Cos sin координаты
До сих пор мы измеряли углы только в градусах. Оказывается, есть и другая система измерения углов – радианы.
По определению, 1 радиан – это центральный угол, опирающийся на дугу, длина которой равна радиусу. Вот он, на рисунке.
Вспомним, что полный круг – это 360 градусов. Длина окружности равна 2πr. Составим пропорцию. Длина окружности так относится к длине дуги на нашем рисунке, как 360°- к величине угла, опирающегося на дугу на рисунке, то есть к углу в 1 радиан.
360° - 2πr
Слева в нашей пропорции углы, справа – длина полного круга и длина дуги на нашем рисунке.
Из этой пропорции получаем, что 360° = 2π радиан. Значит, полный круг – это 2π радиан. Тогда полкруга – это π радиан, четверть круга (то есть 90°) – это π/2 радиан.
Любой угол, выраженный в градусах, можно перевести в радианы. И наоборот,
Любой угол, выраженный в градусах, можно перевести в радианы. И наоборот, 1 радиан приблизительно равен 57 градусов.
Тригонометрический круг - самый простой способ начать осваивать тригонометрию. Он красив, легко запоминается, и на нём есть всё необходимое. Тригонометрический круг заменит вам десяток таблиц.
Нарисуем единичную окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями OX и OY, в которой мы привыкли рисовать графики функций.
Договоримся отсчитывать углы от положительного направления оси ОХ против часовой стрелки.
Мы помним, что полный круг — это 360 градусов. Тогда точка с координатами (1;0) соответствует углу в 0 градусов. Точка с координатами (-1; 0) отвечает углу в 180 градусов, точка с координатами (0;1) — углу в 90 градусов. Каждому углу от нуля до 360 градусов соответствует точка на единичной окружности. Обратите внимание,что на нашем тригонометрическом круге углы отмечены и в градусах, и в радианах.
У многих учеников возникают проблемы с этой темой, в основном, из-за непонимания общего смысла тригонометрии. В этой статье я постараюсь помочь вам разобраться зачем нужна тригонометрия и расскажу про лайфхак, чтобы не учить значения синуса и косинуса.
К моменту начала изучения тригонометрии Вы, скорее всего, уже знаете: определение прямоугольного треугольника и окружности — этого вполне достаточно для понимания темы.
*прошу заметить, что некоторые формулировки могут не соответствовать действительности - это сделано для того, чтобы вы лучше запомнили основы. Точные понятия и определения расскажет ваш учитель математики.
Котангенс угла
Помимо тангенса в тригонометрии выделяют ещё одну производную ф-цию – котангенс. Он представляет отношение косинуса к синусу:
Видно, что определение котангенса очень похоже определение тангенса. В принципе, удобней использовать несколько другую формулу:
Почти во всех задачах с помощью формулы
можно избавиться от котангенса, заменив его дробью 1/tgα. Поэтому мы вкратце расскажем об основных особенностях котангенса, ведь он очень редко используется на практике.
Значения этой ф-ции рассчитываются так:
При х = 0 значение котангенса не определено, так как в этой точке косинус становится равным нулю, а деление на ноль невозможно.
График котангенса – это тангенсоида, которая отображена симметрично относительно оси Ох и смещена на π/2:
Можно заметить, что вертикальные штриховые линии (асимптоты) графика проходят через точки, кратные π: –2π, – π, 0, π, 2π… Они разбивают координатную прямую на интервалы (– 2π; – π), (– π; 0), (0; π), (π; 2π), на каждом из которых ф-ция у = ctgx убывает. Видно, что котангенс – это периодическая ф-ция с периодом π.
Для сравнения покажем на одной плоскости графики тангенса и котангенса:
Котангенс, как и тангенс – нечетная ф-ция, то есть
Теперь у нас есть представление об основных тригонометрических ф-циях. Важнейшими из них являются синус и косинус. Тангенс является производной ф-цией от них и рассчитывается как отношение синуса к косинусу. Редко используемый котангенс, наоборот, представляет собой отношение косинуса к синусу.
Впервые элементы тригонометрии стали использовать ещё древние греки, которые производили с их помощью астрономические расчеты. В XVIII веке Эйлер сформулировал определения тригонометрических функций с помощью единичной окружности, благодаря которым стало возможным вычислять их значение для любых углов. Изначально тригонометрия использовалась для географических расчетов и навигации, однако со временем область ее применения расширилась. Оказалось, что без неё не обойтись в анализе финансовых рынков и биологических процессов, архитектуре, акустике и оптике, теории вероятностей.
Тангенс угла
Синус и косинус являются основными, или, как говорят математики, прямыми тригонометрическими ф-циями. Однако есть ещё две производных тригонометрических ф-ций – тангенс и котангенс. Напомним, что тангенс угла в прямоугольном треугол-ке – это отношение противолежащего катета к прилежащему. Однако в тригонометрии куда удобнее пользоваться другим его определением. Тангенс – это отношение синуса угла к его косинусу:
Для получения тангенса на единичной окружности необходимо продолжить прямую, образующую угол α, до её пересечения с прямой х = 1. Точка их пересечения будет иметь координаты (1; tgα):
Заметим, что если α относится ко второй четверти, то тангенс получится отрицательным. Действительно, с одной стороны, соответствующая прямая пересечет линию х = 1 в точке, лежащей ниже оси Ох:
С другой стороны, мы знаем, что во второй четверти синус положителен, а косинус – отрицателен. Тогда их отношение, то есть тангенс, должно быть отрицательным:
Очевидно, что тангенс должен быть периодической ф-цией. Однако его период вдвое меньше 2π и составляет π. Действительно, углы, отличающиеся на π, будут иметь одинаковое значение тангенса, что видно из построения:
Это значит, что справедлива формула:
С другой стороны, это означает, что тангенсы углов из III четверти положительны, ведь они равны тангенсам углов из I четверти. Аналогично можно утверждать, что тангенсы углов из IV четверти отрицательны:
Также тангенс является нечетной ф-цией. Чтобы убедиться в этом, найдем с помощью единичной окружности tgα и tg (– α):
Из построения видно, что tg (– α) = tgα, поэтому тангенс попадает под определение нечетной ф-ции.
Доказать этот факт можно и иначе. Вспомним, что синус – это нечетная ф-ция, а косинус – четная. Тогда, используя определение тангенса, можно записать:
Для вычисления тангенса проще всего использовать его определение. Мы знаем синусы и косинусы стандартных углов, а потому, деля их друг на друга, сможем найти и тангенсы стандартных углов:
Ещё раз отметим, что важнее всего запомнить значения синусов и косинусов стандартных углов. Зная их, школьник всегда сможет самостоятельно вычислить тангенс.
Можно ли вычислить тангенс для угла π/2, то есть для 90°? Сделать это не получится, ведь cosπ/2 равен нулю. Если подставить cosπ/2 в формулу для вычисления тангенса, то получится деление на ноль! Так как тангенс – периодическая ф-ция, то его нельзя вычислить и в тех точках, которые отличаются от π/2 на целое число π.
В частности, тангенс не определен при х = – π/2.
Что такое синус и косинус?
Изначально не было никакой окружности. Изучая треугольники, древние ученые выражали углы через соотношение сторон. То-есть синусы и косинусы появились раньше градусной меры углов.
Например, таким соотношением мог выражаться угол A (угол C прямой). Например, таким соотношением мог выражаться угол A (угол C прямой).Поскольку угол может быть найден через разные соотношения сторон, решили дать им названия: синус и косинус.
Синус - это отношение стороны треугольника, лежащей напротив данного угла, к гипотенузе (большей стороне).
Косинус - это отношение прилежащей стороны к гипотенузе.
Думаю не ошибусь, если скажу, что теорема Пифагора - самая полезная теорема в геометрии. Давайте применим её для данного треугольника:
Синус, как и косинус, вместе всякими тангенсами, являются неотъемлемой частью тригонометрии. А тригонометрия это наука о треугольниках. Какое отношение треугольники могут иметь к электротехнике? Самое прямое.
Сначала нам потребуются треугольники, это же тригонометрия. О треугольниках я писал статью " Сага о треугольниках ", но сейчас нас будут интересовать только прямоугольные треугольники и буквально пара формул
Да, все стандартно. Синус это отношение противолежащего катета к гипотенузе, а косинус это отношение прилежащего катета к гипотенузе. Пока ничего имеющего отношения к электричеству не наблюдается.
Теперь нам потребуется система координат. Но не привычная всем декартова, а полярная. О системах координат у меня тоже есть статья " Этюд о координатах ", но из всего там написанного нам нужна только полярная система координат
Вместо двух привычных координат x и y, в полярной системе координаты задаются длиной вектора r и углом между полярной осью и вектором. Причем угол считается положительным при вращении против часовой стрелки. То есть, координаты точки А будут (r,φ). Все еще не видно ничего имеющего отношение к электричеству.
А теперь давайте заставим точку бегать, с постоянной скоростью , по окружности. По единичной окружности, когда радиус равен 1. Бегать точка будет против часовой стрелки. И возьмем сразу две системы координат, причем точку начала координат (0,0) декартовой системы совместим с полюсом полярной. Полярная ось будет совпадать по направлению с осью Х декартовой системы.
А сами будем наблюдать за проекциями точки на координатные оси декартовой системы. Да, вы угадали, мы сейчас нарисуем синусоиду.
Проекция точки А на ось Y, в зависимости от времени (фактически, угла φ) дает нам синусоиду, а на ось Х косинусоиду, которая не отличима от синусоиды, только начинается она не с 0, а с 1. И этот момент мы скоро рассмотрим поподробнее. Вот теперь уже становится видна некоторая вязь с электричеством.
На самом деле, синусоида связана не только с круговым движением. Многие вспомнят, что синусоида это и развертка во времени колебаний маятника (груз на нити), и груза на пружине, и волны на воде. Но нам важна именно связь с круговым движением.
Давайте внимательнее посмотрим на движение точки и убедимся, что тригонометрия там действительно есть.
Но поскольку у нас окружность единичная, то r=1 и мы получаем простые и привычные формулы
Тем не менее, мы по прежнему не вышли за границы чистой математики, тригонометрии. Что бы сделать следующий шаг давайте представим, что наша точка А это точка на проволочной рамке вращающейся в магнитном поле.
Фактически, это обычный генератор переменного тока, который изучают в школьном курсе физики. В начальном состоянии рамка может быть повернута на любой угол. А выходное напряжение генератора может быть любым. Однако, оставим неизменным то, что рамка у нас вращается с постоянной скоростью.
Скорость это изменение угла поворота рамки за единицу времени, а не число оборотов в минуту, как это часто делают в обычной жизни. Такую скорость называют угловой.
Однако, математики и физики решили, что пользоваться обычными градусами (окружность делится на 360 градусов) не интересно и скучно. Поэтому стали пользоваться радианами. А что бы совсем стало не скучно решили, что полная окружность состоит из 2π радиан.
Таким образом, 360 градусов, полный оборот точки, равен 2π радиан, половина оборота, 180 градусов, равняются π радиан, четверть оборота, 90 градусов, равняются π/2 радиан.
Но поскольку нам нужен именно угол, а не угловая скорость, то
φ = ω * t , или просто ωt
И теперь мы готовы записать формулу для выходного напряжения нашего генератора
Здесь нужно сделать одно важное замечание. На иллюстрации я показал фрагмент синусоиды в некоторый момент времени, а не в момент начала вращения рамки. Просто 0 на шкале времени соответствует то же положение точки А, которое она имела в начальный момент времени. Эта оговорка специально для тех, кто обязательно будет утверждать, что в момент пуска генератора форма сигнала будет несколько иной.
Итак, в этой формуле А это амплитуда нашей синусоиды. И, как видно из иллюстрации, она соответствует минимальным и максимальным значениям, в данном случае, напряжения.
ωt, как мы уже выяснили ранее, это текущий угол поворота рамки. Только выраженный через угловую скорость и время. φ это начальный сдвиг фазы. В случае генератора этот сдвиг можно условно считать углом начального положения ротора. В случае синусоиды в общем случае, это просто смещение во времени точки перехода через ноль относительно начального момента времени.
На самом деле, начальный угол сдвига фазы чаще используется не сам по себе, а для указания сдвига фазы между двумя, и более, сигналами.
Мы можем принять, что у, например, синей синусоиды начальная фаза (начальный сдвиг) равна нулю. Тогда зеленая синусоида опережает синюю на угол φ. Или просто, сдвиг фазы между сигналами равен φ.
Но это далеко не все. При прохождении сигнала через любое устройство, любую цепь, приводит к изменению и амплитуды, и фазы сигнала. Эти изменения могут быть и чрезвычайно малы, и очень велики.
В данном случае, мы видим усилитель, который усиливает входной сигнал в А раз и сдвигает, задерживает, его фазу на φ.
Такой вот сдвиг фазы зачастую зависит от частоты, что может привести к проблемам при наличии обратных связей. На определенных частотах могут сложиться условия для самовозбуждения схемы.
Вообще, здесь нет никаких констант, никаких постоянных коэффициентов. Любой член формулы сам может быть формулой. Например, если А изменяется с частотой гораздо ниже, чем ω, то мы получаем амплитудную модуляцию. Если у нас изменяется ω, то мы получаем частотную модуляцию. А если изменяется φ, то модуляция будет фазовой.
Простая формула из тригонометрии позволяет описать так много различных случаев и процессов. При том, что эти электрические процессы не имеют, на первый взгляд, никакого отношения к треугольникам, которыми тригонометрия занимается.
Но и это еще не все. Дело в том, что мы пока упускали из виду, что синус является периодической функцией. А наша синусоида является графиком этой функции. И как мы уже знаем, период равен 2π. Причем это никак не зависит от частоты сигнала. А значит, мы можем сделать еще один шаг - абстрагироваться от формы сигнала. При этом остается неизменным условие периодичности.
Да, теперь у нас пропал синус.И тригонометрии, в явном виде, нет. Но наследие бегущей по окружности точки осталось в виде сдвига фазы.
Но и это еще не все. На самом деле в таких вот прямоугольных импульсах синус все таки присутствует! Пусть и усиленно прячется от постороннего взгляда.
Что бы понять, где он скрывается, нужно разобраться с гармониками. Гармониками называется синусоидальный сигнал, частота которого кратна частоте основного сигнала. Например, в 2, 3, 5, 20, и т.д. раз. Обратите внимание, я не зря сказал, что сигнал синусоидальный. Вот тут то синус и спрятался.
Мы можем любой сигнал, любой формы, представить как совокупность синусоидальных сигналов. Вот пример того, так из гармоник начинает формироваться прямоугольный сигнал (черная кривая).
В данном случае я не стал рисовал иллюстрацию сам, а воспользовался готовой (из статьи про резонансные преобразователи).
Или наоборот, любой сигнал (точнее, любую непрерывную функцию) можно разложить в тригонометрический ряд. Такое разложение описал математик Жан-Батист Жозеф Фурье. Тригонометрический ряд Фурье включает функции sin и cos.
Подробности разложения сигналов в ряды Фурье я не буду сегодня рассматривать. Эта тема не для сегодняшней статьи.
График синуса и косинуса
Заметим, что координаты точек, лежащей на единичной окружности, варьируются в пределах от – 1 до 1. Это означает, что значение синуса и косинуса также может находиться только в интервале между этими числами. Получается, что область значения этих ф-ций – это промежуток [– 1; 1].
Вычислить синус и косинус можно для абсолютно любого угла поворота, поэтому область определения этих тригонометрических ф-ций – вся числовая прямая, то есть промежуток (– ∞; + ∞).
Изучение графиков тригонометрических функций начнем с синуса. В тригонометрии при построении графика синуса принято по оси Ох откладывать значение угла в радианах, а не в градусах. Из-за этого в школьной тетради тяжело точно отметить точки, через которые проходит этот график. Например, возьмем угол, равный 90°. Его величина в радианах π/2, а sinπ/2 = 1. Получается, график должен пройти через точку (π/2; 1). Однако число π/2 – иррациональное, равное примерно 1,5708…, и точно отложить отрезок длиной π/2 невозможно.
Поэтому в учебных целях график строят приближенно (естественно, что на практике точный график можно построить с помощью компьютера с любой требуемой точностью). Считают, что величина π/2 примерно равна 1,5, то есть дроби 3/2. Если выбрать масштаб, при котором единице равны 2 клеточки, то π/2 – это 3 клеточки. Тогда π/6 – это одна клеточка, а π/3 – две.
Значит, график синуса должен проходить через точки (0; 0), (π/6; 1/2) и (π/2; 1). Отметим их на координатной плоскости:
С помощью некоторых соображений симметрии можно вычислить ещё несколько точек в диапазоне от 0 до 2π. Не будем перечислять их координаты, а просто отметим их на рисунке:
Теперь соединим их плавной кривой:
Мы получили график синуса на промежутке от 0 до 2π. Но ведь мы можем вычислить синус для любого другого угла! При этом мы используем тот факт, что углам, отличающимся на 2π (на один полный оборот), на единичной окружности соответствует одинаковая точка. То есть этим двум углам будут соответствовать точки на графике с одинаковой ординатой (координатой у), но абсциссами, отличающимися на 2π. Другими словами, точку графика можно перенести на 2π (то есть 12 клеточек) влево или вправо:
Перенести можно не одну точку, а сразу всё множество точек, лежащих между 0 и 2π:
Получили ещё два участка графика, на промежутках [– 2π; 0] и [2π; 4π]. Эти участки также можно переместить влево и вправо. Продолжая этот процесс бесконечно, мы получим весь график у = sinx:
В результате мы получили кривую, которую называют синусоидой.
Теперь построим график косинуса. Мы знаем что
Получается, что график должен проходить через точки (0;1), (π/3; 1/2) и (π/2; 0). Отметим их на плоскости:
Можно вычислить, используя симметрию на единичной окружности, ещё несколько точек, которые должны лежать на графике. Не приводя этих вычислений, просто отметим эти точки на плоскости:
Соединяем эти точки плавной линией:
Как и в случае с синусом, участок графика косинуса можно перенести на 2π (12 клеточек влево и вправо). В результате таких действий получим окончательный вид ф-ции у = cosх:
Можно заметить несколько особенностей полученных графиков. Во-первых, все точки обоих графиков лежат в «полосе» между прямыми у = 1 и у = – 1. Это следствие того, что и у синуса, и у косинуса область значений – это промежуток [– 1; 1]:
Во-вторых, график косинуса очень похож на синусоиду. Он имеет такую же форму, но просто смещен на π/2 (3 клеточки) влево. Это не случайно, в будущих уроках мы узнаем причину этого явления. Но, так как график косинуса – это просто смещенная синусоида, то термин «косинусоида» для его обозначения почти не используется – он просто избыточен.
В-третьих, графики обладают периодичностью. Они «повторяются» с периодом 2π. Дело в том, что углам, отличающимся друг от друга на 2π (то есть ровно на один полный поворот в 360°), на единичной окружности соответствует одна и та же точка. То есть справедливы формулы:
В-четвертых, можно заметить, что график косинуса симметричен относительно оси Ох, а график синуса симметричен относительно начала координат. Это значит, что синус является нечетной функцией, а косинус – четной функцией. Напомним, что ф-ция f(x) является нечетной, если справедливо условие
Если f(x) – четная ф-ция, то должно выполняться условие:
Действительно, если отложить на единичной окружности углы α и (– α), то можно заметить, что их косинусы будут равны друг другу, и синусы окажутся противоположными:
Поэтому верны формулы:
Заключение
Пожалуй, на сегодня достаточно. Тригонометрия, зародившись как наука о треугольниках, лежит в описании очень многих процессов в электрических цепях. Я коснулся лишь ничтожно малой части.
Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:
С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что
ВС = АВ•sinα = 5•0,8 = 4
Если известно, что cosα = 0,6, то мы сможем найти и второй катет:
АС = АВ•cosα = 5•0,6 = 3
Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:
tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)
Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:
Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:
Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле
Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда
АВ = sinα•ОА = sinα•1 = sinα
С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или
Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:
Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:
хА = ОВ = cosα•ОА = cosα•1 = cosα
то есть координата хА равна cos α:
Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.
Таким образом, нам удалось дать новое определение синусу и косинусу угла:
Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 <α < 90°. На единичной окружности можно отложить любой угол, то есть теперь мы можем вычислять тригонометрические ф-ции для произвольных значений α. При этом синус и косинус могут оказаться отрицательными величинами. Например, для угла α = 2π/3 косинус окажется отрицательным, ведь координата хА соответствующей ему точки окажется левее нуля на горизонтальной оси Ох:
Заметим, что знак синуса и косинуса определяется той четвертью, в которой будет располагаться точка на окружности. Углам в диапазоне 0 <α<π/2 соответствует I четверть, здесь все тригонометрические ф-ции принимают положительные значения. Ко II четверти относятся углы из промежутка π/2 <α<π. Здесь косинус становится меньше нуля, а синус остается положительным. В III четверти будут располагаться точки, соответствующие углам из интервала π <α< 3π/2, у них отрицательны и синус, и косинус. Наконец, к IV четверти относят углы из диапазона 3π/2 <α< 2π. Здесь отрицателен синус, а косинус больше нуля.
Как же определять значение синуса угла и его косинуса? Из геометрии нам уже известны их значения для трех углов: 30°, 45° и 60°:
Далее определим тригонометрические ф-ции угла, равного нулю. Если такой угол отложить на единичной окружности, то ему будет соответствовать точка А с координатами (1; 0). Поэтому
Аналогичным образом можно найти значение этих ф-ций и для угла 90°. Прямому углу на единичной окружности соответствует точка В с координатами (0; 1). Поэтому
Для определения тригонометрических ф-ций у углов, больших 90°, удобно использовать симметрию. Например, пусть необходимо вычислить синус для угла 120°. Отложим на окружности две точки, В и А. Первая будет соответствовать 120°, а вторая 60°:
Видно, что эти точки находятся на одном горизонтальном уровне, то есть их ординаты (координаты у) одинаковы. При этом абсциссы у них противоположны, ведь точки симметричны относительно оси Оу. Отсюда можно сделать вывод, что
Но координаты А – это синус и косинус 60°, а координаты В являются тригонометрическими ф-циями угла 120°. То есть можно записать
sin 120° = sin 60°
cos 120° = – cos 60°
Так как для угла 60° значения синуса и косинуса нам уже известны, то можно записать:
В будущем мы изучим более простые способы вычисления синуса и косинуса углов, больших 90°, когда построения нам уже не потребуются. Однако сразу заметим, что в первую очередь необходимо запомнить значения синуса и косинуса для пяти углов: 0°, 30°, 45°, 60°, 90°. Приведем таблицу значений тригонометрических функций:
Некоторые люди испытывают проблемы с запоминанием этой таблицы. Однако ее можно представить в более простом виде. Заменим числа 0, 1 и 1/2 следующими выражениями с корнями:
С учетом этого таблицу тригонометрических функций можно переписать так:
Теперь в каждой ячейке стоит дробь, у которой знаменатель равен двум. В числителе же стоит корень. Обратите внимание, что у синуса под корнем последовательно стоят числа 0, 1, 2, 3, и 4. У косинуса эти же числа идут в обратном порядке – от четверки до нуля. В таком виде таблицу запомнить проще.
Для вычисления тригонометрических ф-ций углов, не попадающих в диапазон 0 ⩽ α < 2π их надо привести к этому самому диапазону. Напомним, что для этого можно просто добавить к углу несколько полных оборотов, или отнять их.
Задание. Вычислите cos 7π/3.
Решение. Угол 7π/3 равен углу π/3:
7π/3 = 6π/3 + π/3 = 2π + π/3 = π/3
Значит, и косинус у угла 7π/3 будет равен косинусу угла π/3:
cos 7π/3 = cosπ/3 = 1/2
График тангенса
Так как тангенс обладает периодом, равным π, достаточно построить его график на каком-нибудь промежутке длиной π. Далее его можно будет просто перенести на π единиц влево и вправо. Удобно выбрать промежуток от – π/2 до π/2. Дело в том, что на нем она определена во всех точках, кроме его концов.
Через точки х = – π/2 и х = π/2 проведем штриховые линии – они означают, что график НЕ должен пересекать их. Ясно, что график проходит через точку (0; 0), ведь tg 0 = 0. Тангенс представляет собой дробь sinx/cosx. При увеличении х от 0 до π/2 знаменатель возрастает, а числитель убывает, стремясь к нулю. Поэтому вся дробь неограниченно растет, и график тангенса возрастает до бесконечности:
Так как мы строим график нечетной ф-ции, то мы можем полученную ветвь отобразить симметрично относительно начала координат:
Полученный график называют тангенсоидой. Осталось воспользоваться тем, что мы рассматриваем периодическую ф-цию с периодом π, и перенести тангенсоиду влево и вправо:
Читайте также: