Дана функция f x 8x2 x4 найдите промежутки возрастания и убывания функции
Здравствуйте! Как я понимаю, в точке х=2 производная равна нулю, следовательно, это точка минимума, то есть число 2 не включается в интервал, и тогда сумма равна 3+4+5=12
Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки присоединяются как к промежуткам возрастания, так и к промежуткам убывания, что полностью соответствует определению возрастающих и убывающих функций.
Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.
Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции — все они возрастают на отрезке
Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке [a;b]. Т.е. точка x=2 входит в данный промежуток.
Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.
Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) - входят.
Учитывая, что первая часть ЕГЭ для "средней группы детского сада", то наверное такие нюансы- перебор.
Отдельно, большое спасибо за "Решу ЕГЭ" всем сотрудникам- отличное пособие.
Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.
Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.
В заданиях 6429 и 7089 совершенно разные вопросы.
В одном про промежутки возрастания, а в другом про промежутки с положительной производной.
Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.
Коллеги, есть понятие возрастания в точке
(см. Фихтенгольц например)
и ваше понимание возрастания в точке x=2 противочет классическому определению.
Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.
В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.
Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.
Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.
В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке [2; 6) функция возрастает.
После нахождения промежутков просят найти какие целые числа попадают в эти промежутки.
В условии и в решении не идёт речи о возрастании в точке.
Речь в задании о промежутках возрастания.
Господа, добрый день!
На мой взгляд, в решении ошибка: x=2 не должен включаться в решение. В учебнике Ильина, Позняка «Основы математического анализа» (гл. 8 Основные теоремы о непрерывных функциях, § 7 Возрастание (убывание) функции в точке (стр 260 в 7-м издании 2005 года) дано такое определение:
Говорят, что функции f(x) возрастает (убывает) в точке c, если найдется такая окрестность точки c, в пределах которой f(x)>f(c) при x>c и f(x)<f(c) при x<c (f(x)<f(c) при x>c и f(x)>f(c) при x<c).
В нашем случае точка x=2 не удовлетворяет этому условию. В пояснениях и комментариях не приведено ни одной ссылки на достоверный источник. Это учебник для вузов, в том числе для МГУ. Создан на основе лекций, читавшихся на физическом факультете и ВМК МГУ еще в советское время. Учебник МГУ представляется мне достаточным основанием для изменения решения. Спасибо.
Этот учебник у нас тоже есть. Пусть, например, функция f задана на области, состоящей из трех точек: D = , и пусть Тогда f возрастает на множестве и убывает на множестве . А непрерывность тут вообще ни при чем.
Согласно правилу суммы при дифференцировании функции, производной по переменной является .
Поскольку константа по отношению к , производная по равна .
Продифференцируем по правилу дифференцирования степенной функции, согласно которому равняется , где .
Поскольку константа по отношению к , производная по равна .
Продифференцируем по правилу дифференцирования степенной функции, согласно которому равняется , где .
Поскольку константа по отношению к , производная по равна .
Продифференцируем по правилу дифференцирования степенной функции, согласно которому равняется , где .
Рассмотрим . Найдем пару целых чисел, произведение которых равно , а сумма равна . В данном случае произведение равно , а сумма равна .
Определение : Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0)<f(x) .
Точки минимума и максимума функции называются точками экстремума данной функции, а значения функции в этих точках – экстремумами функции.
Точками экстремума могут служить только критические точки I рода, т.е. точки, принадлежащие области определения функции, в которых производная f′(x) обращается в нуль или терпит разрыв.
- Найти производную функции f′(x) .
- Найти критические точки по первой производной, т.е. точки, в которых производная обращается в нуль или терпит разрыв.
- Исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции f(x) . Если на промежутке f′(x)<0 , то на этом промежутке функция убывает; если на промежутке f′(x)>0 , то на этом промежутке функция возрастает.
- Если в окрестности критической точки f′(x) меняет знак с «+» на «-», то эта точка является точкой максимума, если с «-» на «+», то точкой минимума.
- Вычислить значения функции в точках минимума и максимума.
С помощью приведенного алгоритма можно найти не только экстремумы функции, но и промежутки возрастания и убывания функции.
Пример №1 : Найти промежутки монотонности и экстремумы функции: f(x)=x 3 –3x 2 .
Решение: Найдем первую производную функции f′(x)=3x 2 –6x.
Найдем критические точки по первой производной, решив уравнение 3x 2 –6x=0; 3x(x-2)=0 ;x = 0, x = 2
Исследуем поведение первой производной в критических точках и на промежутках между ними.
x | (-∞, 0) | 0 | (0, 2) | 2 | (2, +∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | возрастает | max | убывает | min | возрастает |
f(0) = 0 3 – 3*0 2 = 0
f(2) = 2 3 – 3*2 2 = -4
Ответ: Функция возрастает при x∈(-∞ ; 0)∪(2; +∞); функция убывает при x∈(0;2);
точка минимума функции (2;-4); точка максимума функции (0;0).
- Найти производную f′(x) .
- Найти стационарные точки данной функции, т.е. точки, в которых f′(x)=0 .
- Найти вторую производную f″(x) .
- Исследовать знак второй производной в каждой из стационарных точек. Если при этом вторая производная окажется отрицательной, то функция в такой точке имеет максимум, а если положительной, то – минимум. Если же вторая производная равна нулю, то экстремум функции надо искать с помощью первой производной.
- Вычислить значения функции в точках экстремума.
Все вычисления можно проделать в онлайн режиме.
Пример №2 . Исследовать на экстремум с помощью второй производной функцию: f(x) = x 2 – 2x - 3.
Решение: Находим производную: f′(x) = 2x - 2.
Решая уравнение f′(x) = 0, получим стационарную точку х =1. Найдем теперь вторую производную: f″(x) = 2.
Так как вторая производная в стационарной точке положительна, f″(1) = 2 > 0, то при x = 1 функция имеет минимум: fmin = f(1) = -4.
Ответ: Точка минимума имеет координаты (1; -4).
1. Дана функция g(x) = –1,2x + 4,8. При каких значениях аргумента g(x) = 0, g(x) <0, g(x)> 0? Является ли эта функция возрастающей или убывающей?
2. Разложите на множители квадратный трехчлен
3. Сократите дробь
4. Область определения функции g (рис. 20) — отрезок [–3; 5]. Найдите нули функции, промежутки возрастания и убывания, область значений функции.
5. Сумма положительных чисел m и n равна 62. При каких значениях m и n их произведение будет наибольшим?
Читайте также: