По какой технологии изготавливаются плоские мониторы
Реализация описанной выше технологии решила проблему габаритов и энергопотребления. Однако первые модели ЖК - экранов имели ряд специфических недостатков:
· · низкое быстродействие ячеек; на изменение ориентации молекул жидкокристаллического вещества требовалось до 500 мс, что не позволяло использовать такие ЖК - экраны для отображения динамических изображений (например, при быстром перемещении манипулятора «мышь» на экране монитора пропадало изображение его указателя);
· · сильная зависимость качества изображения (яркости, контрастности) от внешнего освещения;
· · ограниченный угол зрения, под которым изображение на ЖК - экране хорошо видно;
· · низкие яркость и насыщенность изображения;
С целью устранения этих недостатков технологии изготовления ЖК - ячеек постоянно совершенствуются.
Технология DSTN
Первой технологией, позволившей значительно повысить качество изображения на экране ЖК - монитора, стала технология DSTN (Dual - scan Super - Twisted Nematic - сверхзакрученные нематические ячейки с двойным сканированием). Эта технология основана на использовании ЖК - ячеек с более подвижными молекулами и большим углом поворота плоскости поляризации (120° по сравнению с 90°) а также двойного сканирования строк экрана. Благодаря увеличению угла поворота плоскости поляризации света, обеспечивается более высокая контрастность изображения, а использование вещества с более подвижными молекулами и двойное сканирование снизило время реакции ЖК - ячейки до 150 мс и позволило значительно повысить частоту обновления экрана.
Хотя с помощью технологии DSTN и удалось значительно повысить качество изображения на экране ЖК - монитора, но осталась неразрешенной проблема низкой контрастности изображения, вызванная частичной активацией соседних ячеек.
Технология TFT
Устранить этот недостаток позволила так называемая технология активных ЖК - ячеек. От обычной (пассивной) ЖК - ячейки активная отличается наличием собственного электронного ключа. Такой ключ позволяет сигналом низкого уровня (около 0,7 В) коммутировать высокое (десятки вольт) напряжение. На рис. 1.8 представлены схема простейшего транзисторного ключа на биполярном транзисторе и диаграммы его работы.
Использование активных ЖК - ячеек позволило значительно снизить уровень сигнала управления и тем самым решить проблему частичной засветки соседних пикселей. Поскольку электронные ключи выполняются по тонкопленочной технологии, подобные ЖК - экраны подучили название ТFT - экранов (Thin Film Transistor - тонкопленочный транзистор). Технология TFT была разработана специалистами фирмы Toshiba. Она позволила не только улучшить показатели ЖК - мониторов (яркость, контрастность, угол зрения и др.), но и создать на основе активной ЖК - матрицы цветной монитор. Каждый элемент такой матрицы образован тремя тонкопленочными транзисторами и триадой управляемых ими ЖК - ячеек. Каждая ячейка триады снабжена светофильтром одного из трех основных цветов: красного, зеленого или синего. Изменяя уровень поданного на транзистор управляющего сигнала, можно регулировать яркость каждой ячейки триады. Таким образом, TFT - экран ЖК - монитора состоит из таких же триад, как экран обычного монитора на основе ЭЛТ.
Рисунок 1.8 – Схема транзисторного ключа (а) и диаграммы его работы (б)
Пиксель на основе TFT устроен следующим образом: в стеклянной пластине друг за другом интегрировано три цветных фильтра (красный, зеленый и синий). Каждый пиксель представляет собой комбинацию трех цветных ячеек или субпиксельных элементов. Это означает, например, что у дисплея, имеющего разрешение 1280x1024, существует ровно 3840x1024 транзистора и субпиксельных элемента. Размер точки (пикселя) для 15.1" дисплея TFT (1024x768) приблизительно равен 0.0188 дюйма (или 0.30 мм), а для 18.1" дисплея TFT - около 0.011 дюйма (или 0.28 мм).
Формирование и подача управляющего сигнала видеоадаптера на каждую ЖК - ячейку экрана - задача очень сложная. Для ее решения в состав плоскопанельного монитора входит специальная электронная схема управления - контроллер ЖК - экрана.
Контроллер является самым сложным элементом ЖК - монитора. Его задача заключается в синхронизации по частоте и фазе выходных сигналов видеоадаптера и управляющих ЖК - экраном синхросигналов, формируемых схемами управления строками и столбцами (см. рис. 1.7).
Рассогласование этих сигналов по частоте ведет к нарушению корректности обновления строк: нарушается соответствие положения элементов растра на экране временным параметрам видеосигнала, В результате изображение пропадает либо наблюдаются такие дефекты, как дрожание растра или вертикальные линии на изображении.
После выравнивания частот указанных сигналов контроллер ЖК - экрана производит их синхронизацию по фазе, что позволяет добиться необходимой фокусировки изображения и полностью устранить дрожание изображения.
Помимо адресации ячеек и синхронизации изображения, контроллер ЖК - экрана выполняет преобразование видеосигнала по уровню. Необходимость в таком преобразовании обусловлена тем, что уровень сигнала, подаваемого на ЖК - ячейку, отличается от уровня выходного сигнала видеоадаптера. Часто в результате этого преобразования значительно уменьшается количество оттенков цветов, отображаемых на экране ЖК - монитора: оно оказывается меньше, чем в состоянии обеспечить видеоадаптер, исходя из объема установленной на нем видеопамяти.
Анализируя методы адресации элементов ЖК - экрана, нельзя не заметить определенного сходства между ячейками ЖК - экрана и ячейками оперативной памяти. В частности, в обоих случаях весь массив ячеек разбивается на строки и столбцы и осуществляется их независимая адресация. Обновление информации, как в памяти, так и на ЖК - экране происходит построчно.
В этой связи становится очевидной нерациональность использования аналогового видеосигнала для управления ЖК - экраном. Ранее, когда видеоадаптер использовался только с обычными мониторами на основе ЭЛТ, последовательный способ передачи информации являлся единственно возможным, поскольку в таком мониторе имелся единственный развертывающий элемент -электронный луч, последовательно сканировавший все элементы растра.
Иначе обстоит дело в ЖК - мониторах. Контроллер ЖК - экрана вынужден выполнять дополнительные преобразования видеосигнала: из аналогового в цифровой и обратно. Такие преобразования сопровождаются появлением дополнительных искажений (в частности, упомянутым выше ограничением палитры). Налицо наличие трех лишних преобразований: цифро-аналогового в видеоадаптере, аналого-цифрового и цифро-аналогового - в контроллере ЖК - экрана. Это снижает качество изображения на ЖК - экране и значительно усложняет его конструкцию.
Технология DFPI
С целью устранения промежуточных преобразований была разработана новая технология DFPI (Digital Flat Panel Initiative - цифровая инициализация плоской панели), в соответствии с которой содержимое ячеек видеопамяти передается непосредственно в ячейки ЖК - экрана. Реализация этой технологии позволяет повысить скорость обновления экрана и устранить проблему синхронизации работы контроллера экрана и видеоадаптера.
Наверное, каждый может вспомнить свой монитор с электронно-лучевой трубкой, которым пользовался ранее. Правда и до сих пор встречаются пользователи и поклонники ЭЛТ технологии. В настоящее время экраны увеличились в диагонали, поменялись технологии изготовления дисплеев, стало все больше разновидностей в характеристиках матриц, обозначающихся аббревиатурами TN, TN-Film, IPS, Amoled и т.д.
Информация в данной статье поможет выбрать себе монитор, смартфон, планшет и другую различного рода технику. Помимо этого, позволит осветить технологии создания дисплеев, а также типы и особенности их матриц.
Пару слов о жидкокристаллических дисплеях
TN и TN+Film матрицы
Недостатки TN матрицы
В настоящий момент TN+Film матрицы полностью заменили TN.
Достоинства TN матрицы
- малое время отклика
- относительно недорогая себестоимость.
Делая выводы, можно утверждать, что при необходимости в недорогом мониторе для офисной работы или серфинга в интернете, мониторы с TN+Film матрицами подойдут наилучшим образом.
IPS матрицы
Преимущества IPS матриц
- лучшая цветопередача относительно экранов с TN матрицами: вы имеете яркие и сочные цвета на экране, а черный цвет остается действительно черным. Соответственно, при подаче напряжения пиксели меняют свой цвет. Учитывая эту особенность, владельцам смартфонов и планшетов с IPS-экранами можно посоветовать использовать темные цветовые схемы и обои на рабочем столе, тогда смартфон от аккумулятора будет работать немного дольше.
- большие углы обзора. В большинстве экранов они составляют 178°. Для мониторов, а особенно для мобильных устройств (смартфонов и планшетов) эта особенность является важной при выборе пользователем гаджета.
Недостатки IPS матриц
- большое время отклика экрана. Это влияет на отображение в динамических картинках, таких как игры и фильмы. В современных IPS панелях с временем отклика дела обстоят получше.
- большая стоимость по сравнению с TN.
Подводя итоги, телефоны и планшеты лучше выбирать с IPS-матрицами, и тогда от использования устройства пользователь будет получать огромное эстетическое удовольствие. Матрица для монитора не является столь критичной, современные IPS-мониторы лучше всего подойдут для обработки фото.
AMOLED-экраны
Последние модели смартфонов оснащают AMOLED-дисплеями. Данная технология создания матриц основана на активных светодиодах, которые начинают светиться и отображать цвет при подаче на них напряжения.
Давайте рассмотрим особенности Amoled матрицы:
- Цветопередача. Насыщенность и контрастность таких экранов выше требуемого. Цвета отображаются настолько ярко, что у некоторых пользователей могут уставать глаза при продолжительной работе со своим смартфоном. Зато черный цвет отображается еще более черным, чем даже в IPS-матрицах.
- Энергопотребление дисплея. Так же как и в IPS, отображение черного цвета требует меньше энергии, чем отображение определенного цвета, и тем более белого. Но разница в энергопотреблении между отображением черного и белого цвета в AMOLED-экранах намного больше. Для отображения белого цвета необходимо в несколько раз больше энергии, чем для отображения черного.
- «Память картинки». При продолжительном выводе статического изображения могут оставаться следы на экране, а это в свою очередь сказывается на качестве отображения информации.
Также из-за своей довольно высокой стоимости AMOLED-экраны пока используются только в смартфонах. Мониторы, построенные на такой технологии, стоят неоправданно дорого.
VA матрицы (PVA и MVA)
Для уменьшения времени отклика в матрицах Premium MVA и S-PVA применяется система динамического повышения напряжения для отдельных участков матрицы, которую обычно называют Overdrive. Цветопередача матриц PMVA и SPVA почти так же хороша как и у IPS, время отклика немного уступает TN, углы обзора максимально широкие, черный цвет наилучший, яркость и контраст максимально возможные среди всех существующих технологий. Однако даже при небольшом отклонении направления взгляда от перпендикуляра, даже на 5–10 градусов можно заметить искажения в полутонах. Для большинства это останется незамеченным, но профессиональные фотографы продолжают за это недолюбливать технологии VA.
MVA и PVA матрицы обладают отличной контрастностью и углами обзора, но вот с временем отклика дела обстоят похуже – оно растет при уменьшении разницы между конечным и начальным состояниями пиксела. Ранние модели таких мониторов были почти непригодны для динамичных игр, а сейчас они показывают результаты близкие к TN матрицам. Цветопередача *VA матриц, конечно, уступает IPS-матрицам, но остается на высоком уровне. Тем не менее, благодаря высокой контрастности, эти мониторы будут отличным выбором для работы с текстом и фотографией, с чертежной графикой, а также в качестве домашних мониторов.
Жидко кристаллический монитор (также Жидкокристаллический дисплей, ЖКД, ЖК-монитор, англ. liquid crystal display, LCD, плоский индикатор) - плоский монитор на основе жидких кристаллов. ЖК мониторы были разработаны 1963г.
LCD TFT (англ. TFT - thin film transistor - тонкопленочный транзистор) - одно из названий жидкокристаллического дисплея, в котором используется активная матрица , управляемая тонкопленочными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и четкости изображения дисплея.
Устройство ЖК-монитора
Субпиксел цветного ЖК-дисплея
Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.
Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN -матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток, или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растет число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отраженным от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.
Технические характеристики ЖК-монитора
Разрешение: Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, "родное", физическое разрешение, остальные достигаются интерполяцией.
Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
Соотношение сторон экрана(формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
Контрастность: отношение яркостей самой светлой и самой темной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности(так называемая динамическая) не относится к статическому изображению.
Яркость: количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
Время отклика: минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями считается по-разному, и часто сравнению не подлежит.
Тип матрицы: технология, по которой изготовлен ЖК-дисплей
Технологии
Основные технологии при изготовлении ЖК дисплеев: TN+ film , IPS и MVA . Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках. Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display) - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V , высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.
TN+ film (Twisted Nematic + film )
Макрофотография TN+ film матрицы монитора NEC LCD1770NX . На белом фоне - стандартный курсор Windows.
Часть " film " в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку " film " часто опускают, называя такие матрицы просто TN . К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причем время отклика у данного типа матриц является на существующий момент одно из лучших, а вот уровень контрастности - нет.
Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.
IPS (In-Plane Switching)
Технология In- Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film . Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.
Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора "битый" пиксель для панели IPS будет не белым, как для матрицы TN , а черным.
При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.
IPS в настоящее время вытеснено технологией S-IPS ( Super-IPS, Hitachi 1998 год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остается слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips и NEC остаются единственными производителями панелей по данной технологии.
Макрофотография S-IPS матрицы монитора NEC 20 WGX2 Pro . На оранжевом фоне- стандартный курсор Windows .
AS-IPS - технология Advanced Super IPS (Расширенная Супер- IPS ), также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS , приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например NEC LCD20WGX2 ) созданных по технологии S-IPS , разработанной консорциумом LG.Philips .
A-TW-IPS - Advanced True White IPS (Расширенная IPS с Настоящим Белым), разработано LG.Philips для корпорации NEC . Представляет собой S-IPS панель с цветовым фильтром TW (True White - Настоящий белый) для придания белому цвету большей реалистичности и расширению цветового диапазона. Этот тип панелей используется при создании профессиональных мониторов для использования в фотолабораториях и/или издательствах.
AFFS - Advanced Fringe Field Switching (неофициальное название S-IPS Pro ). Технология является дальнейшим улучшением IPS , разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться еще больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays .
Существует 6 видов компьютерных мониторов, которые отличаются типом установленных в них экранов. Последние определяют способ вывода изображения на дисплей, влияют на энергопотребление и безопасность для глаз. Расскажем обо всех видах мониторов, выделим их достоинства и недостатки.
ЭЛТ-мониторы
В этих мониторах используют электронно-лучевые трубки (кинескопы). Технология была запатентована в 1897 году, а в 1906 она помогла впервые вывести изображение на экран. Как это работает:
- Заднюю стенку экрана покрывают люминофором — веществом, начинающим светиться после попадания на него электронов.
- Электроны формируют 3 пушки, установленные в вакуумной колбе, расположенной в основании дисплея.
- Каждая пушка выстреливает определенным цветом: красным, зеленым, синим (RGB). Они проходят через теневую маску, которая не дает одному цвету засветить другой. Направление “выстрелов” корректируют магниты, установленные вокруг пушек.
- Поскольку условный луч один, изображение формируется построчно сверху вниз и слева направо.
ЭЛТ-мониторы с высокой частотой развертки (Гц), ценятся среди геймеров и киноманов за счет минимальной задержки.
Достоинства технологии:
- Скорость отклика.
- Отсутствие битых пикселей.
- Высокое качество картинки под любым углом.
Недостатки:
- Габариты.
- Мерцание, вредное для глаз.
- Повышенное энергопотребление.
Сегодня такие мониторы не производятся, поэтому купить их проблематично.
ЖК-мониторы (LCD)
В основе этой технологии лежат жидкие кристаллы, открытые в 1888 году. Первые попытки с их помощью вывести изображение были приняты в 1960-ых, но получалось добиться только монохромной картины. В 1987 компания Sharp выпустила первый цветной экран с использованием LCD. Об особенностях работы:
- Жидкокристаллические экраны состоят из нескольких слоев, основными из них являются 2 стекла (поляризаторы), между которыми нанесен слой жидких кристаллов.
- В экране размещают люминесцентную лампу, свет от который с помощью световода равномерно распределяется по всей диагонали монитора и направляет лучи в сторону пользователя.
- Свет проходит через первый становясь поляризованным.
- Далее, свет проходит через слой жидких кристаллов, которые направляют его на второй поляризатор. Оттуда он попадает на цветной фильтр красного, зеленого или синего цвета, создавая соответствующее изображение для 1 пикселя.
Положение жидких кристаллов определяют транзисторы, ток на которые подает специальная микросхема — все это для каждого из миллионов пикселей на мониторе. Является основным видом мониторов, но с разными типами матриц.
Достоинства:
- Насыщенные цвета.
- Высокая энергоэффективность.
- Не подвержены выгоранию пикселей.
Недостатки:
- Ограниченный угол обзора, максимальная яркость.
- Из-за подсветки отображение черного цвета ненасыщенное.
- Качество изображения зависит от установленного контроллера кристаллов.
Плазменные-мониторы (PDP)
Внешне, плазменные мониторы не отличаются от жидкокристаллических, но используют совершенно другую технологию воспроизведения картинки:
- Основной модуль экрана состоит из двух стекол, наполненных пикселями.
- Пиксели делятся на 3 субпикселя: красный, зеленый, синий. Все они заполнены газом, которые при подаче на него электрического тока запускают движение свободных электронов, образуя плазму.
- Остывая, плазма возвращается в газообразное состояние. Вместе с ней это делают электроны, которые излишек полученной энергии преобразуют в ультрафиолетовые лучи.
- Ультрафиолетовые лучи возбуждают субпиксели, на стенки которых нанесен специальный раствор. Из-за этого они начинают светиться, образуя изображение.
Достоинства:
- Широкие углы обзора.
- Отсутствует мерцание.
- Высокий уровень яркости и контрастности.
Недостатки:
Технология не получила широкого распространения из-за дороговизны производства, и сегодня купить такие устройства проблематично.
LED-мониторы
Это прямое развитие ЖК-панелей, где вместо люминесцентных ламп используют светодиоды. Источники света могут располагать как по краям панели, так и по всей ее площади, избегая засветов.
Преимущества:
- Меньший вес, по сравнению с LCD.
- Высокий уровень глубины и контрастности цветов.
- Натуральное изображение, без “кислотных” оттенков.
Недостатки:
- Неравномерная подсветка при размещении светодиодов по краям панели.
OLED-мониторы
Технология кардинально отличается от конкурирующей ЖК/LED и имеет больше общего с плазменной панелью. Принцип работы следующий:
- Органическую пленку на углеродной основе вставляют между двумя панелями, проводящими электрический ток.
- При подаче электричества на пиксель, тот источает красное, зеленое или синее свечение.
Главное отличие от других технологий в том, что все пиксели излучают свет независимо друг от друга. Проблемы с такими панелями в неравномерной работе пикселей: один может оказаться ярче второго, третий темнее и подобное. Это заставляет производителей добавлять субпиксели или расставлять пиксели в особом порядке.
Преимущества:
- Высокая яркость.
- Минимальное энергопотребление.
- Насыщенный черный цвет — пиксели просто отключаются.
Недостатки:
- Выгорание пикселей спустя время.
- Высокий уровень вредной для глаз пульсации на низких уровнях яркости.
Технология производства OLED матрицы дорога, поэтому мониторов с ней практически нет.
QLED-мониторы
Это вариация ранее упомянутых LED-мониторов. Все отличие сводится к установке дополнительного слоя — представляет собой металлический нанофильтр на основе квантовых точек. Последние, поглощают излучение светодиодов и транслируют его с четко выверенной длиной волны, которую определяет размер точки, и цвета не смешиваются.
Как итог, пользователи получают более насыщенные и яркие цвета. Относительно названия — его придумала и запатентовала Samsung, хотя у LG есть аналог названный NanoCell.
Преимущества:
- Реалистичная цветопередача.
- Более насыщенные цвета, по сравнению со стандартными LCD и LED.
Недостатки:
Заключение
Из 6 видов мониторов самым популярным считаются ЖК-модели, получившие развитие с изменением типа подсветки (LCD LED) и добавлением нанофильтра (QLED). Самыми дорогим остаются OLED-варианты. Навсегда вышли из производства громоздкие ЭЛТ-мониторы.
Читайте также: