого последовала эпоха Тёмных веков, когда Вселенная не имела источников света. Тёмные века продлились около 400 млн лет, в течение которых Вселенная продолжала расширяться и охлаждаться, а гравитация собирала материю в огромные скопления — галактики. Через 400 млн лет в галактиках начали рождаться первые звёзды, осветившие Вселенную, что ознаменовало наступление космологического рассвета. С тех пор Вселенная продолжает меняться, но кардинальных изменений больше не происходило.
Автор: Алексей Нимчук. Редакция: Фёдор Карасенко.
Ставьте палец вверх, чтобы видеть в своей ленте больше статей о космосе и науке!
Подписывайтесь на мой канал здесь, а также на мои каналы в телеграме и на youtube . Там вы можете почитать большое количество интересных материалов, а также задать свой вопрос. Поддержать наш канал материально можно через patreon .
В начале ХХ века (в 1916 г.) Альберт Эйнштейн опубликовал Общую Теорию Относительности (ОТО), в которой появились первые идеи данной концепции. Он описал, что пространство и время неразрывно связаны между собой и являются формами существования единой субстанции – материи. ОТО основана на сенсационном предположении о том, что гравитационная сила не может появиться в статичном пространстве, пространство-время искривлено помещёнными в него массой и энергией (ведь именно из-за сил гравитации звезды и планеты имеют шарообразную форму). Так же по ОТО во Вселенной должны происходить одновременно два процесса – сжатие и расширение. Но в то время большинство ученых придерживались мнения о статичности Вселенной, и на эти идеи отреагировали неоднозначно. Чтобы согласиться с мнением большинства, в следующем, 1917 году Эйнштейн ввёл космологическую постоянную, чтобы уравнения допускали пространственно однородное статическое решение, однако позднее назвал её своей самой большой ошибкой (да-да! Гении тоже могут ошибаться!).
В 1922 году советский физик А. Фридман на основе уравнений Эйнштейна понял, что вся Вселенная возникла из плотно сжатой точки, и , поскольку во Вселенной постоянно происходят процессы взрывного характера (например, взрывы сверхновых), то учёный предположил, что в рождении Вселенной так же лежит взрывной процесс.
Позднее, в 1929 г., Э. Хаббл обнаружил, что галактики постоянно удаляются друг от друга, или, как принято говорить, «разбегаются». Данное открытие подтвердило мысль о расширяющейся Вселенной.
Следующий важнейший шаг в этой теории – выход работы Г. А. Гамова в 1948 году о «Горячей Вселенной», которая была построена на теориях Фридмана. Гамов писал, что первичное вещество во Вселенной было не только очень плотным, но и очень горячим. Именно высокие температуры и плотность способствовали возникновению ядерных реакций, в результате чего синтезировались легкие химические элементы, послужившие строительным материалом для звёзд и галактик. На основе этого Гамов предсказал наличие космического фона излучения, которое с того момента не могло исчезнуть – его температура упала почти до абсолютного нуля. В 1964 году теория Гамова была полностью подтверждена американскими радиоастрономами Р. Вилсоном и А. Пензиасом, которым удалось открыть космический фон излучения и измерить его температуру. Теперь это излучение называется реликтовым.
В 2000-х годах спутники подтвердили теорию расширения Вселенной, а в настоящее время реликтовое излучение измеряется с более высокой точностью.
От сингулярности до наших дней (этапы развития)
1. Как уже было сказано выше, в начале всего существовала космологическая сингулярность – состояние, при котором всё вещество было сжато до колоссальных значений плотности и температуры, а кривизна пространства-времени стремится к бесконечности. В данном состоянии не может работать ни один из известных законов физики. Размер самой сингулярности сопоставим с размером атомного ядра. Только представьте, как в такую точку можно уместить всё космическое вещество!
2. Далее, по неизвестным нам причинам, началась планковская эпоха – произошло что – то, что заставило вещество стремительно расширяться и постепенно охлаждаться. Момент Большого взрыва считается рождением всего сущего («день рождения» Вселенной произошёл примерно 13,7 млрд лет назад). При высоких температурах на начальном этапе начали действовать реакции ядерного синтеза – так стали возникать первые частицы.
3. В Эпоху великого объединения возникли силы гравитации, способные объединять разрозненное вещество.
4. Эпоха инфляции – Вселенная начала стремительно расширяться, но вот вопрос: куда.
5. Бариогенезис – объединение кварков и глюонов в барионы, а так же образование материи и антиматерии. Появляются четыре фундаментальных физических взаимодействия (сильное, слабое, гравитационное и электро – магнитное). После падения температуры и периода фазового перехода гравитация становится доминирующей силой.
6. Тёмные века – Вселенная была заполнена водородно – гелиевой массой; материя стала прозрачной для излучения, распространяющееся свободно и дошедшее до нас в виде реликтового излучения.
7. Рождение первых звёзд – сжатие облаков водорода и гелия под воздействием гравитации привело к возникновению термоядерных реакций. Появившиеся первые звезды объединялись в другие гравитационные системы – галактики.
8. Эра вещества – формирование планетарных систем.
Можно сказать, что сейчас Вселенная находится в «самом расцвете сил»: появляются новые планетарные системы, рождаются и умирают звезды, после гибели которых во Вселенную выбрасывается строительное вещество для других объектов. Именно в наше время во Вселенной созданы все условия для возникновения жизни.
Как появилась наша Вселенная? Как она превратилась в кажущееся на первый взгляд бесконечное пространство? И чем она станет спустя многие миллионы и миллиарды лет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что Вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией Большого взрыва.
Вначале был взрыв.
Стоит отметить, что теория Большого Взрывая является лишь одной из многих предложенных гипотез возникновения Вселенной (например, есть еще теория стационарной Вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру Вселенной, она также описывает причины расширения Вселенной и многие другие аспекты и феномены.
Охлаждение Вселенной
После взрыва все должно было снизить температуру.
Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.
Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.
В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.
Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.
С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10 -14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.
Что будет со Вселенной
Будущее знать нельзя, но можно предсказать.
Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?
Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.
Согласно первому, получившему название «большое сжатие», Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3×10 -26 кг материи на м³), Вселенная начнет сжиматься.
Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.
Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга. В конце концов термодинамическая энтропия во Вселенной станет максимальной. Наступит тепловая смерть.
Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.
Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.
Структурирование Вселенной
Вот что произошло за 14 миллиардов лет.
Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.
Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.
Тайны сингулярности
Сингулярность мало кто может объяснить человеческим языком.
Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции Вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.
Планковская эра предположительно длилась от 0 до 10 -43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем. Ввиду экстремальных температур и бесконечной плотности материи состояние Вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.
Приблизительно в период с 10 -43 до 10 -36 секунды во Вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней Вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.
В период примерно с 10 -36 до 10 -32 секунды после Большого взрыва температура Вселенной стала достаточно низкой (1028 К), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия).
Читайте также: