К сетевым приложениям относятся такие приложения как сетевые базы данных почтовые приложения
Существует два типа сетевых приложений: чисто сетевые (pure) и обособленные (standalone). Чисто сетевые приложения разработаны для применения в сетях. Использование их на отдельных компьютерах не имеет смысла. Наоборот, обособленные приложения призваны работать на отдельном компьютере. Для расширения возможностей они перестроены для работы в сетях. Примерами обособленных приложений могут служить текстовый процессор и редактор электронных таблиц.
Чисто сетевые приложения
Эти приложения были созданы для использования возможностей сетей. Каждое из них имеет свой отдельный пользовательский интерфейс и требует выполнения некоторой последовательности "сетевых" команд, индивидуальных для каждого приложения.
Ниже приведены некоторые примеры чисто сетевых приложений:
- эмуляция терминала;
- передача файла;
- электронная почта;
- групповые приложения.
Эмуляция терминала была одним из первых чисто сетевых приложений. До появления сетей терминалы использовались для доступа к прикладным программам на больших ЭВМ и миникомпьютерах. Когда на смену терминалам пришли ПК, потребовался метод доступа к прикладным программам на существующих больших ЭВМ и миникомпьютерах. Программа эмуляции терминала позволяет представить ПК для большой ЭВМ как подключенный к ней терминал. Функции центрального процессора (ЦП) ПК становятся прозрачными для пользователя, и ему кажется, что он работает с ЦП большой ЭВМ, к которой данный ПК подсоединен. Эмуляция терминала предоставляет пользователю преимущества двух сред компьютерного мира. Приложения больших ЭВМ и миникомпьютеров могут выполняться на ПК наряду с обычными обособленными приложениями типа текстовых процессоров и электронных таблиц.
Передача файла является основным приложением практически во всех сетях. В некоторых случаях файлы, передаваемые от ПК одного типа к ПК другого типа, требуют перевода из одного формата данных в другой.
Обособленные приложения
Все приложения, описанные выше, являются чисто сетевыми приложениями, разработанными для функционирования в сетевой среде. В последнее время многие известные обособленные приложения были адаптированы для функционирования в среде клиент-сервер.
Примерами могут служить текстовые процессоры, редакторы электронных таблиц, базы данных, презентационная графика и управление проектами.
Когда обособленные приложения адаптируются для работы в сетевой среде, они разбиваются на две части.
Первая часть приложения включает пользовательский интерфейс и связующую обработку и работает на станции-клиенте. Вторая часть приложения, работающая на сервере, включает операции, требующие значительных процессорных затрат.
Поводом к переводу традиционных обособленных приложений в сетевую среду послужили следующие соображения:
- простота использования;
- разделение файлов;
- ограничение ресурсов;
- экономия от масштабирования.
В сетевых версиях приложений используется тот же пользовательский интерфейс, включая команды оператора, что и в предыдущих обособленных версиях. В отличие от чисто сетевых приложений пользователям нет необходимости изучать новые команды для обеспечения нормальной работы.
Пользователи могут получать доступ к важным файлам, таким, как большие базы данных, сохраняемым в общем разделяемом пространстве. Поскольку только одна копия файла существует на сервере, то исчезает опасность дублирования файлов с различными датами модификации.
Некоторые ПК с ограниченными ресурсами (медленный ЦП, малая память) не могут обрабатывать целиком современные большие приложения. Однако если приложение разбивается на две части, то ПК может обрабатывать одну из этих частей, что известно как архитектура "клиент-сервер". Персональный компьютер ("клиент") в общем случае обрабатывает часть пользовательского интерфейса от всего приложения, а более мощный компьютер ("сервер") обрабатывает интенсивную процессорную часть и ввод/вывод (В/В) информации.
Новое серверное приложение не требуется для каждого пользователя. Если приложение уже существует на сервере, то новая часть пользовательского интерфейса для клиента – это все, что необходимо. Это обычно более дешево, чем использование всей программы для каждого пользователя.
Компьютерная сеть – это совокупность компьютеров, объединенных каналами передачи данных. В зависимости от расстояния между компьютерами различают следующие вычислительные сети:
1) Локальные вычислительные сети - LAN;
2) Территориальные вычислительные сети, к которым относятся региональные MAN и глобальные WAN сети;
3) Корпоративные сети.
Локальная сеть - это ЛВС, в которой ПК и коммуникационное оборудование находится на небольшом расстоянии друг от друга. ЛВС обычно предназначена для сбора, хранения, передачи, обработки и предоставления пользователям распределенной информации в пределах подразделения или фирмы. Кроме того, ЛВС, как правило, имеет выход в Интернет.
Локальные сети можно классифицировать по:
1) Уровню управления;
4) Административным отношениям между компьютерами;
Рассмотрим более подробно классификацию ЛВС
По уровню управления выделяют следующие ЛВС:
1) ЛВС рабочих групп, которые состоят из нескольких ПК, работающих под одной операционной системой. В такой ЛВС, как правило, имеется несколько выделенных серверов: файл-сервер, сервер печати;
2) ЛВС структурных подразделений (отделов). ДанныеЛВС содержат несколько десятков ПК и серверы типа: файл-сервер, сервер печати, сервер баз данных;
3) ЛВС предприятий (фирм). Эти ЛВС могут содержать свыше 100 компьютеров и серверы типа: файл-сервер, сервер печати, сервер баз данных, почтовый сервер и другие серверы.
По назначению сети подразделяются на:
1) вычислительные сети, предназначенные для расчетных работ;
2) Информационно-вычислительные сети, которые предназначены, как для ведения расчетных работ, так и для предоставления информационных ресурсов;
3) Информационно-советующие, которые на основе обработки данных вырабатывают информацию для поддержки принятия решений;
4) Информационно-управляющие сети, которые предназначены для управления объектов на основе обработки информации.
По типам используемых компьютеров можно выделить:
1) Однородные сети, которые содержат однотипные компьютеры и системное программное обеспечение;
2) Неоднородные сети, которые содержат разнотипные компьютеры и системное программное.
По административным отношениям между компьютерами можно выделить:
1) ЛВС с централизованным управлением (с выделенными серверами);
2)ЛВС без централизованного управления (децентрализованные) или одноранговые (одноуровневые) сети.
По топологии (основным топологиям) ЛВС делятся на:
По архитектуре (основным типам архитектур) ЛВС делятся на:
Конфигурация ЛВС (локальные сети одноранговые и с выделенным сервером)
По административным отношениям между узлами можно выделить локальные сети с централизованным управлением или с выделенными серверами (серверные сети) и сети без централизованного управления или без выделенного сервера (децентрализованные), так называемые, одноранговые (одноуровневые) сети.
Локальные сети с централизованным управлением называются иерархическими, а децентрализованные локальные сети равноправными.
В локальных сетях с централизованным управлением один из компьютеров является сервером, а остальные ПК - рабочими станциями.
Серверы - это высокопроизводительные компьютеры с винчестерами большой емкости и с высокоскоростной сетевой картой, которые отвечают за хранение данных, организацию доступа к этим данным и передачу данных рабочим станциям или клиентам.
Рабочие станции. Компьютеры, с которых осуществляется доступ к информации на сервере, называются рабочими станциями или клиентами.
Сетевые топологии
Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.
Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.
В настоящее время в локальных сетях используются следующие физические топологии:
1) Физическая "шина" (bus);
2) Физическая “звезда” (star);
3) Физическое “кольцо” (ring);
4) Физическая "звезда" и логическое "кольцо" (Token Ring).
Шинная топология
Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т-разъема (Т - коннектор). Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных.
Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.
Рис. 1.
Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).
Преимущества сетей шинной топологии:
1) Отказ одного из узлов не влияет на работу сети в целом;
2) Сеть легко настраивать и конфигурировать;
3) Сеть устойчива к неисправностям отдельных узлов.
Недостатки сетей шинной топологии:
1) Разрыв кабеля может повлиять на работу всей сети;
2) Ограниченная длина кабеля и количество рабочих станций;
3) Трудно определить дефекты соединений.
Топология типа “звезда”
В сети построенной по топологии типа “звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или хабу (hub). Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.
Рис. 2.
Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной.
Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet.
Преимущества сетей топологии звезда:
1) Легко подключить новый ПК;
2) Имеется возможность централизованного управления;
3) Сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.
Недостатки сетей топологии звезда:
1) Отказ хаба влияет на работу всей сети;
2) Большой расход кабеля.
Топология “кольцо”
В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.
Рис. 3.
К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.
Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.
Топология Token Ring
Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции.
Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии “звезда”.
Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не вличет за собой отказ сети как в топологии кольцо, потому что концентратор отключет неисправную станцию и замкнет кольцо передачи данных.
Рис. 4.
Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.
Преимущества сетей топологии Token Ring:
1) Топология обеспечивает равный доступ ко всем рабочим станциям;
2) Высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций.
Недостатки сетей топологии Token Ring: большой расход кабеля и соответственно дорогостоящая разводка линий связи.
Обнаружение столкновений
Когда в локальных сетях работает метод обнаружения столкновений, компьютер сначала слушает, а потом передает. Если компьютер слышит, что передачу ведет кто-то другой, он должен подождать окончания передачи данных и затем предпринять повторную попытку.
В этой ситуации (два компьютера, передающие в одно и то же время) система обнаружения столкновений требует, чтобы передающий компьютер продолжал прослушивать канал и, обнаружив на нем чужие данные, прекращал передачу, пытаясь возобновить ее через небольшой (случайный) промежуток времени.
Прослушивание канала до передачи называется “прослушивание несущей” (carrier sense), а прослушивание во время передачи — обнаружение столкновений (collision detection). Компьютер, поступающий таким образом, использует метод, называющийся “обнаружение столкновений с прослушиванием несущей”, сокращенно CSCD.
Метод опроса
Обмен данными в ЛВС с топологией звезда с активным центром (центральным сервером). При данной топологии все станции могут решить передавать информацию серверу одновременно. Центральный сервер может производить обмен только с одной рабочей станцией. Поэтому в любой момент надо выделить только одну станцию, ведущую передачу.
Центральный сервер посылает запросы по очереди всем станциям. Каждая рабочая станция, которая хочет передавать данные (первая из опрошенных), посылает ответ или же сразу начинает передачу. После окончания сеанса передачи центральный сервер продолжает опрос по кругу. Станции, в данном случае, имеют следующие приоритеты: максимальный приоритет у той из них, которая ближе расположена к последней станции, закончившей обмен.
Обмен данными в сети с топологией шина. В этой топологии, возможно, такое же централизованное управление, как и в “звезде”. Один из узлов (центральный) посылает всем остальным запросы, выясняя, кто хочет передавать, и затем разрешает передачу тому из них, кто после окончания передачи сообщает об этом.
Метод передачи полномочий (передача маркера)
Маркер - служебный пакет определенного формата, в который клиенты могут помещать свои информационные пакеты. Последовательность передачи маркера по сети от одной рабочей станции к другой задается сервером. Рабочая станция получает полномочия на доступ к среде передачи данных при получении специального пакета-маркера. Данный метод доступа для сетей с шинной и звездной топологией обеспечиваетcя протоколом ArcNet.
Многослойная модель сети
Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью, состоящей из слоев:
1) Компьютеры или компьютерные платформы;
2) Коммуникационное оборудование;
3) Операционные системы;
4) Сетевые приложения.
Компьютеры
В основе любой сети лежит аппаратный слой стандартизированных компьютерных платформ. В настоящее время широко используются компьютерные платформы различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Компьютеры подключаются к сети с помощью сетевой карты.
Операционные системы
Третьим слоем, образующим программную платформу сети, являются операционные системы. В зависимости от того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работу всей сети.
Сетевые приложения
Четвертый слой - это сетевые приложения. К сетевым приложениям относятся такие приложения как сетевые базы данных, почтовые приложения, системы автоматизации коллективной работы и т.д.
Основы локальных сетей
Основные понятия ЛВС
Классификацию ЛВС
Компьютерная сеть – это совокупность компьютеров, объединенных каналами передачи данных. В зависимости от расстояния между компьютерами различают следующие вычислительные сети:
1) Локальные вычислительные сети - LAN;
2) Территориальные вычислительные сети, к которым относятся региональные MAN и глобальные WAN сети;
3) Корпоративные сети.
Локальная сеть - это ЛВС, в которой ПК и коммуникационное оборудование находится на небольшом расстоянии друг от друга. ЛВС обычно предназначена для сбора, хранения, передачи, обработки и предоставления пользователям распределенной информации в пределах подразделения или фирмы. Кроме того, ЛВС, как правило, имеет выход в Интернет.
Локальные сети можно классифицировать по:
1) Уровню управления;
4) Административным отношениям между компьютерами;
Рассмотрим более подробно классификацию ЛВС
По уровню управления выделяют следующие ЛВС:
1) ЛВС рабочих групп, которые состоят из нескольких ПК, работающих под одной операционной системой. В такой ЛВС, как правило, имеется несколько выделенных серверов: файл-сервер, сервер печати;
2) ЛВС структурных подразделений (отделов). ДанныеЛВС содержат несколько десятков ПК и серверы типа: файл-сервер, сервер печати, сервер баз данных;
3) ЛВС предприятий (фирм). Эти ЛВС могут содержать свыше 100 компьютеров и серверы типа: файл-сервер, сервер печати, сервер баз данных, почтовый сервер и другие серверы.
По назначению сети подразделяются на:
1) вычислительные сети, предназначенные для расчетных работ;
2) Информационно-вычислительные сети, которые предназначены, как для ведения расчетных работ, так и для предоставления информационных ресурсов;
3) Информационно-советующие, которые на основе обработки данных вырабатывают информацию для поддержки принятия решений;
4) Информационно-управляющие сети, которые предназначены для управления объектов на основе обработки информации.
По типам используемых компьютеров можно выделить:
1) Однородные сети, которые содержат однотипные компьютеры и системное программное обеспечение;
2) Неоднородные сети, которые содержат разнотипные компьютеры и системное программное.
По административным отношениям между компьютерами можно выделить:
1) ЛВС с централизованным управлением (с выделенными серверами);
2)ЛВС без централизованного управления (децентрализованные) или одноранговые (одноуровневые) сети.
По топологии (основным топологиям) ЛВС делятся на:
По архитектуре (основным типам архитектур) ЛВС делятся на:
Конфигурация ЛВС (локальные сети одноранговые и с выделенным сервером)
По административным отношениям между узлами можно выделить локальные сети с централизованным управлением или с выделенными серверами (серверные сети) и сети без централизованного управления или без выделенного сервера (децентрализованные), так называемые, одноранговые (одноуровневые) сети.
Локальные сети с централизованным управлением называются иерархическими, а децентрализованные локальные сети равноправными.
В локальных сетях с централизованным управлением один из компьютеров является сервером, а остальные ПК - рабочими станциями.
Серверы - это высокопроизводительные компьютеры с винчестерами большой емкости и с высокоскоростной сетевой картой, которые отвечают за хранение данных, организацию доступа к этим данным и передачу данных рабочим станциям или клиентам.
Рабочие станции. Компьютеры, с которых осуществляется доступ к информации на сервере, называются рабочими станциями или клиентами.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
На данной страничке представлены сравнительные характеристики наиболее распространенных технологий ЛВС.
Характеристики
Скорость передачи
Рекомендуемые файлы
Ответы на сертификацию Google Рекламы по проведению кампаний для приложений 2021 Ноябрь Ответы на Аттестацию официального партнера amoCRM 2021Среда передачи
оптоволокно, витая пара
коаксиальный кабель, витая пара, оптоволокно
витая пара, оптоволокно
коаксиальный кабель, витая пара, оптоволокно
Метод доступа
Максимальная протяженность сети
Максимальное количество узлов
Максимальное расстояние между узлами
Определение конфигурации сетей
Перед проектированием ЛВС необходимо определить цели создания сети, особенности ее организационного и технического использования:
1. Какие проблемы предполагается решать при использовании ЛВС?
2. Какие задачи планируется решать в будущем?
3. Кто будет выполнять техническую поддержку и обслуживание ЛВС?
4. Нужен ли доступ из ЛВС к глобальной сети?
5. Какие требования предъявляются к секретности и безопасности информации?
Необходимо учитывать и другие проблемы, которые влияют на цели создания сетей и особенности ее организационного и технического использования.
При построении сети конфигурация сети определяется требованиями, предъявляемыми к ней, а также финансовыми возможностями компании и базируется на существующих технологиях и на принятых во всем мире стандартах построения ЛВС.
Исходя из требований, в каждом отдельном случае выбирается топология сети, кабельная структура, протоколы и методы передачи данных, способы организации взаимодействия устройств, сетевая операционная система.
Эффективность функционирования ЛВС определяется параметрами, выбранными при конфигурировании сети:
2. Основные программные и аппаратные компоненты ЛВС
Многослойная модель сети
Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью, состоящей из слоев:
В основе любой сети лежит аппаратный слой стандартизированных компьютерных платформ. В настоящее время широко используются компьютерные платформы различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Компьютеры подключаются к сети с помощью сетевой карты.
Коммуникационное оборудование
Ко второму слою относится коммуникационное оборудование, которое играет не менее важную роль, чем компьютеры. Коммуникационное оборудование сетей можно разделить на три группы:
1) сетевые адаптеры (карты);
2) сетевые кабели;
3) промежуточное коммуникационное оборудование (трансиверы, повторители, концентраторы, коммутаторы, мосты, маршрутизаторы и шлюзы).
Операционные системы
Третьим слоем, образующим программную платформу сети, являются операционные системы. В зависимости от того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работу всей сети.
Сетевые приложения
Четвертый слой - это сетевые приложения. К сетевым приложениям относятся такие приложения как сетевые базы данных, почтовые приложения, системы автоматизации коллективной работы и т.д.
Техническое обеспечение вычислительных систем
Рассмотрим более подробно аппаратные средства сетей - компьютеры. Архитектура компьютера включает в себя как структуру, отражающую аппаратный состав ПК, так и программно – математическое обеспечение. Все компьютеры сетей можно разделить на два класса: серверы и рабочие станции.
Сервер (server)- это многопользовательский компьютер, выделенный для обработки запросов от всех рабочих станций. Это мощный компьютер или мэйнфрейм, предоставляющий рабочим станциям доступ к системным ресурсам и распределяющий эти ресурсы. Сервер имеет сетевую операционную систему, под управлением, которой происходит совместная работа всей сети.
Основными требованиями, которые предъявляются к серверам, являются высокая производительность и надежность их работы. Серверы в больших сетях стали специализированными и, как правило, используются для управления сетевыми базами данных, организации электронной почты, управления многопользовательскими терминалами (принтерами, сканерами, плоттерами) и т.д.
Существует несколько типов серверов:
Коммуникационное оборудование вычислительных сетей
Сетевые адаптеры
Сетевой адаптер (сетевая карта) - это устройство двунаправленного обмена данными между ПК и средой передачи данных локальной сети. Кроме организации обмена данными между ПК и сетью, сетевой адаптер выполняет буферизацию (временное хранение данных) и функцию сопряжения компьютера с сетевым кабелем. Сетевыми адаптерами реализуются функции физического уровня, а функции канального уровня семиуровневой модели ISO реализуются сетевыми адаптерами и их драйверами.
Адаптеры снабжены собственным процессором и памятью. Карты классифицируются по типу порта, через который они соединяются с компьютером: ISA, PCI, USB. Наиболее распространенные из них - это сетевые карты PCI. Карта, как правило, устанавливается в слот расширения PCI, расположенный на материнской плате ПК, и подключается к сетевому кабелю разъемами типа: RJ-45 или BNC.
Сетевые карты можно разделить на два типа:
адаптеры для клиентских компьютеров;
адаптеры для серверов.
В зависимости от применяемой технологии Ethernet, Fast Ethernet или Gigabit Ethernet, сетевые карты обеспечивают скорость передачи данных: 10, 100 или 1000 Мбит/с.
Сетевые кабели
В качестве кабелей соединяющих отдельные ПК и коммуникационное оборудование в локальных сетях применяются: витая пара, коаксиальный кабель, оптический кабель, свойства которых изложены в разделе "Линии связи и каналы передачи данных"
Промежуточное коммуникационное оборудование
В качестве промежуточного коммуникационного оборудования применяются: трансиверы (transceivers), повторители (repeaters), концентраторы (hubs), коммутаторы (switches), мосты (bridges), маршрутизаторы (routers) и шлюзы (gateways).
Промежуточное коммуникационное оборудования используется для усиления и преобразования сигналов, для объединения ПК в физические сегменты, для разделения сетей на подсети (логические сегменты) с целью увеличения производительности сети, а также для объединения подсетей (сегментов) и сетей в единую сеть.
Физическая структуризация сети объединяет ПК в общую среду передачи данных, т.е. образует физические сегменты сети, но при этом не изменяет направление потоков данных. Физические сегменты упрощают подключение к сети большого числа ПК.
Логическая структуризация разделяет общую среду передачи данных на логические сегменты и тем самым устраняет столкновения (коллизии) данных в сети. Логические сегменты или подсети могут работать автономно и по мере необходимости компьютеры из разных сегментов могут обмениваться данными между собой. Протоколы управления в ЛВС остаются теми же, какие применяются и в неразделяемых сетях.
Трансиверы и повторители обеспечивают усиление и преобразование сигналов в локальных сетях. Концентраторы и коммутаторы служат для объединения нескольких компьютеров в требуемую конфигурацию локальной сети.
Концентраторы являются средством физической структуризации сети, так как разбивают сеть на сегменты. Коммутаторы предназначены для логической структуризации сети, так как разделяют общую среду передачи данных на логические сегменты и тем самым устраняют столкновения.
Для соединения подсетей (логических сегментов) и различных сетей между собой в качестве межсетевого интерфейса применяются коммутаторы, мосты, маршрутизаторы и шлюзы.
Повторители – это аппаратные устройства, предназначенные для восстановления и усиления сигналов в сети с целью увеличения ее длины.
Трансиверы или приемопередатчики – это аппаратные устройства, служащие для двунаправленной передачи между адаптером и сетевым кабелем или двумя сегментами кабеля. Основной функцией трансивера является усиление сигналов. Трансиверы применяются и в качестве конверторов для преобразование электрических сигналов в другие виды сигналов (оптические или радиосигналы) с целью использования других сред передачи информации.
Концентраторы – это аппаратные устройства множественного доступа, которые объединяет в одной точке отдельные физические отрезки кабеля, образуют общую среду передачи данных или физические сегменты сети.
Коммутаторы - это программно – аппаратные устройства, которые делят общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов с помощью концентраторов. Каждый логический сегмент подключается к отдельному порту коммутатора.
Мосты – это программно – аппаратные устройства, которые обеспечивают соединение нескольких локальных сетей между собой или несколько частей одной и той же сети, работающих с разными протоколами. Мосты предназначены для логической структуризации сети или для соединения в основном идентичных сетей, имеющих некоторые физические различия. Мост изолирует трафик одной части сети от трафика другой части, повышая общую производительность передачи данных.
Маршрутизаторы. Эти устройства обеспечивают выбор маршрута передачи данных между несколькими сетями, имеющими различную архитектуру или протоколы. Маршрутизаторы применяют только для связи однородных сетей и в разветвленных сетях, имеющих несколько параллельных маршрутов.. Маршрутизаторами и программными модулями сетевой операционной системы реализуются функции сетевого уровня.
Шлюзы – это программно – аппаратные устройства (например, компьютеры), служащие для объединения разнородных сетей с различными протоколами обмена. Шлюзы полностью преобразовывают весь поток данных, включая коды, форматы, методы управления и т.д.
Мосты, маршрутизаторы и шлюзы в локальной вычислительной сети - это, как правило, выделенные компьютеры со специальным программным обеспечением.
Программное обеспечение вычислительных сетей ( программные компоненты ЛВС)
Программное обеспечение вычислительных сетей состоит из трех составляющих:
1) автономных операционных систем (ОС), установленных на рабочих станциях;
2) сетевых операционных систем, установленных на выделенных серверах, которые являются основой любой вычислительной сети;
3) сетевых приложений или сетевых служб.
Автономные операционные системы
В качестве автономных ОС для рабочих станций, как правило, используются современные 32-разрядные операционные системы – Windows 95/98, Windows 2000, Windows XP, Windows VISTA.
Сетевые операционные системы
В качестве сетевых операционных систем в вычислительных сетях применяются:
ОС Unix
UNIX представляет собой очень мощную, гибкую и динамичную операционную систему, которая в состоянии обрабатывать практически любую предложенную пользователем задачу. Обладает широким набором предлагаемых средств, с помощью которых можно решить большинство проблем, возникающих при работе с информационными технологиями. К преимуществам UNIX относятся мощность работы, стабильность и надежность, полная автоматизация, а также поддержка множества языков программирования.
Эта операционная система предлагает оптимальные решения для работы с Internet, включая доступ к ресурсам Web, Telnet, FTP, базам данным и т.п. Поскольку система UNIX создавалась специально для обработки больших массивов данных и полной интеграции с сетевой средой, она почти всегда превосходит по быстродействию любую другую комбинацию аппаратного и программного обеспечения. Linux представляет собой версию UNIX, адаптированную для процессоров Intel.
ОС NetWare фирмы Novell
Novell была одной из первых компаний, которые начали создавать ЛВС. В качестве файлового сервера в NetWare может использоваться обычный ПК, сетевая ОС которого осуществляет управление работой ЛВС. Функции управления включают координацию рабочих станций и регулирование процесса разделения файлов и принтера в ЛВС. Сетевые файлы всех рабочих станций хранятся на жестком диске файлового сервера, а не на дисках рабочих станций.
Сетевые ОС фирмы Microsoft
Сетевая ОС Windows NT
Первоначально Windows NT существовала в двух версиях: Windows NT Advanced Server устанавливалась на серверах сети NT, a Windows NT Workstation представляла собой мощную настольную операционную систему с функциональными возможностями.
Следующая версия Windows NT, предназначенная для использования на серверах, была переименована в Windows NT Server. Высокая производительность и улучшенная поддержка приложений сделали ее одной из самых популярных операционных систем.
Windows NT 4.0 объединяла в себе улучшенную интеграцию с Internet и корпоративными сетями, повышенную производительность, отличную совместимость с другими операционными системами компании Microsoft.
Семейство программных продуктов Microsoft Windows 2000 Server
Семейство программных продуктов Windows 2000 Server – является следующим поколением серии операционных систем Windows NT Server, в котором надежные, удобные для работы в интернете службы каталога, сетевые службы и службы приложений, объединенные с мощным комплексным управлением.
Windows 2000 Server - для серверов рабочих групп и отделов.
Windows 2000 Advanced Server - для приложений и более надежных серверов отделов.
Windows 2000 Datacenter Server - для наиболее ответственных систем обработки данных.
Семейство программных продуктов Windows Server 2003
Семейство программных продуктов Windows Server 2003 является следующим поколением серверных операционных систем Windows. Windows Server 2003 основана на Windows 2000 Server. Она является платформой высокой производительности для поддержки связанных приложений, сетей, и веб-служб XML для рабочих групп, отделов и предприятий любого размера.
Состав Windows Server 2003:
Windows Server 2003 Standard Edition - это сетевая операционная система для предприятий малого бизнеса и отдельных подразделений организации.
Windows Server 2003 Enterprise Edition предназначена для удовлетворения общих ИТ-потребностей.
Windows Server 2003 Datacenter Edition предназначена для решения ответственных задач, требующих очень высокого уровня масштабированности, доступности и надежности.
Windows Server 2003 Web Edition – это операционная система для Web-серверов.
Microsoft Windows Server 2008
Windows Server 2008 — это операционная система нового поколения. В основу Windows Server 2008 положена операционная система Windows Server 2003. Она предназначена для обеспечения пользователей наиболее производительной платформой, позволяющей расширить функциональность приложений, сетей и веб-служб, от рабочих групп до центров данных. При совместном использовании клиентских компьютеров Windows Vista и серверов под Windows Server 2008 значительно повышается производительность, надежность сети.
Получение доступа к ресурсам локальной сети предусматривает выполнение трех процедур: идентификация, аутентификация и авторизация:
1. Идентификация - присвоение пользователю уникального имени или кода (идентификатора).
2. Аутентификация - установление подлинности пользователя, представившего идентификатор. Наиболее распространенным способом аутентификации является присвоение пользователю пароля и хранение его в компьютере.
3. Авторизация - проверка полномочий или проверка права пользователя на доступ к конкретным ресурсам и выполнение определенных операций над ними. Авторизация проводится с целью разграничения прав доступа к сетевым и компьютерным ресурсам.
Средства аутентификации, авторизации и идентификации предназначены для управления информационной безопасностью вычислительных сетей.
В большинстве сетевых операционных систем встроена поддержка протоколов: TCP/IP, IPX/SPX, NetBEUI.
TCP/IP - эти протоколы были разработаны для сети Министерства обороны США ARPAnet, они поддерживаются сетевыми операционными системами Unix, Windows и т.д. Протоколы TCP/IP - это базовые протоколы сети Интернет.
Диагностика опухолей желудка - лекция, которая пользуется популярностью у тех, кто читал эту лекцию.
IPX/SPX - протоколы, разработанные фирмой Novell, поддерживаются операционной системой NetWare разработанной также фирмой Novell, Windows и др. Novell была одной из первых компаний, которые начали создавать ЛВС. Основным элементом локальной сети Novell NetWare является файловый сервер. На нем размещается сетевая операционная система, база данных и прикладные программы пользователей. В настоящее время наиболее распространенными являются локальные сети на базе сетевых плат Ethernet с операционной системой Novell NetWare.
NetBEU - разработчик этого протокола фирма IBM. Протокол предназначен для небольших локальных сетей, в нем отсутствует маршрутизация, его поддерживают операционные системы фирм IBM и Microsoft.
Сетевые приложения
По способу организации сети подразделяются на реальные и искусственные.
Искусственные сети (псевдосети) позволяют связывать компьютеры вместе через последовательные или параллельные порты и не нуждаются в дополнительных устройствах. Иногда связь в такой сети называют связью по нуль-модему (не используется модем). Само соединение называют нуль-модемным. Искусственные сети используются когда необходимо перекачать информацию с одного компьютера на другой. MS-DOS и windows снабжены специальными программами для реализации нуль-модемного соединения.
Основной недостаток - низкая скорость передачи данных и возможность соединения только двух компьютеров.
Реальные сети позволяют связывать компьютеры с помощью специальных устройств коммутации и физической среда передачи данных.
Основной недостаток - необходимость в дополнительных устройствах.
В дальнейшем употребляя термин компьютерная сеть будем иметь в ввиду реальные сети.
Все многообразие компьютерных сетей можно классифицировать по группе признаков:
1) Территориальная распространенность;
2) Ведомственная принадлежность;
3) Скорость передачи информации;
4) Тип среды передачи;
5) Топология;
6) Организация взаимодействия компьютеров.
По территориальной распространенности
По территориальной распространенности сети могут быть локальными, глобальными, и региональными.
Локальные- это сети, перекрывающие территорию не более 10 м 2
Региональные- расположенные на территории города или области
Глобальныена территории государства или группы государств, например, всемирная сеть Internet.
В классификации сетей существует два основных термина: LAN и wAN.
LAN (Local Area Network) - локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин "LAN" может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку - около шести миль (10 км) в радиусе; использование высокоскоростных каналов.
wAN (wide Area Network) - глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример wAN - сети с коммутацией пакетов (Frame relay), через которую могут "разговаривать" между собой различные компьютерные сети.
Термин "корпоративная сеть" также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.
Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей.
По принадлежности различают ведомственные и государственные сети.
Ведомственные принадлежат одной организации и располагаются на ее территории.
Государственные сети - сети, используемые в государственных структурах.
По скорости передачи
По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные. Низкоскоростные (до 10 Мбит/с), среднескоростные (до 100 Мбит/с),
высокоскоростные (свыше 100 Мбит/с);
Для определения скорости передачи данных в сети широко используется бод. Baud (бод)
Единица скорости передачи сигнала, измеряемая числом дискретных переходов или событий в секунду. Если каждое событие представляет собой один бит, бод эквивалентен бит/сек (в реальных коммуникациях это зачастую не выполняется).
По типу среды передачи
По типу среды передачи сети разделяются на:
коаксиальные, на витой паре, оптоволоконные, беспроводные
с передачей информации по радиоканалам, в инфракрасном диапазоне.
1.6. Основные программные и аппаратные компоненты ЛВС
1.6.1. Многослойная модель сети
Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью, состоящей из слоев:
· компьютеры или компьютерные платформы; · коммуникационное оборудование;
· операционные системы; · сетевые приложения.
Компьютеры
В основе любой сети лежит аппаратный слой стандартизированных компьютерных платформ. В настоящее время широко используются компьютерные платформы различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Компьютеры подключаются к сети с помощью сетевой карты.
Коммуникационное оборудование
Ко второму слою относится коммуникационное оборудование, которое играет не менее важную роль, чем компьютеры. Коммуникационное оборудование сетей можно разделить на три группы:
1) сетевые адаптеры (карты); 2) сетевые кабели; 3) промежуточное коммуникационное оборудование (трансиверы, повторители, концентраторы, коммутаторы, мосты, маршрутизаторы и шлюзы).
Операционные системы
Третьим слоем, образующим программную платформу сети, являются операционные системы. В зависимости от того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работу всей сети.
Сетевые приложения
Четвертый слой - это сетевые приложения. К сетевым приложениям относятся такие приложения как сетевые базы данных, почтовые приложения, системы автоматизации коллективной работы и т.д.
Техническое обеспечение вычислительных систем
Рассмотрим более подробно аппаратные средства сетей - компьютеры. Архитектура компьютера включает в себя как структуру, отражающую аппаратный состав ПК, так и программно – математическое обеспечение. Все компьютеры сетей можно разделить на два класса: серверы и рабочие станции.
Сервер (server)- это многопользовательский компьютер, выделенный для обработки запросов от всех рабочих станций. Это мощный компьютер или мэйнфрейм, предоставляющий рабочим станциям доступ к системным ресурсам и распределяющий эти ресурсы. Сервер имеет сетевую операционную систему, под управлением, которой происходит совместная работа всей сети.
Основными требованиями, которые предъявляются к серверам, являются высокая производительность и надежность их работы. Серверы в больших сетях стали специализированными и, как правило, используются для управления сетевыми базами данных, организации электронной почты, управления многопользовательскими терминалами (принтерами, сканерами, плоттерами) и т.д. Существует несколько типов серверов:
· Файл-серверы. Управляют доступом пользователей к файлам и программам. · Принт-серверы. Управляют работой системных принтеров. · Серверы приложений. Серверы приложений - это работающий в сети мощный компьютер, имеющий прикладную программу, с которой могут работать клиенты. Приложения по запросам пользователей выполняются непосредственно на сервере, а на рабочую станцию передаются лишь результаты запроса.
· Почтовые серверы. Данный сервер используется для организации электронной корреспонденции с электронными почтовыми ящиками. · Прокси-сервер. Это эффективное средство подключения локальных сетей к сети Интернет. Прокси-сервер - компьютер, постоянно подключенный к сети Интернет, через который происходит общение пользователей локальной сети с сетью Интернетом.
Читайте также: