На одном стеллаже в случайном порядке лежат запакованные компьютерные мыши 40 черных и 10 белых
Решение задач по теме "Количество информации" (10кл)
Пример 1. В коробке 32 карандаша, все карандаши разного цвета. Наугад вытащили красный. Какое количество информации при этом было получено?
Решение.
Так как вытаскивание карандаша любого цвета из имеющихся в коробке 32 карандашей является равновероятным, то число возможных событий равно 32.
N = 32, I = ?
N = 2 I , 32 = 2 5 , I = 5 бит.
Ответ: 5 бит.
Решение.
Вероятность вытаскивания белого шара
P1 = 40/50 = 0,8
Вероятность вытаскивания чёрного шара
P2 = 10/50 = 0,2
Количество информации о вытаскивании белого шара I1 = log2(1/0,8) = log21,25 = log1,25/log2 = 0,32 бит
Количество информации о вытаскивании чёрного шара I2 = log2(1/0,2) = log25 = log5/log2 » 2,32 бит
Ответ: 0,32 бит, 2,32 бит
Решение.
Количество информации вычисляется по формуле: 2 i = N, где i - искомая величина, N - количество событий. Следовательно, 2 3 =8.
Ответ: 3 бита.
Пример 5. Заполнить пропуски числами:
а) 5 Кбайт = __ байт = __ бит, б) __ Кбайт = __ байт = 12288 бит; в) __ Кбайт = __ байт = 2 13 бит; г) __Гбайт =1536 Мбайт = __ Кбайт; д) 512 Кбайт = 2__ байт = 2__ бит.
Решение.
а) 5 Кбайт = 5120 байт =40 960 бит,
б) 1,5 Кбайт = 1536 байт = 12 288 бит;
в) 1 Кбайт = 2 10 байт = 2 13 бит;
г) 1,5 Гбайт = 1536 Мбайт = 1 572 864 Кбайт;
д) 512 Кбайт = 2 19 байт = 2 22 бит.
Решение.
1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2 i = N; 2 8 = 256 символов
Ответ: 1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2 i = N; 2 8 = 256 символов.
Пример 7.Книга, набранная с помощью компьютера, содержит 150 страниц; на каждой странице - 40 строк, в каждой строке - 60 символов. Каков объем информации в книге?
Решение.
Мощность компьютерного алфавита равна 256. Один символ несет 1 байт информации.
Значит, страница содержит 40*60=2400 байт информации. Объем всей информации в книге: 2400*150 = 360 000 байт.
Ответ: 360 000 байт.
Решение.
Для кодировки одной из 10 цифр необходимо 4 бита. Это получаем из 2 3 < 10 < 2 4 . Объём 150 символов получим 150*4=600(бит).
Ответ: 600 бит.
Пример 9.В кодировке Unicode на каждый символ отводится два байта. Определите информационный объем слова из двадцати четырех символов в этой кодировке.
Решение.
I= K*i; I = 24*2 байт = 48 байт = 48*8бит = 384 бит.
Ответ: 384 бита.
Решение.
Количество информации вычисляется по формуле: 2 i = N, где i - искомая величина, N - количество событий.
2 i =128. Следовательно, i=7.
Ответ: 7 бит.
Читайте также: