2 изменение конформации приводит к увеличению его сродства к g белка связанной с молекулой
1.Все химические реакции в клетке протекают при участии ферментов. Поэтому, чтобы воздействовать на скорость протекания метаболического пути (последовательного превращения одних веществ в другие), достаточно регулировать количество молекул фермента или их активность. Обычно в метаболических путях имеются ключевые ферменты,за счет которых происходит регуляция скорости всего пути. Эти ферменты (один или несколько в метаболическом пути) называются регуляторными ферментами.Регуляция скорости ферментативных реакций осуществляется на трех независимых уровнях: изменением количества молекул фермента, доступностью молекул субстрата и кофермента, изменением каталитической активности молекулы фермента (табл. 2.6).
Таблица 2.5. Способы регуляции скорости ферментативных реакций
Способ регуляции | Характеристика |
Изменение количества молекул фермента | Количество молекул фермента в клетке определяется соотношением двух процессов: синтеза и распада. Наиболее изучен механизм регуляции синтеза фермента на уровне транскрипции (синтеза мРНК), который регулируется определенными метаболитами, гормонами и рядом биологически активных молекул |
Доступность молекул субстрата и кофермента | Важный параметр, контролирующий протекание ферментативной реакции, - наличие субстрата и кофермента. Чем больше концентрация исходного субстрата, тем выше скорость реакции |
Изменение каталитической активности молекулы фермента | Основными способами регуляции активности ферментов являются: - аллостерическая регуляция; - регуляция с помощью белок-белковых взаимодействий; - регуляция путем фосфорилирования-дефосфорилирова- ния молекулы фермента; - регуляция частичным (ограниченным) протеолизом |
Рассмотрим способы регуляции скорости ферментативных реакций за счет изменения каталитической активности молекулы фермента.
2. Аллостерическая регуляция. Аллостерическими ферментаминазывают ферменты, активностькоторых может регулироватьсяс помощью веществэффекторов.Участвующие в аллостерической регуляции эффекторы - это клеточные метаболиты, которые часто являются участниками именно того пути, регуляцию которого они осуществляют.
Эффектор, который вызывает снижение (ингибирование)активности фермента, называется ингибитором.Эффектор, который вызываетповышение (активацию)активности ферментов, называют активатором.
Аллостерические ферменты имеют определенные особенности строения:
- обычно являются олигомерными белками,состоящими из нескольких протомеров;
- имеют аллостерический центр,пространственно удаленный от каталитического активного центра;
- эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах.
Аллостерические центры, так же как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной и групповой. Некоторые ферменты имеют несколько аллостерических центров, одни из которых специфичны к активаторам, другие - к ингибиторам.
Протомер, на котором находится аллостерический центр, называется регуляторным протомеромв отличие от каталитического протомера,содержащего активный центр, в котором проходит химическая реакция.
Аллостерические ферменты обладают свойством кооперативности:взаимодействие аллостерического эффектора с аллостерическим центром вызывает кооперативное изменение конформации всех субъединиц, приводящее к изменению конформации активного центра и изменению сродства фермента к субстрату, что снижает или повышает каталитическую активность фермента. Если к аллостерическому центру присоединяется ингибитор, то в результате кооперативных конформационных изменений происходит изменение конформации активного центра, что вызывает снижение сродства фермента к субстрату и, соответственно, снижение скорости ферментативной реакции. И наоборот, если к аллостерическому центру присоединяется активатор, то сродство фермента к субстрату увеличивается, что вызывает повышение скорости реакции. Последовательность событий при действии аллостерических эффекторов представлена на рис. 2.26.
Регуляция аллостерических ферментов обратима:отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента.
Аллостерические ферменты катализируют ключевые реакцииданного метаболического пути.
Аллостерические ферменты играют важную роль в различных метаболических путях, так как они чрезвычайно быстро реагируют на малейшие изменения внутреннего состава клетки. Скорость метаболических процессов зависит от концентрации веществ, как использующихся, так и образующихся в данной цепи реакций. Исходные вещества могут быть активаторами аллостерических ферментов метаболического пути. В то же время при накапливании конечного продукта какого-либо метаболического пути он может действовать как аллостерический ингибитор фермента. Такой способ регуляции распространен в организме и носит название «отрицательная обратная связь»:
Рис. 2.26. Схема строения и функционирования аллостерического фермента:
А - действие отрицательного эффектора (ингибитора). Ингибитор (I) присоединяется к аллостерическому центру, что вызывает кооперативные конформационные изменения в молекуле фермента, в том числе и в активном центре фермента. Сродство фермента к субстрату снижается, в результате снижается и скорость ферментативной реакции; Б - действие положительного эффектора (активатора). Активатор (А) присоединяется к аллостерическому центру, что вызывает кооперативные конформационные изменения. Сродство фермента к субстрату повышается, и скорость ферментативной реакции увеличивается. Продемонстрировано обратимое действие как ингибитора, так и активатора на активность фермента
Рассмотрим аллостерическую регуляцию процесса катаболизма глюкозы, который заканчивается образованием молекулы АТФ (рис. 2.27). В том случае, если молекулы АТФ в клетке не расходуются, она является ингибитором аллостерических ферментов данного метаболического пути: фосфофруктокиназы и пируваткиназы. В то же время промежуточный метаболит катаболизма глюкозы - фруктозо-1,6-бисфосфат является аллостерическим активатором фермента пируваткиназы. Ингибирование конечным продуктом метаболического пути и активация начальными метаболитами позволяет
Рис. 2.27. Аллостерическая регуляция процесса катаболизма глюкозы.
Молекула АТФ является аллостерическим ингибитором ферментов метаболического пути - фосфофруктокиназы и пируваткиназы. Молекула фруктозо-1,6-бисфосфата является аллостерическим активатором фермента пируваткиназы
осуществлять регуляцию скорости метаболического пути. Аллостерические ферменты катализируют, как правило, начальные реакции метаболического пути, необратимые реакции, скорость-лимитирующие реакции (самые медленные) или реакции в месте разветвления метаболического пути.
В качестве примера регуляции каталитической активности ферментов ассоциацией или диссоциацией протомеров можно рассмотреть регуляцию фермента протеинкиназы А.
Протеинкиназа А(цАМФ-зависимая) состоит из четырех субъединиц двух типов: двух регуляторных (R) и двух каталитических (С). Такой тетрамер не обладает каталитической активностью. Регуляторные субъединицы имеют участки связывания для циклического 3',5'-АМФ (цАМФ) (по два на каждую субъединицу). Присоединение четырех молекул цАМФ к двум регуляторным субъединицам приводит к изменению конформации регуляторных протомеров и к диссоциации тетрамерного комплекса; при этом высвобождаются две активные каталитические субъединицы (рис. 2.28). Активная протеинкиназа А катализирует перенос остатка фосфорной кислоты с АТФ на специфические ОН-группы аминокислотных остатков белков (т.е. вызывает фосфорилирование белков).
Рис. 2.28. Регуляция активности протеинкиназы А (ПКА) с помощью белок-белковых взаимодействий.
Активация ПКА осуществляется с помощью четырех молекул цАМФ, которые присоединяются к двум регуляторным субъединицам, что приводит к изменению конформации регуляторных протомеров и диссоциации тетрамерного комплекса. При этом высвобождаются две активные каталитические субъединицы, способные вызывать фосфорилирование белков
Отщепление молекул цАМФ от регуляторных субъединиц приводит к ассоциации регуляторных и каталитических субъединиц протенкиназы А с образованием неактивного комплекса.
4. Регуляция каталитической активности ферментов путем фосфорилирова- ния-дефосфорилирования.В биологических системах часто встречается механизм регуляции активности ферментов с помощью их ковалентной модификации. Быстрым и широко распространенным способом химической модификации ферментов является их фосфорилирование-дефосфорилирование.
Фосфорилирова-нию подвергаются ОН-группы фермента, которое осуществляется ферментами протеинкиназами(фосфорилирование) ифосфопротеинфосфатазами(дефосфорилирование). Присоединение остатка фосфорной кислоты приводит к изменению конформации активного центра и его каталитической активности. При этом результат может быть двояким: одни ферменты при фосфорилировании активируются, другие, напротив, становятся менее активными (рис. 2.29). Активность протеинкиназ и фосфопротеинфосфатаз регулируется гормонами, что позволяет быстро варьировать активность ключевых ферментов метаболических путей в зависимости от условий внешней среды.
Рис. 2.29. Схема регуляции активности ферментов фосфорилированием-дефосфорилированием.
Фосфорилирование ферментов происходит с помощью фермента протеинкиназы. Донором остатка фосфорной кислоты является молекула АТФ. Фосфорилирование фермента изменяет его конформацию и конформацию активного центра, что изменяет сродство фермента к субстрату. При этом некоторые ферменты при фосфорилировании активируются, другие - ингибируются. Обратный процесс - дефосфорилирование - вызывают ферменты фосфопротеинфосфатазы, отщепляющие остаток фосфорной кислоты от фермента и возвращающие фермент в исходное состояние
5. Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом.Некоторые ферменты, которые функционируют вне клеток (в желудочно-кишечном тракте или плазме крови), синтезируются в виде неактивных предшественников и активируются только в результате гидролиза одной или нескольких определенных пептидных связей, который приводит к отщеплению части молекулы. В оставшейся части белковой молекулы происходит конформационная перестройка и формируется активный центр фермента (рис. 2.30). Частичный протеолиз представляет собой пример регуляции, когда активность фермента изменяется
Рис. 2.30. Активация пепсина с помощью частичного протеолиза.
В результате гидролиза одной или нескольких пептидных связей пепсиногена (неактивной молекулы) отщепляется часть молекулы и формируется активный центр фермента пепсина
необратимо. Такие ферменты функционируют, как правило, в течение короткого времени, определяемого временем жизни белковой молекулы. Частичный протеолиз лежит в основе активации пищеварительных протеолитических ферментов (пепсин, трипсин, химотрипсин, эластаза), пептидных гормонов (инсулин), белков свертывающей системы крови и ряда других белков.
Некоторые ферменты изменяют свою каталитическую активность в результате белок-белковых взаимодействий. 2 механизма активации ферментов:
2. регуляция активности ферментов путем ассоциации-диссоциации протомеров. В тканях присутствуют ферменты, которые в неактивной форме представлены отдельными комплексами, состоящими из нескольких протомеров. При увеличении в клетке концентрации специфических регуляторных молекул они присоединяются к определенным центрам протомеров. Изменение их конформации, вызванное присоединением лигандов, повышает их сродство друг к другу и стимулирует ассоциацию, т.е. образование активной формы фермента.
неактивные протомеры активная ацетил-СоА
ацетил-СоА карбоксилазы карбоксилаза
Веществом, которое изменяет конформацию комплексов, является цитрат. При повышении его концентрации в цитозоле клетки 3 тетрамера объединяются в олигомер из 12 протомеров – активную форму ацетил-СоА карбоксилазы.
Другим примером этого типа регуляции может служить активация протеинкиназы А. В неактивной форме фермент состоит из 4 протомеров – 2 каталитических и 2 регуляторных. Регуляторные протомеры имеют по 2 центра связывания для молекул регуляторного лиганда – циклического АМФ. Молекулы цАМФ при повышении их концентрации в клетке присоединяются к специфическим центрам регуляторных протомеров. Это приводит к изменению их конформации и потере сродства к каталитическим протомерам. Отделившиеся каталитические протомеры (протеинкиназы А) проявляют протеинкиназную активность и фосфорилируют белки по аминокислотным остаткам серина и треонина. В отсутствие цАМФ регуляторные протомеры взаимодействуют с каталитическими протомерами, образуя неактивный комплекс.
Синтез молекул цАМФ из АТФ катализирует фермент аденилатциклаза, а превращение цАМФ в АМФ – фосфодиэстераза.
Регуляция путем фосфорилирования/дефосфорилирования фермента
Широко распространенный способ химической модификации ферментов фосфорилирование/дефосфорилирование белков осуществляют ферменты протеинкиназы (класс трансферазы). Они катализируют образование сложноэфирной связи между фосфатной группой и ОН-группой аминокислотных остатков серина, треонина и тирозина. Донором фосфатной группы является АТФ.
В результате фосфорилирования происходит изменение заряда, конформации фермента, конформации активного центра фермента. повышается сродство фермента к субстрату и возрастает скорость ферментативной реакции.
Например – триацилглицерол-липаза (ТАГ-липаза) – внутриклеточный фермент жировой ткани. В дефосфорилированной форме фермент неактивен. Под действием специфической протеинкиназы А фермент фосфорилируется и переходит в активную форму.
Для некоторых ферментов, обеспечивающих метаболизм глюкозы, холестерола, гликогена, фосфорилированная форма является неактивной. Например, фермент пируваткиназа, участвующая в катаболизме глюкозы, переходит в активную форму только после отщепления фосфорного остатка. Поэтому в этом случае фосфорилирование вызывает снижение активности, а дефосфорилирование – повышение активности фермента. Дефосфорилирование осуществляют протеинфосфатазы (класс гидролазы)
Кооперативными изменениями конформации протомеров называются изменения конформации всего олигомерного белка после присоединения лиганда к одному из протомеров, приводящее к изменению функциональных свойств белка в целом. Для гемоглобина это означает, что кооперативные изменения конформации его протомеров ускоряют присоединение кислорода в легких и облегчают отщепление кислорода в тканях: - присоединение кислорода через Fe 2+ к одному протомеру (оксигенация гемоглобина) вызывает перемещение Fe 2+ в плоскость гема; одновременно перемещается и остаток Гис F8, связанный с ним. Это влечет изменение конформации данного протомера, а также остальных субъединиц гемоглобина и их активных центров, то есть вследствии конформационной лабильности изменяется конформация и свойства всего белка;
- измененная конформация белка облегчает связывание второй молекулы кислорода со следующим протомером, что вызывает дополнительные кооперативные изменения конформации протомеров и еще более облегчает связывание со следующей молекулой 02. Четвертая молекула кислорода присоединяется к оставшемуся протомеру в 300 раз легче, чем первая.
- последовательное отщепление кислорода (дезоксигенация) в тканях изменяет на каждом этапе конформацию всех протомеров и облегчает диссоциацию последующих молекул 02.
Кривая диссоциации оксигемоглобина имеет выраженный S-образный характер и отражает положительный кооперативный эффект взаимодействия протомеров (субъединиц) в тетрамер-ной молекуле гемоглобина при его оксигенации.
Гемоглобин имеет S-образную кривую насыщения, которая показывает, что субъединицы белка работают кооперативно, и чем больше кислорода они отдают, тем легче идет диссоциация остальных молекул 02; этот процесс зависит от изменения парциального давления 02 в тканях.
Кривая насыщения (диссоциации) миоглобина - простая гипербола, отражает функции миоглобина - обратимое связывание с кислородом, высвобождаемым гемоглобином, депонирование его и освобождение в случае интенсивной физической нагрузки; не зависит от посторонних факторов
Возможность адаптивной регуляции биологической функции олигомерных белков с помощью аллостерических лигандов
Если белок при взаимодействии с лигандом повышает или понижает актив- ность вследствии конформационных изменений, то имеет место аллостериче-ская регуляция, а лиганд называется аллостерическим. Данное свойство проявляется, как правило, у олигомерных белков, т.е. для проявления аллостериче-ского эффекта необходимо взаимодействие субъединиц. При воздействии аллостерических лигандов белки адаптируют свою конформацию (в том числе и активного центра) и функцию к изменившимся условиям окружающей среды.
Для гемоглобина аллостерическими лигандами являются Н + , С02 и 2,3-бифосфоглицерат (БФГ). Эти лиганды присоединяются к участкам (аллостерическим центрам), пространственно удаленным друг от друга. Концентрация аллостерических лигандов влияет на сродство гемоглобина к кислороду (миог-лобин и разделенные субъединицы гемоглобина нечувствительны к изменениям концентрации Н + , СО2 и БФГ, т. е. аллостерические свойства гемоглобина возникают только в результате взаимодействия субъединиц).
В центре молекулы гемоглобина аминокислотными остатками четырех субъединиц образована полость, величина ее увеличивается в дезоксигемогло-бине и уменьшается в оксигемоглобине. БФГ, синтезируемый в эритроцитах при гликолизе, может поместиться только в большой полости дезоксигемоглобина, избирательно связывается с дезоксигемоглобином, снижая его сродство к О2 в 26 раз. В результате повышается высвобождение кислорода в капиллярах ткани при постоянном парциальном давлении О2.
Исследование роли БФГ в транспорте крови прояснило адаптивные механизмы, включающиеся при гипоксии - нарушении снабжения тканей кислородом. У больных с тяжелой обструктивной энфиземой легких затруднено поступление воздуха в легкие, парциальное давление кислорода в артериальной крови (50 мм рт. ст.) вдвое ниже нормы (100 мм рт. ст.). При этом происходит усиление синтеза БФГ в эритроцитах (его концентрация повышается с 4,5 мМ/л до 8 мМ/л), что приводит к увеличению доставки кислорода в ткани. На рис. это отражается компенсаторным сдвигом кривой насыщения гемоглобина кислородом вправо.
Механизм адаптивной регуляции к высоте - также результат изменения концентрации БФГ в эритроцитах крови. На высоте 4,5 км над уровнем моря насыщение крови кислородом снижается из-за снижения парциального давления О2, но уже через два дня возрастает концентрация БФГ в крови с 4,5 мМ/л до 7,0 мМ/л. Сродство к кислороду снижается, и количество высвобождаемого кислорода в капиллярах тканей возрастает. При спуске на уровень моря концентрация БФГ возвращается к исходному уровню.
Рис. 5-35. Цикл функционирования G-белка. Rs - рецептор; Г - гормон; АЦ - аденилатциклаза.
Аденилатциклаза
Фермент аденилатциклаза, катализирующий превращение АТФ в цАМФ, - ключевой фермент аденилатциклазной системы передачи сигнала. Фермент относят к группе интегральных белков клеточной мембраны, он имеет 12 трансмембранных доменов. Внеклеточные фрагменты аденилатциклазы гликозилированы. Цитоплазматические домены аденилатциклазы имеют два каталитических центра, ответственных за образование цАМФ - вторичного посредника, участвующего в регуляции активности фермента протеинкиназы А.
Аденилатциклазная система
При участии аденилатциклазной системы реализуются эффекты сотни различных по своей природе сигнальных молекул - гормонов, нейромедиаторов, эйкозаноидов.
Функционирование системы трансмембранной передачи сигналов обеспечивают белки: Rs-рецептор сигнальной молекулы, которая активирует аденилатциклазу, и Ri-рецептор сигнальной молекулы, которая ингибирует аденилатциклазу; Gs-стимулирующий и Gj-ингибирующий аденилатциклазу белки; ферменты аденилатциклаза (АЦ) и протеинкиназа А (ПКА).
Последовательность событий, приводящих к активации аденилатциклазы:
1.Все химические реакции в клетке протекают при участии ферментов. Поэтому, чтобы воздействовать на скорость протекания метаболического пути (последовательного превращения одних веществ в другие), достаточно регулировать количество молекул фермента или их активность. Обычно в метаболических путях имеются ключевые ферменты,за счет которых происходит регуляция скорости всего пути. Эти ферменты (один или несколько в метаболическом пути) называются регуляторными ферментами.Регуляция скорости ферментативных реакций осуществляется на трех независимых уровнях: изменением количества молекул фермента, доступностью молекул субстрата и кофермента, изменением каталитической активности молекулы фермента (табл. 2.6).
Таблица 2.5. Способы регуляции скорости ферментативных реакций
Способ регуляции | Характеристика |
Изменение количества молекул фермента | Количество молекул фермента в клетке определяется соотношением двух процессов: синтеза и распада. Наиболее изучен механизм регуляции синтеза фермента на уровне транскрипции (синтеза мРНК), который регулируется определенными метаболитами, гормонами и рядом биологически активных молекул |
Доступность молекул субстрата и кофермента | Важный параметр, контролирующий протекание ферментативной реакции, - наличие субстрата и кофермента. Чем больше концентрация исходного субстрата, тем выше скорость реакции |
Изменение каталитической активности молекулы фермента | Основными способами регуляции активности ферментов являются: - аллостерическая регуляция; - регуляция с помощью белок-белковых взаимодействий; - регуляция путем фосфорилирования-дефосфорилирова- ния молекулы фермента; - регуляция частичным (ограниченным) протеолизом |
Рассмотрим способы регуляции скорости ферментативных реакций за счет изменения каталитической активности молекулы фермента.
2. Аллостерическая регуляция. Аллостерическими ферментаминазывают ферменты, активностькоторых может регулироватьсяс помощью веществэффекторов.Участвующие в аллостерической регуляции эффекторы - это клеточные метаболиты, которые часто являются участниками именно того пути, регуляцию которого они осуществляют.
Эффектор, который вызывает снижение (ингибирование)активности фермента, называется ингибитором.Эффектор, который вызываетповышение (активацию)активности ферментов, называют активатором.
Аллостерические ферменты имеют определенные особенности строения:
- обычно являются олигомерными белками,состоящими из нескольких протомеров;
- имеют аллостерический центр,пространственно удаленный от каталитического активного центра;
- эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах.
Аллостерические центры, так же как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной и групповой. Некоторые ферменты имеют несколько аллостерических центров, одни из которых специфичны к активаторам, другие - к ингибиторам.
Протомер, на котором находится аллостерический центр, называется регуляторным протомеромв отличие от каталитического протомера,содержащего активный центр, в котором проходит химическая реакция.
Аллостерические ферменты обладают свойством кооперативности:взаимодействие аллостерического эффектора с аллостерическим центром вызывает кооперативное изменение конформации всех субъединиц, приводящее к изменению конформации активного центра и изменению сродства фермента к субстрату, что снижает или повышает каталитическую активность фермента. Если к аллостерическому центру присоединяется ингибитор, то в результате кооперативных конформационных изменений происходит изменение конформации активного центра, что вызывает снижение сродства фермента к субстрату и, соответственно, снижение скорости ферментативной реакции. И наоборот, если к аллостерическому центру присоединяется активатор, то сродство фермента к субстрату увеличивается, что вызывает повышение скорости реакции. Последовательность событий при действии аллостерических эффекторов представлена на рис. 2.26.
Регуляция аллостерических ферментов обратима:отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента.
Аллостерические ферменты катализируют ключевые реакцииданного метаболического пути.
Аллостерические ферменты играют важную роль в различных метаболических путях, так как они чрезвычайно быстро реагируют на малейшие изменения внутреннего состава клетки. Скорость метаболических процессов зависит от концентрации веществ, как использующихся, так и образующихся в данной цепи реакций. Исходные вещества могут быть активаторами аллостерических ферментов метаболического пути. В то же время при накапливании конечного продукта какого-либо метаболического пути он может действовать как аллостерический ингибитор фермента. Такой способ регуляции распространен в организме и носит название «отрицательная обратная связь»:
Рис. 2.26. Схема строения и функционирования аллостерического фермента:
А - действие отрицательного эффектора (ингибитора). Ингибитор (I) присоединяется к аллостерическому центру, что вызывает кооперативные конформационные изменения в молекуле фермента, в том числе и в активном центре фермента. Сродство фермента к субстрату снижается, в результате снижается и скорость ферментативной реакции; Б - действие положительного эффектора (активатора). Активатор (А) присоединяется к аллостерическому центру, что вызывает кооперативные конформационные изменения. Сродство фермента к субстрату повышается, и скорость ферментативной реакции увеличивается. Продемонстрировано обратимое действие как ингибитора, так и активатора на активность фермента
Рассмотрим аллостерическую регуляцию процесса катаболизма глюкозы, который заканчивается образованием молекулы АТФ (рис. 2.27). В том случае, если молекулы АТФ в клетке не расходуются, она является ингибитором аллостерических ферментов данного метаболического пути: фосфофруктокиназы и пируваткиназы. В то же время промежуточный метаболит катаболизма глюкозы - фруктозо-1,6-бисфосфат является аллостерическим активатором фермента пируваткиназы. Ингибирование конечным продуктом метаболического пути и активация начальными метаболитами позволяет
Рис. 2.27. Аллостерическая регуляция процесса катаболизма глюкозы.
Молекула АТФ является аллостерическим ингибитором ферментов метаболического пути - фосфофруктокиназы и пируваткиназы. Молекула фруктозо-1,6-бисфосфата является аллостерическим активатором фермента пируваткиназы
осуществлять регуляцию скорости метаболического пути. Аллостерические ферменты катализируют, как правило, начальные реакции метаболического пути, необратимые реакции, скорость-лимитирующие реакции (самые медленные) или реакции в месте разветвления метаболического пути.
В качестве примера регуляции каталитической активности ферментов ассоциацией или диссоциацией протомеров можно рассмотреть регуляцию фермента протеинкиназы А.
Протеинкиназа А(цАМФ-зависимая) состоит из четырех субъединиц двух типов: двух регуляторных (R) и двух каталитических (С). Такой тетрамер не обладает каталитической активностью. Регуляторные субъединицы имеют участки связывания для циклического 3',5'-АМФ (цАМФ) (по два на каждую субъединицу). Присоединение четырех молекул цАМФ к двум регуляторным субъединицам приводит к изменению конформации регуляторных протомеров и к диссоциации тетрамерного комплекса; при этом высвобождаются две активные каталитические субъединицы (рис. 2.28). Активная протеинкиназа А катализирует перенос остатка фосфорной кислоты с АТФ на специфические ОН-группы аминокислотных остатков белков (т.е. вызывает фосфорилирование белков).
Рис. 2.28. Регуляция активности протеинкиназы А (ПКА) с помощью белок-белковых взаимодействий.
Активация ПКА осуществляется с помощью четырех молекул цАМФ, которые присоединяются к двум регуляторным субъединицам, что приводит к изменению конформации регуляторных протомеров и диссоциации тетрамерного комплекса. При этом высвобождаются две активные каталитические субъединицы, способные вызывать фосфорилирование белков
Отщепление молекул цАМФ от регуляторных субъединиц приводит к ассоциации регуляторных и каталитических субъединиц протенкиназы А с образованием неактивного комплекса.
4. Регуляция каталитической активности ферментов путем фосфорилирова- ния-дефосфорилирования.В биологических системах часто встречается механизм регуляции активности ферментов с помощью их ковалентной модификации. Быстрым и широко распространенным способом химической модификации ферментов является их фосфорилирование-дефосфорилирование.
Фосфорилирова-нию подвергаются ОН-группы фермента, которое осуществляется ферментами протеинкиназами(фосфорилирование) ифосфопротеинфосфатазами(дефосфорилирование). Присоединение остатка фосфорной кислоты приводит к изменению конформации активного центра и его каталитической активности. При этом результат может быть двояким: одни ферменты при фосфорилировании активируются, другие, напротив, становятся менее активными (рис. 2.29). Активность протеинкиназ и фосфопротеинфосфатаз регулируется гормонами, что позволяет быстро варьировать активность ключевых ферментов метаболических путей в зависимости от условий внешней среды.
Рис. 2.29. Схема регуляции активности ферментов фосфорилированием-дефосфорилированием.
Фосфорилирование ферментов происходит с помощью фермента протеинкиназы. Донором остатка фосфорной кислоты является молекула АТФ. Фосфорилирование фермента изменяет его конформацию и конформацию активного центра, что изменяет сродство фермента к субстрату. При этом некоторые ферменты при фосфорилировании активируются, другие - ингибируются. Обратный процесс - дефосфорилирование - вызывают ферменты фосфопротеинфосфатазы, отщепляющие остаток фосфорной кислоты от фермента и возвращающие фермент в исходное состояние
5. Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом.Некоторые ферменты, которые функционируют вне клеток (в желудочно-кишечном тракте или плазме крови), синтезируются в виде неактивных предшественников и активируются только в результате гидролиза одной или нескольких определенных пептидных связей, который приводит к отщеплению части молекулы. В оставшейся части белковой молекулы происходит конформационная перестройка и формируется активный центр фермента (рис. 2.30). Частичный протеолиз представляет собой пример регуляции, когда активность фермента изменяется
Рис. 2.30. Активация пепсина с помощью частичного протеолиза.
В результате гидролиза одной или нескольких пептидных связей пепсиногена (неактивной молекулы) отщепляется часть молекулы и формируется активный центр фермента пепсина
необратимо. Такие ферменты функционируют, как правило, в течение короткого времени, определяемого временем жизни белковой молекулы. Частичный протеолиз лежит в основе активации пищеварительных протеолитических ферментов (пепсин, трипсин, химотрипсин, эластаза), пептидных гормонов (инсулин), белков свертывающей системы крови и ряда других белков.
Некоторые ферменты изменяют свою каталитическую активность в результате белок-белковых взаимодействий. 2 механизма активации ферментов:
2. регуляция активности ферментов путем ассоциации-диссоциации протомеров. В тканях присутствуют ферменты, которые в неактивной форме представлены отдельными комплексами, состоящими из нескольких протомеров. При увеличении в клетке концентрации специфических регуляторных молекул они присоединяются к определенным центрам протомеров. Изменение их конформации, вызванное присоединением лигандов, повышает их сродство друг к другу и стимулирует ассоциацию, т.е. образование активной формы фермента.
неактивные протомеры активная ацетил-СоА
ацетил-СоА карбоксилазы карбоксилаза
Веществом, которое изменяет конформацию комплексов, является цитрат. При повышении его концентрации в цитозоле клетки 3 тетрамера объединяются в олигомер из 12 протомеров – активную форму ацетил-СоА карбоксилазы.
Другим примером этого типа регуляции может служить активация протеинкиназы А. В неактивной форме фермент состоит из 4 протомеров – 2 каталитических и 2 регуляторных. Регуляторные протомеры имеют по 2 центра связывания для молекул регуляторного лиганда – циклического АМФ. Молекулы цАМФ при повышении их концентрации в клетке присоединяются к специфическим центрам регуляторных протомеров. Это приводит к изменению их конформации и потере сродства к каталитическим протомерам. Отделившиеся каталитические протомеры (протеинкиназы А) проявляют протеинкиназную активность и фосфорилируют белки по аминокислотным остаткам серина и треонина. В отсутствие цАМФ регуляторные протомеры взаимодействуют с каталитическими протомерами, образуя неактивный комплекс.
Синтез молекул цАМФ из АТФ катализирует фермент аденилатциклаза, а превращение цАМФ в АМФ – фосфодиэстераза.
Регуляция путем фосфорилирования/дефосфорилирования фермента
Широко распространенный способ химической модификации ферментов фосфорилирование/дефосфорилирование белков осуществляют ферменты протеинкиназы (класс трансферазы). Они катализируют образование сложноэфирной связи между фосфатной группой и ОН-группой аминокислотных остатков серина, треонина и тирозина. Донором фосфатной группы является АТФ.
В результате фосфорилирования происходит изменение заряда, конформации фермента, конформации активного центра фермента. повышается сродство фермента к субстрату и возрастает скорость ферментативной реакции.
Например – триацилглицерол-липаза (ТАГ-липаза) – внутриклеточный фермент жировой ткани. В дефосфорилированной форме фермент неактивен. Под действием специфической протеинкиназы А фермент фосфорилируется и переходит в активную форму.
Для некоторых ферментов, обеспечивающих метаболизм глюкозы, холестерола, гликогена, фосфорилированная форма является неактивной. Например, фермент пируваткиназа, участвующая в катаболизме глюкозы, переходит в активную форму только после отщепления фосфорного остатка. Поэтому в этом случае фосфорилирование вызывает снижение активности, а дефосфорилирование – повышение активности фермента. Дефосфорилирование осуществляют протеинфосфатазы (класс гидролазы)
Кооперативными изменениями конформации протомеров называются изменения конформации всего олигомерного белка после присоединения лиганда к одному из протомеров, приводящее к изменению функциональных свойств белка в целом. Для гемоглобина это означает, что кооперативные изменения конформации его протомеров ускоряют присоединение кислорода в легких и облегчают отщепление кислорода в тканях: - присоединение кислорода через Fe 2+ к одному протомеру (оксигенация гемоглобина) вызывает перемещение Fe 2+ в плоскость гема; одновременно перемещается и остаток Гис F8, связанный с ним. Это влечет изменение конформации данного протомера, а также остальных субъединиц гемоглобина и их активных центров, то есть вследствии конформационной лабильности изменяется конформация и свойства всего белка;
- измененная конформация белка облегчает связывание второй молекулы кислорода со следующим протомером, что вызывает дополнительные кооперативные изменения конформации протомеров и еще более облегчает связывание со следующей молекулой 02. Четвертая молекула кислорода присоединяется к оставшемуся протомеру в 300 раз легче, чем первая.
- последовательное отщепление кислорода (дезоксигенация) в тканях изменяет на каждом этапе конформацию всех протомеров и облегчает диссоциацию последующих молекул 02.
Кривая диссоциации оксигемоглобина имеет выраженный S-образный характер и отражает положительный кооперативный эффект взаимодействия протомеров (субъединиц) в тетрамер-ной молекуле гемоглобина при его оксигенации.
Гемоглобин имеет S-образную кривую насыщения, которая показывает, что субъединицы белка работают кооперативно, и чем больше кислорода они отдают, тем легче идет диссоциация остальных молекул 02; этот процесс зависит от изменения парциального давления 02 в тканях.
Кривая насыщения (диссоциации) миоглобина - простая гипербола, отражает функции миоглобина - обратимое связывание с кислородом, высвобождаемым гемоглобином, депонирование его и освобождение в случае интенсивной физической нагрузки; не зависит от посторонних факторов
Возможность адаптивной регуляции биологической функции олигомерных белков с помощью аллостерических лигандов
Если белок при взаимодействии с лигандом повышает или понижает актив- ность вследствии конформационных изменений, то имеет место аллостериче-ская регуляция, а лиганд называется аллостерическим. Данное свойство проявляется, как правило, у олигомерных белков, т.е. для проявления аллостериче-ского эффекта необходимо взаимодействие субъединиц. При воздействии аллостерических лигандов белки адаптируют свою конформацию (в том числе и активного центра) и функцию к изменившимся условиям окружающей среды.
Для гемоглобина аллостерическими лигандами являются Н + , С02 и 2,3-бифосфоглицерат (БФГ). Эти лиганды присоединяются к участкам (аллостерическим центрам), пространственно удаленным друг от друга. Концентрация аллостерических лигандов влияет на сродство гемоглобина к кислороду (миог-лобин и разделенные субъединицы гемоглобина нечувствительны к изменениям концентрации Н + , СО2 и БФГ, т. е. аллостерические свойства гемоглобина возникают только в результате взаимодействия субъединиц).
В центре молекулы гемоглобина аминокислотными остатками четырех субъединиц образована полость, величина ее увеличивается в дезоксигемогло-бине и уменьшается в оксигемоглобине. БФГ, синтезируемый в эритроцитах при гликолизе, может поместиться только в большой полости дезоксигемоглобина, избирательно связывается с дезоксигемоглобином, снижая его сродство к О2 в 26 раз. В результате повышается высвобождение кислорода в капиллярах ткани при постоянном парциальном давлении О2.
Исследование роли БФГ в транспорте крови прояснило адаптивные механизмы, включающиеся при гипоксии - нарушении снабжения тканей кислородом. У больных с тяжелой обструктивной энфиземой легких затруднено поступление воздуха в легкие, парциальное давление кислорода в артериальной крови (50 мм рт. ст.) вдвое ниже нормы (100 мм рт. ст.). При этом происходит усиление синтеза БФГ в эритроцитах (его концентрация повышается с 4,5 мМ/л до 8 мМ/л), что приводит к увеличению доставки кислорода в ткани. На рис. это отражается компенсаторным сдвигом кривой насыщения гемоглобина кислородом вправо.
Механизм адаптивной регуляции к высоте - также результат изменения концентрации БФГ в эритроцитах крови. На высоте 4,5 км над уровнем моря насыщение крови кислородом снижается из-за снижения парциального давления О2, но уже через два дня возрастает концентрация БФГ в крови с 4,5 мМ/л до 7,0 мМ/л. Сродство к кислороду снижается, и количество высвобождаемого кислорода в капиллярах тканей возрастает. При спуске на уровень моря концентрация БФГ возвращается к исходному уровню.
Рис. 5-35. Цикл функционирования G-белка. Rs - рецептор; Г - гормон; АЦ - аденилатциклаза.
Аденилатциклаза
Фермент аденилатциклаза, катализирующий превращение АТФ в цАМФ, - ключевой фермент аденилатциклазной системы передачи сигнала. Фермент относят к группе интегральных белков клеточной мембраны, он имеет 12 трансмембранных доменов. Внеклеточные фрагменты аденилатциклазы гликозилированы. Цитоплазматические домены аденилатциклазы имеют два каталитических центра, ответственных за образование цАМФ - вторичного посредника, участвующего в регуляции активности фермента протеинкиназы А.
Аденилатциклазная система
При участии аденилатциклазной системы реализуются эффекты сотни различных по своей природе сигнальных молекул - гормонов, нейромедиаторов, эйкозаноидов.
Функционирование системы трансмембранной передачи сигналов обеспечивают белки: Rs-рецептор сигнальной молекулы, которая активирует аденилатциклазу, и Ri-рецептор сигнальной молекулы, которая ингибирует аденилатциклазу; Gs-стимулирующий и Gj-ингибирующий аденилатциклазу белки; ферменты аденилатциклаза (АЦ) и протеинкиназа А (ПКА).
Последовательность событий, приводящих к активации аденилатциклазы:
Читайте также: