Изменение импульса системы со временем p t определяется
Импульс системычастиц есть векторная сумма импульсов ее отдельных частиц: p=(сумм)pi, где pi – импульс i-й частицы.
Теорема об изменении импульса системы: полный импульс системы можно изменить только действием внешних сил: Fвнеш=dp/dt(1), т.е. производная импульса системы по времени равна векторной сумме всехвнешних сил, действующих на частицы системы. Как и в случае одной частицы, из выражения (1) следует, что приращение импульса системы равно импульсу результирующей всех внешних сил за соответствующий промежуток времени:
В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорости:
соответственно величина называется импульсом одной материальной точки. Это векторная величина, направленная в ту же сторону, что и скорость частицы. Единицей измерения импульса в Международной системе единиц (СИ) являетсякилограмм-метр в секунду (кг·м/с).
Если мы имеем дело с телом конечного размера, не состоящим из дискретных материальных точек, для определения его импульса необходимо разбить тело на малые части, которые можно считать материальными точками и просуммировать по ним, в результате получим:
Импульс системы, на которую не действуют никакие внешние силы (или они скомпенсированы), сохраняется во времени:
Сохранение импульса в этом случае следует из второго и третьего закона Ньютона: написав второй закон Ньютона для каждой из составляющих систему материальных точек и просуммировав по всем материальным точкам, составляющим систему, в силу третьего закона Ньютона получим равенство (*).
В релятивистской механике трёхмерным импульсом системы невзаимодействующих материальных точек называется величина
где mi — масса i-й материальной точки.
Для замкнутой системы не взаимодействующих материальных точек эта величина сохраняется. Однако трёхмерный импульс не есть релятивистски инвариантная величина, так как он зависит от системы отсчёта. Более осмысленной величиной будет четырёхмерный импульс, который для одной материальной точки определяется как
На практике часто применяются следующие соотношения между массой, импульсом и энергией частицы:
В принципе, для системы невзаимодействующих материальных точек их 4-импульсы суммируются. Однако для взаимодействующих частиц в релятивистской механике следует учитывать импульсы не только составляющих систему частиц, но и импульс поля взаимодействия между ними. Поэтому гораздо более осмысленной величиной в релятивистской механике является тензор энергии-импульса, который в полной мере удовлетворяет законам сохранения.
· Аддитивность. Это свойство означает, что импульс механической системы, состоящей из материальных точек, равен сумме импульсов всех материальных точек, входящих в систему. [2]
· Инвариантность по отношению к повороту системы отсчета. [2]
· Сохранение. Импульс не изменяется при взаимодействиях, изменяющих лишь механические характеристики системы. Это свойство инвариантно по отношению к преобразованиям Галилея [2] Свойства сохранения кинетической энергии, сохранения импульса и второго закона Ньютона достаточно, чтобы вывести математичекую формулу импульса. [3][4]
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной изфундаментальных симметрий, — однородностью пространства
Изменение импульса тела равно импульсу равнодействующей всех сил, действующих на тело. Это иная формулировка второго закона Ньютона
Тогда отношение изменения импульса системы к изменению времени равняется сумме всех внешних сил. Это и есть одна из формулировок закона изменения импульса. Классическая формулировка гласит:
Изменение импульса тела изображено на рисунке
3) Из второго закона Ньютона
Вопрос 14
Момент импульса.
Момент импульса материальной точки относительно точки O определяется векторным произведением
, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.
Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z.
Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.
Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):
.
Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:
.
Закон сохранения момента импульса: момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени.
Это один из фундаментальных законов природы.
Аналогично для замкнутой системы тел, вращающихся вокруг оси z:
Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси не изменяется в процессе движения.
Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.
На этом уроке все желающие смогут изучить тему «Импульс. Закон сохранения импульса». Вначале мы дадим определение понятию импульса. Затем определим, в чём заключается закон сохранения импульса – один из главных законов, соблюдение которого необходимо, чтобы ракета могла двигаться, летать. Рассмотрим, как он записывается для двух тел и какие буквы и выражения используются в записи. Также обсудим его применение на практике.
На прошлом уроке мы вывели второй закон Ньютона для систем материальных точек. На этом уроке мы узнаем, что одна из форм записи этого закона является законом сохранения импульса для систем материальных точек. Также введём понятие энергии системы материальных точек и рассмотрим закон сохранения (изменения) энергии такой системы.
Изучив законы Ньютона, мы видим, что с их помощью можно решить основные задачи механики, если нам известны все силы, действующие на тело. Есть ситуации, в которых определить эти величины затруднительно или вообще невозможно. Рассмотрим несколько таких ситуаций. При столкновении двух биллиардных шаров или автомобилей мы можем утверждать о действующих силах, что это их природа, здесь действуют силы упругости. Однако ни их модулей, ни их направлений мы точно установить не сможем, тем более что эти силы имеют крайне малое время действия. При движении ракет и реактивных самолетов мы также мало что можем сказать о силах, приводящих указанные тела в движение. В таких случаях применяются методы, позволяющие уйти от решения уравнений движения, а сразу воспользоваться следствиями этих уравнений. При этом вводятся новые физические величины. Рассмотрим одну из этих величин, называемую импульсом тела.
Читайте также: