Функция y 2 sin x
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_ = \frac$$
Максимумы функции в точках:
$$x_ = \frac<\pi>$$
Убывает на промежутках
Возрастает на промежутках
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
Используем вид записи для поиска переменных, используемых для вычисления амплитуды, периода, сдвига по фазе и вертикального сдвига.
Модуль - это расстояние между числом и нулем. Расстояние между и равно .
Заменим величины и в уравнении для фазового сдвига.
Нанесите опорный угол, находя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Применяем опорный угол, находя угол с эквивалентными тригонометрическими значениями в первом квадранте. Делаем выражение отрицательным, поскольку синус является отрицательным в четвертом квадранте.
Используем вид записи для поиска переменных, используемых для вычисления амплитуды, периода, сдвига по фазе и вертикального сдвига.
равняется , то есть является положительным, поэтому избавимся от абсолютного значения
Умножим числитель на величину, обратную знаменателю .
Заменим величины и в уравнении для фазового сдвига.
Умножим числитель на величину, обратную знаменателю .
Нанесите опорный угол, находя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Применяем опорный угол, находя угол с эквивалентными тригонометрическими значениями в первом квадранте. Делаем выражение отрицательным, поскольку синус является отрицательным в четвертом квадранте.
Используем вид записи для поиска переменных, используемых для вычисления амплитуды, периода, сдвига по фазе и вертикального сдвига.
Модуль - это расстояние между числом и нулем. Расстояние между и равно .
Заменим величины и в уравнении для фазового сдвига.
Нанесите опорный угол, находя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Применяем опорный угол, находя угол с эквивалентными тригонометрическими значениями в первом квадранте. Делаем выражение отрицательным, поскольку синус является отрицательным в четвертом квадранте.
Читайте также: