График функции в реальной жизни
Введение
«Именно функция является тем средством математического языка,
которое позволяет описывать процессы движения,
изменения ,присущие природе»
Математика – один из моиx самых любимых предметов. Я считаю, что ни одно явление, ни один процесс в окружающем мире не могут быть изучены без математического описания. Одним из инструментов описания реального мира является функция.
Современная математика знает множество функций, и у каждой своей неповторимый облик, как неповторим облик каждого из миллиардов людей, живущих на земле.
Мы тоже являемся функцией многих переменных, одна из которых – время. Проходят годы и мы меняемся. Мы также зависим от своей наследственности, от книг, которые мы читаем, от температуры окружающей нас среды и от многих других факторов.
Однако при всей непохожести одного человека на другого у каждого есть руки и голова, уши и рот.
Точно так же облик каждой функции можно представить сложенным из набора характерных деталей. В них появляются основные свойства функций.
На уроках математики все знакомятся с различными функциями, их свойствами и графиками, но мало знают о том, где в реальной жизни можно встретиться с этой моделью, и как человек использует свойства функций в своей практической деятельности.
На уроках математики мы познакомились с различными функциями, их свойствами и графиками, но мы мало знаем о том, где в реальной жизни можно встретиться с этой моделью, и как человек использует свойства функций в своей практической деятельности.
Реальные процессы обычно связаны с большим количеством переменных и зависимостей между ними. Описать эти зависимости можно с помощью функций. Знание свойств функций позволяет понять суть происходящих процессов, предсказать ход их развития, управлять ими. Изучение функций является актуальным всегда.
Исслeдовать и изучить связь функций с явлениями окружающего мира и практической деятельностью человека.
Исходя из цели, я поставил перед собой следующие задачи:
Узнать историю происхождения функций;
Найти и рассмотреть функции, которые существуют в нашем мире;
Установить связь математических функций с другими науками;
Выяснить, как часто в практической деятельности и природе человек может использовать функции и их свойства и, каким образом это позволит улучшить качество жизни людей.
сбор материала, работа с литературой,, анализ, обобщение;
изучение дополнительной литературы (справочники, словари, энциклопедии).
анализ полученной информации (опыт, наблюдение, решение задач, сравнение, сопоставление с имеющимися знаниями по данной теме, обобщение);
опрос учащихся и учителей с целью выявления мнения о роли функции в жизни.
Функции- неотъемлемая часть нашей жизни. Они окружают нас повсюду.
Математические функции и их приложения.
Функциональные зависимости в окружающей жизни.
А чтобы проверить эту гипотезу мною была изучена и проанализирована дополнительная литература, а также был проведен опрос учащихся моего класса с целью выявления мнения о роли функции в жизни человека.
Практическая значимость проекта
Работа позволяет развивать интерес школьников к урокам математики, убеждает в высокой практической значимости математической науки, формирует представление о взаимосвязи математики с объектами реального мира, убеждает в необходимости применять полученные знания на практике и поможет желающим расширить свои знания о функциях и их приложениях.
2 Основная часть
Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.
Идея функциональной зависимости восходит к древности. Так, вавилонские ученые (4-5тыс.лет назад) пусть несознательно, установили, что площадь круга является функцией от его радиуса. Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции - теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений.
Путь к появлению понятия функции заложили в 17 веке французские ученые Франсуа Виет и Рене Декарт; они разработали единую буквенную математическую символику, которая вскоре получила всеобщее признание.
Само слово «функция» (от латинского functio - совершение,выполнение) впервые было употреблено немецким математиком Лейбницем в 1673г. Окончательную формулировку определения функции с аналитической точки зрения сделал в 1748 году Леонард Эйлер.
Что же такое функция?
Разные ученые выдвигали разные мысли. Но я хочу вас познакомить с одним определением: «Если даны числовое множество X и правило f, позволяющие поставить в соответствие каждому элементу х из множества Х определенное число у, то говорят, что задана функция у = f(x) с областью определения Х; у = f(x) , хЄХ. При этом переменную х называют независимой переменной или аргумент, а переменную у- зависимой переменной.»
Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.
Функция – это не только математическое понятие, но и:
функция — работа, производимая органом, организмом; роль, значение чего-либо;
функция в математике — закон зависимости одной величины от другой;
функция — возможность, опция, умение программы или прибора;
функция — обязанность, круг деятельности;
функция персонажа в литературном произведении;
функция — вид подпрограммы в информатике социальная функция.
Каждая область знаний: физика, химия, биология, социология, лингвистика имеет свои объекты изучения, устанавливает свойства и, что особенно важно, взаимосвязи этих объектов.
В различных науках и областях человеческой деятельности возникают количественные соотношения, и математика изучает их в виде свойств чисел.
Математика создает условия для развития умения применять теоретические знания для решения практических задач, ориентироваться в окружающей нас действительности. Нам кажется, что функциональные зависимости могут касаться самых разнообразных явлений природы и окружающей среды. Каждому человеку в его повседневной практической деятельности приходится применять практические приемы геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков. Без конкретных математических знаний затруднено понимание и восприятие научных знаний, разнообразной социальной, экономической, технологической информации.
Свободное владение техникой построения графиков часто помогает решать многие задачи, а порой является естественным средством их решения. Математика является языком различных областей науки и нашей жизни.
Экологические проблемы являются глобальными проблемами человечества, всех стран независимо от размеров территории, численности населения, уровня экономического развития.
С функцией мы встречаемся каждый день.
каждый ученик в школе учится в определённом классе. Если обозначить через Х – множество учеников в школе, а через Y – множество классов, то можно сказать, что каждому элементу множества Х (т.е. каждому ученику) сопоставляется единственный элемент множества Y (т.е. тот класс, где данный ученик учится);
пришли в магазин, купить яблоки. Пусть их цена 200 рублей. Сколько денег мы отдаем за 2кг? За 5кг? Говорят, что стоимость покупки есть функция от количества яблок;
Изменение температуры в классе или на улице есть функция от времени. В одно и то же время температура не может принимать более одного значения и быть одновременно +5 и -10.
Способы задания функций.
Существует несколько способов задания функций:
с помощью графов.
Задать функцию – это значит указать ее область определения и правило, при помощи которого по данному значению независимой переменной находятся соответствующие ему значения функции.
1. Табличный способ.
При табличном задании просто выписывается ряд значений независимой переменной и соответствующих им значений функции. Табличный способ особенно распространен в технике, естествознании. Числовые результаты последовательных наблюдений какого-нибудь процесса обычно группируются в виде таблицы. Можно изобразить эту функцию на плоскости, она будет дискретной.
Преимущества: для каждого значения независимой переменной, помещенного в таблице, можно сразу без всяких вычислений найти соответствующее значение функции.
Недостатки: 1. Обычно невозможно задать функцию полностью, найдутся такие значения независимой переменной, которые не помещены в таблице.
2. Отсутствие наглядности при большом объеме таблицы, трудно выявить характер изменения функции.
Актуальность:
Данная тема является одной из самых актуальных. Она находит широкое применение в разных разделах математики, и других областях науки, а также тесно связана с деятельностью человека. Имеет теоретическую и практическую значимость.
Объект исследования: Тригонометрия.
Предмет исследования: Графики тригонометрической функции – синусоида и косинусоида.
Узнать о способах применения графиков тригонометрических функции в жизни человека.
Составить историческую справку о графиках тригонометрических функций.
Описать применении графиков тригонометрических функций в окружающем нас мире и различных отраслях.
Вывести свой биоритм жизни.
Изготовить демонстрационную модель движения графика синуса.
Графики тригонометрических функций широко применяются человеком, начиная с древности, и заканчивая настоящим временем.
Теоретическая часть
Многие задаются вопросами: зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы.
Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов), когда требуется сферическая тригонометрия, в акустике, в оптике, в анализе финансовых рынков, в статистике, в биологии, в медицинской визуализации, например, компьютерной томографии и ультразвук, в химии (Приложение 1, рис.1), в сейсмологии (Приложение 1, рис.2), в метеорологии, в океанографии (Приложение 1, рис.3), в архитектуре (Приложение 1, рис.4), в экономике, в компьютерной графике, в кристаллографии (Приложение 1, рис.5) и многих других областях.
Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.
История возникновения
Зачатки тригонометрии можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая (Приложение 2, рис.1) . 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания — 360 локтей.
Дальнейшее развитие тригонометрии связано с именем астронома Аристарха Самосского (III век до н. э.). В его трактате «О величинах и расстояниях Солнца и Луны» ставилась задача об определении расстояний до небесных тел; эта задача требовала вычисления отношения сторон прямоугольного треугольника при известном значении одного из углов. Аристарх рассматривал прямоугольный треугольник, образованный Солнцем, Луной и Землёй во время квадратуры (Приложение 2, рис. 2). Ему требовалось вычислить величину гипотенузы (расстояние от Земли до Солнца) через катет (расстояние от Земли до Луны) при известном значении прилежащего угла (87°), что эквивалентно вычислению значения sin угла 3. По оценке Аристарха, эта величина лежит в промежутке от 1/20 до 1/18, то есть расстояние до Солнца в 20 раз больше, чем до Луны; на самом деле Солнце почти в 400 раз дальше, чем Луна, ошибка возникла из-за неточности в измерении угла.
Несколько десятилетий спустя Клавдий Птоломей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углу.
В общем, можно сказать, что тригонометрия использовалась для:
· точного определения времени суток; (Приложение 2, рис. 3)
· вычисления будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны;
· нахождения географических координат текущего места;
· вычисления расстояния между городами с известными географическими координатами.
Гномон— древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест), позволяющий по наименьшей длине его тени (в полдень)
определить угловую высоту солнца. Так, под котангенсом понималась длина тени от вертикального гномонавысотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников (отрезки AO на рисунке слева)
Тригонометри́ческие фу́нкции (Приложение 2, рис. 5) — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.
Синус и косинус относятся к прямым тригонометрическим функциям.
Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды данной дуги, поскольку дуга с хордой напоминает лук с тетивой). Затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские математики, переводя индийские книги с санскрита, не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали его арабскими буквами и стали называть линию синуса «джиба» ( جيب ). Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus — «синус», имеющим то же значение (следует отметить, что именно в этом значении оно применяется как анатомический термин синус). Термин «косинус» (лат. Cosinus) — это сокращение от лат. Complementi sinus — дополнительный синус.
Первый график синусоиды (Приложение 2, рис. 6) появился в книге Альбрехта Дюрера (Приложение 2, рис. 4) «Руководство к измерению циркулем и линейкой» (нем. Underweysung der Messung mit dem Zirkel und Richtscheyt, 1525 год). В 1630-х годах, Жиль Роберваль (Приложение 2, рис. 7), в ходе своих исследований циклоиды, независимо вычертил синусоиду, он же опубликовал формулу тангенса двойного угла. Джон Валлис (Приложение 2, рис. 8) в своей «Механике» (1670), опередив своё время, правильно указал знаки синуса во всех квадрантах и указал, что у синусоиды бесконечно много «оборотов». График тангенса для первого квадранта впервые начертил Джеймс Грегори (1668) (Приложение 2, рис. 9).
В настоящее время график синуса можно встретить в следующих моментах нашей жизни.
Архитектура
Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений
рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.
Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой.
Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (то же самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения
Ситуация меняется, так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу.
Медицина и биология.
Модель биоритмов (Приложение 2, рис.11), которые в свою очередь подразумевают цикличность процессов в живом организме можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).
Формула сердца. В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.
Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров, деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.
Также тригонометрия помогает нашему мозгу определять расстояния до объектов.
Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории вновь позабыли.
Движение рыб в воде и полёт птиц (Приложение 2, рис. 10) происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.
Измерительные работы
Тригонометрией пользуются при измерение расстояния между точек на местности. Предположим, что нам надо найти расстояние d от пункта А до недоступного пункта «дерево». На местности можно выбрать точку B и измерим длину с отрезка АВ. Затем измерим, например с помощью астролябии, углы A и B. Эти данные, т.е. c, a и b позволяют решить треугольник АВС и найти искомое расстояние d = AC. Сначала находим угол С sinC: С=180-а- b , sinC = sin (180- a - b )= sin ( a + b ). Затем с помощью теоремы синусов находим d.
Практическая часть
Изготовление демонстрационной модели движения графика синуса.
Для изготовления данной модели мне потребовалось:
Изготовление модели мы начали с того, что:
Вырезали фанеру по нужному размеру.
Нанесли на неё разметку в виде графика синуса и косинуса на координатной плоскости.
Панель покрыли мебельным лаком.
По контуру синусоиды разместили силовые кнопки.
По силовым кнопкам протянули шляпную резинку с обозначением начальной точки.
Испытали модель в действии.
Описание аналитической части.
Изучив графики тригонометрических функций – синусоиду и косинусоиду, можно сделать вывод, что тригонометрия тесно связана с жизнью человека и его деятельностью, начиная с древности, и заканчивая настоящим временем.
Исследовав аналитический материал, мы выяснили, что тригонометрия присутствует во многих областях науки.
Дали строгие определения тригонометрии и тригонометрическим функциям.
Определили сферы применения синусоиды и косинусоиды, а также подтвердили значимость математики в окружающем нас мире. В ходе практического исследования применили полученные знания..
Мы убедились, что выдвинутая нами гипотеза подтвердилась и графики тригонометрических функций – синусоида и косинусоида действительно являются яркими представительницами в окружающем нас мире, а не только линиями в тетради. Они являются замечательными кривыми, которые практически всегда рядом с нами.
Хочется, чтобы данное исследование оказалось не только интересным, но и полезным. А демонстрационная модель будет служить наглядностью на уроках математики при изучении этих функций. Имеет метапредметную связь с другими областями науки.
« Функция в жизни человека»
Авторы проекта: Винницкая Екатерина,
Идиятов Эльдар, Зимнухова Олеся,
Никашов Никита, Кудряшов Михаил,
Львов Леонид, Мишкина Мария,
Руководители проекта:
Вахонина Любовь Алексеевна,
Рязанова Елена Викторовна,
р.п.Чучково, 2018 г.
В наши дни каждый школьник получает первичные знания по математике. Еще до школы ребята учатся считать, а затем на уроках получают представление о неограниченности числового ряда, об элементах геометрии, о дробных и иррациональных числах, изучают начала алгебры и математического анализа. Эти знания абсолютно необходимы каждому человеку, независимо от того, кем он станет в будущем: рабочим, инженером, механизатором, врачом, офицером или ученым.
«Когда математика стала изучать переменные величины и функции, лишь только она научилась описывать процессы, движение, так она стала необходима всем», - говорил Фридрих Энгельс.
На сегодняшний день без функций невозможно не только рассчитать космические траектории, работу ядерных реакторов, и бег океанской волны или закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологичных процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это – динамические процессы, которые описывает функция. Они отражают взаимосвязи, существующие между различными жизненными категориями, т.е. фактически являются отражениями функциональных зависимостей и доказывают, что функция - это сама жизнь!
Функция – это одно из основных математических и общенаучных понятий, выражающее зависимость между переменными величинами. Каждая область знаний: физика, химия, биология, социология, лингвистика и т.д. – имеет свои объекты изучения, устанавливает свойства и, что особенно важно, взаимосвязи этих объектов. Математика рассматривает абстрактные переменные величины и в отвлеченном виде, изучает различные законы их взаимосвязи, которые на математическом языке называются функциональными зависимостями, или функциями.
В своей работе мы хотели показать, что понятие «функция» находит широкое применение в других науках кроме математики, в технике и в жизни, что функция – одна из основных математических моделей, позволяющих описывать и изучать разнообразные зависимости между реальными величинами.
Основная часть.
2.1 Цели исследования
Расширение и углубление знаний по теме «Функция».
Выявление фактов о том, что понятие «функция» находит широкое применение в других науках, в технике и в жизни.
Показать, что понимание человечеством функциональных связей и взаимосвязей между отдельными качествами жизни (добро, зло, богатство, бедность и т.д.) послужило источником происхождения многих пословиц и поговорок, без которых наша речь была бы невыразительной и обыденной.
2.2 Задачи исследования
Исследовать основные свойства параболы и гиперболы.
Выявить те свойства этих функций, которые применяются в других науках, технике и в жизни.
В ходе работы над темой проекта были сформулированы следующие гипотезы:
Функция – это одно из основных понятий математики, выражающее зависимость одних переменных величин от других.
Функция – это явление, зависящее от другого основного явления, и служащее формой его проявления или осуществления.
В толковом словаре Ожегова записано: « Функция в философии: явление, зависящее от другого и изменяющееся по мере изменения этого другого явления». А Даль в своем словаре дает такое определение функции: «Функция – обозначение действий над количествами».
Исходя из этих определений, возникают три вопроса:
Что можно узнать с помощью функций?
О чём может рассказать график функции?
Каковы проявления понятия «функция» в окружающей жизни?
2.3 Парабола.
П арабола (греч. παραβολ — приложение) — кривая второго порядка, точки которой одинаково удалены от некоторой точки, называемой фокусом, и от некоторой прямой, называемой директрисой параболы. Она имеет ось симметрии, называемой осью параболы. Ось проходит через фокус и вершину перпендикулярно директрисе.
П учок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей.
Согласно легенде, Архимед из Сиракуз сжёг флот римлян, обороняя свой город с помощью параболических зеркал.
П арабола с вершиной в начале координат является графиком функции при k ≠ 0, ось y является осью параболы, ветви параболы направлены вверх при k0 и вниз при k
В архитектуре чаще встречаются сооружения и конструкции, в основе которых лежит парабола, оси которой направлены вниз. Это не случайно именно такая ее форма сочетает в себе геометрическую красоту и механическую приспособленность к напряжениям и деформациям, вызываемым весом сооружений, именно это ее свойство привлекало и сейчас привлекает архитекторов использовать данную функцию при строительстве мостов и различный арок.
С имметричность же данной функции относительно оси абсцисс позволяет достигать равномерного распределения нагрузки, что способствует устойчивости и прочности сооружений, в основе которых так или иначе лежит парабола. Стоит отметить, что парабола является узнаваемым элементом архитектуры настоящего и прошлого.
Если вращать параболу вокруг ее оси вращения то получится поверхность, которую называют параболоидом вращения.
Если сильно размешать ложечкой воду в стакане, а потом вынуть ложечку, то поверхность воды примет форму такого параболоида.
Использование параболоидов в технике.
П араболоид вращения фокусирует пучок лучей, параллельный главной оси, в одну точку. Часто используется свойство параболоида вращения собирать пучок лучей, параллельный главной оси, в одну точку — фокус, или, наоборот, формировать параллельный пучок излучения от находящегося в фокусе источника. На этом принципе основаны параболические антенны, телескопы-рефлекторы, прожекторы, автомобильные фары.
Рис. 8 Телескоп-рефлектор Рис.9 Прожектор Рис. 10 Автомобильные фары
Солнечная зажигалка.
Существует оригинальный способ использования энергии Солнца - Солнечная зажигалка. Она представляет собой параболическое (вогнутое) зеркало из нержавеющей стали. Параболическое зеркало дает возможность собрать всю энергию в одной фокусной точке и зажечь огонь. Температура в этой точке может достигать 537-ми градусов по Цельсию. Такое устройство будет незаменимо в походе и в других полевых условиях. Именно такое устройство используется для зажигания Олимпийского огня в Афинах.
2 .5 Парабола в неживой природе.
Парабола имеет широкое применение в природе и технике.
В Перу существует удивительная скала, которую называют Парабола Бога. Её форма невероятна, как, впрочем, и высота. Некоторые люди до сих пор не верят в существование этой странной скалы, потому что она идеально напоминает форму соответствующей её названию функции. Так и говорят: «Нет ни Бога, ни Параболы. А то, что показывают – это фотошоп». Однако всё-таки имеются фотографии, реально подтверждающие этот природный феномен.
А как интересны городские фонтаны! Их струи вытекают в форме параболы, ветви которой направлены вниз. Точно так же падают с высоты все природные водопады и вода с плотин всех гидроэлектростанций на нашей планете!
А как удивительно красиво смотрится падение звезды или какого-либо метеорита на фоне ночного неба! Светящийся след траектории падения любого небесного тела – это парабола. Именно по параболическим орбитам движутся все без исключения астрономические объекты.
Парабола в живой природе.
Н есомненно, заблуждается тот, кто считает, что параболу можно встретить только на страницах учебника математики. Если внимательно посмотреть вокруг себя, то можно найти великое множество образов параболы. Например, чашечки цветов, формы многих лепестков, шляпки и ножки грибов, форма многих листьев деревьев и кустарников, фруктов и ягод являются яркими примерами параболы в природе. А как растут стволы деревьев в лесу? Если внимательно присмотреться, то можно заметить, что пространство между деревьями и почвой представлено именно параболой.
Ж ивотный мир также не остался в стороне. Траектории прыжков многих животных близки к параболе. Именно в форме параболы и животные, и даже человек отдыхают и спят!
2.6 Гипербола.
Самые близкие родственники параболы – это окружность, гипербола и эллипс. А роднит все эти кривые обыкновенный конус: если провести плоскость, которая параллельна оси конуса, то линией пересечения окажется гипербола.
С лово «гипербола» по своему происхождению греческое (ὑπερβολή — избыток) был введён Аполлонием Пергским (ок. 262 год до н. э. — ок. 190 год до н. э.), поскольку задача о построении точки гиперболы сводится к задаче о приложении с избытком.
Гипербола - это множество точек плоскости, модуль разности расстояний которых от двух точек, называемых фокусами, есть величина постоянная.
Гипербола в жизни встречается гораздо реже, чем парабола.
Наши предки наблюдали ветвь гиперболы на стене, когда подносили к ней горящую свечу в подсвечнике с круглым основанием.
Гиперболу увидеть сложнее. Нужно подойти, например, в Москве поближе к Шуховской телебашне или в Питере к телебашне на Петроградской стороне. Каждая из секций башен состоит из двух металлических горизонтальных окружностей, соединённых между собой прямыми (!) металлическими швеллерами. Если бы эти швеллеры были приварены к окружностям строго вертикально, то полученная конструкция была бы обычным цилиндром с прямыми стенками. Но швеллеры прикреплены к окружностям не строго вертикально, а под углом меньше 90 градусов, поэтому вся конструкция представляет собой бочку, но не с выпуклыми, а с вогнутыми стенками. Так вот эти вогнутые стенки имеют форму гиперболы, а вся конструкция "бочки" называется "гиперболоид вращения".
2.7 Применение гиперболы для определения местонахождения.
Гипербола имеет своё практическое применение. Особенно широко её используют для определения местонахождения объекта.
Во время второй мировой войны использовались гиперболические навигационные системы. Штурман на борту самолёта или морского судна принимал радиосигналы от двух пар станций на берегу, которые испускали их одновременно. Используя разность времени между моментами приема сигналов от обеих станций, штурман строил две гиперболы, пересечение которых на карте позволяло определить место, где он находился.
С егодня гиперболы используют для определения расстояния до источника звука в различных навигационных системах.
При скорости больше 11,1 км/с тело будет двигаться по гиперболе и навсегда уйдёт от Земли. Так движутся запускаемые землянами зонды для изучения Вселенной и так выглядят орбиты движения некоторых астероидов.
В ходе работы над данным проектом:
Сформулировано строгое математическое определение параболы.
2. Рассмотрен способ построения параболы.
3. Изучены некоторые свойства параболы.
4. Выявлена связь между понятиями «парабола» и «гипербола», найдены родственники параболы.
5. Определены сферы применения параболы (физика, техника, астрономия, архитектура и даже литературе).
Липецк 2020 Подготовила студентка группы ПИ19-2 Куницына А.А. Руководитель Ланина Ю.А. Управление образования и науки липецкой области ГОСУДАРСТВЕННОЕ ОБЛАСТНОЕ автономное ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ЛИПЕЦКИЙ МЕТАЛЛУРГИЧЕСКИЙ КОЛЛЕДЖ» Функции в окружающем нас мире
Введение В современном мире функции имеют большое значение, так как позволяют воспринимать зависимость различных величин как живой, изменяющийся процесс. Часто они оказываются общими для широчайшего круга наблюдаемых событий.
Актуальность темы Функции - неотъемлемая часть нашей жизни. Все явления и процессы в окружающем нас мире имеют математическое описание. Реальные процессы обычно связаны с большим количеством переменных и зависимостей между ними. Описать их можно с помощью функций и их свойств, позволяющих понять суть происходящих процессов, предсказать ход их развития, управлять ими.
Цель: Рассмотреть примеры применения математических понятий и функций в окружающей нас жизни. Гипотеза: Познакомиться с историей происхождения функций. Рассмотреть примеры применения математических понятий и функций в окружающей нас жизни. Выявить роль использования человеком функций и их свойств в практической деятельности. Задачи: Функции – неотъемлемая часть нашей жизни. Они окружают нас повсюду. Объект исследования: Математические функции и их приложения. Предмет исследования: Функциональные зависимости в окружающей жизни.
Теоретическая часть История возникновения функции Начиная с XVII в., в связи с проникновением в математику идеи переменных, одним из важнейших понятий является функции. В "Геометрии" Декарта и в работах Ферма, Ньютона и Лейбница понятие функции носило, по существу, интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями. Четкое представление понятия функции предложил Декарт, который систематически рассматривал в своей "Геометрии" лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Пьер де Ферма Рене Декарт Исаак Ньютон Готфрид Вильгельм Лейбниц
История возникновения функции Слово "функция" (от лат. совершение, выполнение) Лейбниц употреблял с 1673 г. в смысле величины, выполняющей ту или иную операцию. Понятие "функция от переменной х" стало употребляться в 1718 г. одним из учеников Лейбница, выдающимся швейцарским математиком Иоганном Бернулли: "Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных". Иоганн Бернулли
Особенности функции Функция сыграла и поныне играет большую роль в познании реального мира. Функция – это не только математическое понятие, но и работа, производимая человеком; роль, значение чего-либо; возможность; опция; умение программы или прибора; обязанность; круг деятельности; функция персонажа в литературном произведении; вид подпрограммы в информатике; социальная функция.
Особенности функции В повседневной деятельности человеку приходится применять практические приемы геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков.
Способы задания функции 1. Аналитический способ (функция задается с помощью математической формулы). 2. Описательный способ (функция задается словесным описанием). Например: пословицы и поговорки «Тише едешь, дальше будешь»; «Дальше в лес, больше дров». 3. Табличный способ (функция задается с помощью таблицы). 4. Графический способ (функция задается с помощью графика).
Практическая часть Функции – неотъемлемая часть нашей жизни В повседневной жизни мы часто встречаемся с разными зависимостями (функциями). Например, выбирая путевку, мы определяем линейную зависимость её стоимости. Номер Стандарт Номер Люкс 1000 руб. – 1 день проживания; 2050 руб. – 1 день проживания; 50 руб. – курортный сбор; 50 руб. – курортный сбор; Х – количество дней; Х – количество дней; У – стоимость путевки. У – стоимость путевки. Формула стоимости путевки с проживанием в номере категории Стандарт у = 1000х+50. Формула стоимости путевки с проживанием в номере категории Люкс у = 2050х +50.
Функции – неотъемлемая часть нашей жизни Еще один пример - ежемесячный расчет оплаты за свет по квитанции Х – количество потребляемой энергии за месяц 2,57 руб. – стоимость 1кВт У – стоимость потребляемой энергии за месяц, которая находится по формуле у = 2,57х
Парабола в природе Несомненно заблуждается тот, кто считает, что параболу можно встретить только на страницах учебника. Очертания растений напоминают нам параболические формы.
Парабола в природе Кипарисовый туннель в Калифорнии Парк «Франциско Альварадо» в Коста-Рике
Парабола в природе Это необычное творение находится в Ерга́ках, горах Западного Саяна (юг Красноярского края). Скальное образование Братья (второе название - Парабола) состоит из двух вершин разного размера и высоты, соединенных перемычкой. Контур этой перемычки имеет очень плавные и правильные, действительно - параболические очертания.
Парабола в природе Радуга – разноцветная дуга, составленная из всех цветов спектра - классический пример параболы.
Парабола в природе Скалы — каменные глыбы с крутыми склонами и выступами.
Параболы в животном мире Траектории прыжков животных близки к параболе.
Парабола в архитектуре Архитектурные свойства арки в форме параболы делают ее идеальной математически. Ворота Сент-Луиса в Миссури, США
Парабола в архитектуре Дом Мила в Барселоне
Парабола в архитектуре Над Марсовым полем в Париже возвышается всемирная знаменитость - Эйфелева башня.
Парабола в архитектуре «Киевская» - станция Кольцевой линии Московского метрополитена.
Парабола в архитектуре Стадион Фишт, расположенный в Адлере в Олимпийском парке.
Парабола в архитектуре Океанографический парк Валенсии, Испания
Парабола в архитектуре Отель Хучжоу, Китай
Парабола вокруг нас Струя воды фонтана поднимается вверх, достигнув определенной высоты, а потом возвращается вниз. Путь, проложенный потоком воды, напоминает параболу.
Функции в пословицах У русского народа, как и любого другого, существует бесчисленное множество пословиц, поговорок, загадок. Они создавались и накапливались народом в течение многовековой его истории, они отражают его жизнь, условия труда, культуру, являются его духовным достоянием. Функции в пословицах и поговорках – это отражение устойчивых закономерностей, выверенное многовековым опытом народа. График показывает, как нарастает количество дров по мере продвижения вглубь леса – от опушек, где всё давным-давно собрано, до чащоб, куда ещё не ступала нога заготовителя. Согласно данной пословице, эта функция неизменно возрастает.
Функции в пословицах Вековой опыт свидетельствовал: урожай лишь до некоторой поры растет вместе с плотностью посева, дальше он снижается, потому, что при чрезмерной густоте ростки начинают глушить друг друга. Урожай максимален, когда поле засеяно в меру. Максимум – это наибольшее значение функции по сравнению с её значениями во всех соседних точках. Это как вершина горы, с которой все дороги ведут только вниз, куда ни шагни.
Функции в пословицах Качество каши можно рассматривать как функцию количества масла в ней. Согласно пословице, эта функция не уменьшится с добавкой масла. Она, возможно, увеличится, но может оставаться и на прежнем уровне. Пословицы и поговорки отражают взаимосвязи, существующие между различными жизненными категориями (объектами), т.е. являются отражениями функциональных зависимостей и доказывают, что функция - это сама жизнь!
Заключение Цель работы достигнута и выдвинутая гипотеза о том, что функции – неотъемлемая часть нашей жизни, подтверждена. Функции являются частью нашей жизни и науки в целом, так как функциональные зависимости, действительно, существуют во всех сферах жизни человека.
Читайте также: