Функция p t
Все состояния системы S можно разделить на подмножества:
SK S – подмножество состояний j = , в которых система работоспособна;
SM S – подмножество состояний z = , в которых система неработоспособна.
1. Функция готовности Г(t) системы Определяет вероятность нахождения системы в работоспособном состоянии в момент t
где Pj(t) – вероятность нахождения системы в работоспособном J-м состоянии;
Pz(t) – вероятность нахождения системы в неработоспособном Z-м состоянии.
2. Функция простоя П(t) системы
3. Коэффициент готовности kг. с. системы Определяется при установившемся режиме эксплуатации (при t ). При t Устанавливается Предельный стационарный режим, в ходе которого система переходит из состояния в состояние, но вероятности состояний уже не меняются
Коэффициент готовности Kг. с. можно рассчитать по системе (2) дифференциальных уравнений, приравнивая нулю их левые части DPi(t)/dt = 0, т. к. Pi = Const при t . Тогда система уравнений (2) превращается в систему алгебраических уравнений вида:
и коэффициент готовности:
есть предельное значение функции готовности при установившемся режиме t .
4. Параметр потока отказов системы
где Jz – интенсивности (обобщенное обозначение) переходов из работоспособного состояния в неработоспособное.
5. Функция потока отказов
6. Средняя наработка между отказами На интервале T
Примечание: При t , когда Pj(t = ) = Pj( ) = Pj, средняя наработка между отказами
T0= kГ.С./ ,
В качестве Примера вычисления показателей надежности, рассмотрен восстанавливаемый объект, у которого поток отказов простейший (пуассоновский) с параметром потока
А распределение времени восстановления подчиняется экспоненциальному распределению с интенсивностью восстановления
Где T0 – средняя наработка между отказами;
TВ – среднее время восстановления.
P0(t) – вероятность работоспособного состояния при T;
P1(t) – вероятность неработоспособного состояния при T.
Система дифференциальных уравнений:
Начальные условия: при T = 0 P0(t = 0) = P0(0) = 1; P1(0) = 0, поскольку состояния S0 и S1 представляют полную группу событий, то
P0(t) + P1(t) = 1.
Выражая P0(t) = 1 - P1(t), и подставляя в (7) получается одно дифференциальное уравнение относительно P1(T):
dP1(t)/dt = (1 – P1(t)) - P1(t).
Решение уравнения (9) производится с использованием преобразования Лапласа.
Преобразование Лапласа для вероятностей состояния Pi(t):
т. е. Pi(S) = L – изображение вероятности Pi(t).
Преобразование Лапласа для производной DPi(t)/dt:
После применения преобразования Лапласа к левой и правой частям уравнения, получено уравнение изображений:
где L > = L = /S .
При P1(0) = 0
SP1(S) + P1(S)( + ) = /S.
P1(S)( S + + ) = /S,
откуда изображение вероятности нахождения объекта в неработоспособном состоянии:
Разложение дроби на элементарные составляющие приводит к:
Применяя обратное преобразование Лапласа, с учетом:
L = 1/S, То f(t) = 1;
L = 1/( S + a), То f(t) = e-at,
Вероятность нахождения объекта в неработоспособном состоянии Определяется:
Тогда Вероятность нахождения в работоспособном состоянии P0(t) = 1 - P1(t), равна
С помощью полученных выражений можно рассчитать вероятность работоспособного состояния и отказа восстанавливаемого объекта в любой момент T.
Коэффициент готовности системы kг. с.. определяется при установившемся режиме t , при этом Pi(t) = Pi = const, поэтому составляется система алгебраических уравнений с нулевыми левыми частями, поскольку
DPi(T)/Dt = 0.
Так как kг. с есть вероятность того, что система окажется работоспособной в момент T при t , то из полученной системы уравнений определяется P0 = kг. с.
При t Алгебраические уравнения имеют вид:
Дополнительное уравнение: P0 + P1 = 1.
Выражая P1 = 1 - P0 , получаем 0 = P0 - (1 - P0 ), или = P0 ( + ), откуда
Остальные показатели надежности восстанавливаемого элемента:
- функция готовности Г(t), функция простоя П(t)
Г(t) = P0 (t); П(t) = 1 - Г(t) = P1(t).
- Параметр потока отказов (t) по (4)
При t (стационарный установившийся режим восстановления)
(T) = ( ) = = P0 = KГ. с.
- Ведущая функция потока отказов (t )
- Средняя наработка между отказами (t )
t0= kг. с./ = kг. с./ Kг = 1/ .
На рис. приведено изменение вероятности нахождения объекта в работоспособном состоянии.
Анализ изменения P0(t) позволяет сделать выводы:
1) При мгновенном (автоматическом) восстановлении работоспособности (= )
2) При отсутствии восстановления ( = 0)
и вероятность работоспособного состояния объекта равна ВБР невосстанавливаемого элемента.
Некоторые дополнения по применению метода дифференциальных уравнений для оценки надежности.
Метод дифференциальных уравнений может быть использован для расчета показателей надежности и невосстанавливаемых объектов (систем).
В этом случае неработоспособные состояния системы являются «поглощающими» и интенсивности Выхода из этих состояний исключаются.
Для невосстанавливаемого объекта граф состояний имеет вид:
Система дифференциальных уравнений:
Начальные условия: P0 (0) = 1; P1(0) = 0.
Изображение по Лапласу первого уравнения системы:
Используя обратное преобразование Лапласа, оригинал вероятности нахождения в работоспособном состоянии, т. е. ВБР к наработке T:
Понятиям MTTF (Mean Time To Failure — среднее время до отказа) и другим терминам теории надежности посвящено большое количество статей, в том числе на Хабре (см., например, тут). Вместе с тем, редкие публикации «для широкого круга читателей» затрагивают вопросы математической статистики, и уж тем более они не дают ответа на вопрос о принципах расчета надежности электронной аппаратуры по известным характеристикам ее составных элементов.
В последнее время мне довольно много приходится работать с расчетами надежности и рисков, и в этой статье я постараюсь восполнить этот пробел, отталкиваясь от своего предыдущего материала (из цикла о машинном обучении) о пуассоновском случайном процессе и подкрепляя текст вычислениями в Mathcad Express, повторить которые вы сможете скачав этот редактор (подробно о нем тут, обратите внимание, что нужна последняя версия 3.1, как и для цикла по machine learning). Сами маткадовские расчеты лежат здесь (вместе с XPS- копией).
1. Теория: основные характеристики отказоустойчивости
Вроде бы, из самого определения (Mean Time To Failure) понятен его смысл: сколько (конечно, в среднем, поскольку подход вероятностный) прослужит изделие. Но на практике такой параметр не очень полезен. Действительно, информация о том, что среднее время до отказа жесткого диска составляет полмиллиона часов, может поставить в тупик. Гораздо информативнее другой параметр: вероятность поломки или вероятность безотказной работы (ВБР) за определенный период (например, за год).
Для того чтобы разобраться в том, как связаны эти параметры, и как, зная MTTF, вычислить ВБР и вероятности отказа, вспомним некоторые сведения из математической статистики.
Ключевое понятие теории надежности — это понятие отказа, измеряемое, соответственно, интервальным показателем
Q(t) = вероятность того, что изделие откажет к моменту времени t.
Соотвественно, вероятность безотказной работы (ВБР, в английской терминологии «reliability»):
P(t) = вероятность того, что изделие проработает без отказа от момента t0=0 до момента времени t.
По определению, в момент t0=0 изделие находится в работоспособном состоянии, т.е. Q(0)=0, а P(0)=1.
Оба параметра — это интервальные характеристики отказоустойчивости, т.к. речь идет о вероятности отказа (или наоборот, безотказной работы) на интервале (0,t). Если отказ рассматривать, как случайное событие, то, очевидно, что Q(t) — это, по определению, его функция распределения. А точечную характеристику можно определить, как
p(t)=dQ(t)/dt = плотность вероятности, т.е. значение p(t)dt равно вероятности, что отказ произойдет в малой окрестности dt момента времени t.
И, наконец, самая важная (с практической точки зрения) характеристика: λ(t)=p(t)/P(t)=интенсивность отказов.
Это (внимание!) условная плотность вероятности, т.е. плотность вероятности возникновения отказа в момент времени t при условии, что до этого рассматриваемого момента времени t изделие работало безотказно.
Измерить параметр λ(t) экспериментально можно путём испытания партии изделий. Если к моменту времени t работоспособность сохранило N изделий, то за оценку λ(t) можно принять процент отказов в единицу времени, происходящих в окрестности t. Точнее, если в период от t до t+dt откажет n изделий, то интенсивность отказов будет примерно равна
λ(t)=n/(N*dt).
Именно эта λ-характеристика (в пренебрежении ее зависимостью от времени) и приводится чаще всего в паспортных данных различных электронных компонент и самых разных изделий. Только сразу возникает вопрос: а как вычислить вероятность безотказной работы и при чем здесь среднее время до отказа (MTTF).
2. Экспоненциальное распределение
В терминологии, которую мы только что использовали, пока не было никаких предположений о свойствах случайной величины — момента времени, в который происходит отказ изделия. Давайте теперь конкретизируем функцию распределения значения отказа, выбрав в качестве нее экспоненциальную функцию с единственным параметром λ=const (смысл которого будет ясен через несколько предложений).
Дифференцируя Q(t), получим выражение для плотности вероятности экспоненциального распределения:
,
а из него – функцию интенсивности отказов: λ(t)=p(t)/P(t)=const=λ.
Что мы получили? Что для экспоненциального распределения интенсивность отказов – есть величина постоянная, причем совпадающая с параметром распределения. Этот параметр и является главным показателем отказоустойчивости и его часто так и называют λ-характеристикой.
Мало того, если теперь посчитать среднее время до первого отказа – тот самый параметр MTTF (Mean Time To Failure), то мы получим, что он равен MTTF=1/ λ.
- надежность элементов можно оценить одним числом, т.к. λ=const;
- по известной λ довольно просто оценить остальные показатели надежности (например, ВБР для любого времени t);
- λ обладает хорошей наглядностью
- λ нетрудно измерить экспериментально
Но это еще не все, потому, что для экспоненциального распределения особенно легко делать расчет систем, состоящих из множества элементов. Но об этом – в следующей статье (продолжение следует).
Читайте также: