Мониторы по способу формирования изображения делятся на
Видеосистемы предназначены для оперативного отображения информации, доведения ее до сведения оператора ЭВМ. Обычно они состоят из двух частей: монитора и адаптера. Монитор служит для визуализации изображения, адаптер - для связи монитора с микропроцессорным комплектом [88].
Классификацию мониторов можно провести по используемым физическим эффектам, по принципу формирования изображения на экране, по способу управления, по длительности хранения информации на экране, по цветности.
По принципу формирования изображения мониторы делятся на плазменные, электролюминесцентные, жидкокристаллические, дисплеи с эмиссией полем, гелиодисплеи, и электронно-лучевые.
Плазменные, электролюминесцентные, жидкокристаллические мониторы и дисплеи с эмиссией полем относятся к дисплеям с плоским экраном. Для них характерно, что экран имеет малые физические размеры и не мерцает. Мониторы этого вида имеют малый вес и незначительное потребление энергии, большую механическую прочность и длительный срок службы.
Плазменные, электролюминесцентные мониторы и дисплеи с эмиссией полем являются активными, излучающими свет. Для работы с ними не нужен посторонний источник света.
Жидкокристаллические - пассивные мониторы. Они работают только при наличии постороннего источника света и способны работать либо в отраженном, либо в проходящем свете. Жидкокристаллические мониторы используют способность жидких кристаллов изменять свою оптическую плотность или отражающую способность под воздействием электрических сигналов.
В плазменной панели элемент изображения образуется в результате газового разряда, который сопровождается излучением света. Конструктивно панель состоит из трех стеклянных пластин, на двух из которых нанесены тонкие прозрачные проводники. На одной пластине проводники расположены горизонтально, на другой - вертикально. Между ними находится третья стеклянная пластина, в которой в местах пересечения проводников имеются сквозные отверстия. Эти отверстия при сборке панели заполняются инертным газом. Вертикально и горизонтально расположенные проводники образуют координатную сетку; на пересечении проводников находятся элементы изображения - пикселы (от "picture ele-ment").
Электролюминесцентные мониторы работают на принципе люминесценции вещества при воздействии на него электрического поля. Люминесцентное вещество распыляется на внутренней поверхности одной из пластин с координатной сеткой. Напряжение на координатные шины подается такое, чтобы на пересечении координатных шин создавалось электрическое поле, достаточное для возбуждения люминофора.
Дисплеи с эмиссией полем ( Field Emission Display, FED ) - это плоские дисплеи, по принципу работы подобны обычным ЭЛТ. Электроны в них излучаются из холодных катодов, имеющих форму очень острых ми-кроигл, количество которых на каждый пиксел может составлять до нескольких тысяч. Этот вид мониторов характеризуется хорошим воспроизведением цветов, так как используется такой же люминофор, как в электронно-лучевых трубках, и высокой скоростью работы (как и в ЭЛТ).
В 2005 году инженеры компании IO2 Technology создали необычное проекционное устройство, получившее название "гелиодисплей" ( Heliodisplay ). Этому необычному проектору не нужен экран: при помощи лазерных лучей прибор формирует цветное изображение непосредственно в атмосферном воздухе.
По утверждению разработчиков, в гелиодисплее используется совершенно новый принцип формирования изображения, основанный на ряде как уже запатентованных, так и только ожидающих патентов технических решений.
В 2005 году IO2 Technology представила три модели готовых к серийному производству изделий: М1, М1а и Мх .
Представленные модели гелиодисплеев являются интерактивными. При работе с ПК "прикосновения" к проецируемому изображению можно использовать для управления элементами пользовательского интерфейса (управляющие команды, эмулирующие работу манипулятора, передаются в ПК по интерфейсу USB ).
Максимальное количество строк на экране и количество точек в строке образуют разрешающую способность монитора:
- низкую: 320*200 (320 пиксел в строке, 200 строк на экране);
- стандартную: 640*200, 640*350 или 640*480;
- высокую: 750*348 или 800*600;
- особо четкую: 1024*768 или 1024*1024 и выше.
Разрешающая способность оказывает значительное влияние на качество изображения на экране, но качество изображения зависит и от других характеристик: физических размеров элементов изображения (пиксел, или точек), размеров экрана, частоты развертки , цветовых характеристик и др.
Одна из моделей цветообразования цветных ЖК-дисплеев, в настоящее время наиболее распространенная, является конструкцией, аналогичной конструкции цветных дисплеев на ЭЛТ. В качестве источника света в цветном ЖК-дисплее используется люминесцентная лампа подсветки, излучающая свет белого цвета. Пикселы такого дисплея состоят каждый из трех частей - ячеек. Перед каждой ячейкой расположен светофильтр, пропускающий свет одного из цветов модели RGB (красного, зеленого и голубого). Благодаря наличию светофильтра каждый элемент пиксела участвует в генерации определенного цвета, а поскольку размеры элементов малы, цвета каждой триады элементов сливаются в один, воспринимаемый глазом человека.
Другая модель вместо люминесцентной лампы использует светодиодные модули подсветки или массив углеродных нанотрубок ( carbon nan -otube, CNT ), которые с высокой частотой последовательно меняют цвет излучаемого света (красный - зеленый - голубой - красный и т.д.) и позволяют отказаться от использования светофильтров.
В мониторах со светодиодной подсветкой применяется светодиодная матрица - каждый пиксел изображения освещается отдельным диодом . Благодаря этому достигается равномерная яркость изображения, увеличиваются углы обзора, а главное - значительно улучшается цветопередача. Кроме того, средний срок службы светодиодной подсветки намного больше времени службы ламп с холодным катодом и оценивается не менее чем в 100 тыс. часов работы.
Во многих портативных устройствах дисплеи используются не только для отображения, но и для ввода информации. Такие дисплеи называются сенсорными. В них экран обладает чувствительностью к прикосновению.
В настоящее время сенсорные дисплеи применяются во многих моделях карманных и планшетных ПК, а также смартфонов и коммуникаторов . В 2005 году начался серийный выпуск цифрового фотоаппарата , оснащенного 3-дюймовым сенсорным ЖК-дисплеем, - Sony Cyber - shot DSC -N1 .
Связь ЭВМ с монитором осуществляется с помощью адаптера - устройства, которое должно обеспечивать совместимость различных мониторов с микропроцессорным комплектом ЭВМ. В начальный период существования персональных компьютеров адаптеры старались стандартизировать, чтобы в полной мере обеспечить совместимость различных по конструкции мониторов с ЭВМ. Было разработано пять стандартов:
- MDA - монохромный дисплейный адаптер;
- CGA - цветной графический адаптер;
- MGA - монохромный графический адаптер;
- EGA - улучшенный графический адаптер;
- VGA - видеографическая матрица.
Кроме них существовали и другие адаптеры, например, Геркулес, PGA , SVGA , и др. Но они не поддерживали некоторые общепринятые режимы работы мониторов и вследствие неполной совместимости не позволяли реализовать любое программное обеспечение.
В последнее время наибольшее распространение получили адаптеры SVGA . Этот адаптер не стандартизован, вследствие чего каждая фирма, выпускающая мониторы, обязательно снабжает их драйверами, позволя-ющими работать с различными адаптерами.
Широкое распространение режима Plag&Play привело к тому, что в состав операционных систем фирмы Microsoft включено огромное количество постоянно обновляемых фирмой драйверов.
Исторически сложилось, что дисплеи могут работать в одном из двух режимов: символьном или графическом.
В символьном режиме на экран может выводиться ограниченный состав символов, имеющих четко определенный графический образ: буквы, цифры, знаки пунктуации, математические знаки и знаки псевдографики. Состав этих символов определен системой кодирования, применяемой в данной ЭВМ, в IBM PC - кодом ASCII , который в последнее время вытесняется кодом UNICOD .
Для вывода символа на экран дисплея сначала определяется позиция, в которой должен появиться символ (номер символа в строке и порядковый номер строки), а затем по коду символа определяется его форма, которая и высвечивается на экране. Предельное количество символов, одновременно размещаемых на экране, называется информационной емкос-тью экрана. В символьном режиме на экране монитора IBM PC может быть высвечено 40, 80 или 132 ( VESA BIOS EXTENTION ) символа в строке. Всего на экране помещается 25, 50 или 60 строк.
Форма выводимого символа определяется знакогенератором дисплея, в котором хранятся коды формы всех символов ASCII или UNICODE .
В графическом режиме изображение на экране формируется из отдельных точек (пиксел), имеющих свои адреса (номер пиксела в строке * номер пиксельной строки). В простейшем случае каждому пикселу экрана соответствует один пиксел видеопамяти, который и определяет, светлым или темным должна быть соответствующая точка на экране. Если кроме этого необходимо указывать цвет пиксела, то количество битов видеопамяти, характеризующих каждый пиксел, приходится увеличивать. Поэтому для графического режима требуется большая память, чем для символьного при той же разрешающей способности экрана.
Основу адаптера любого типа составляет видеопамять.
Физически видеопамять может иметь линейную структуру. Разбиение ее на видеоплоскости в этом случае может осуществляться программным путем - с помощью драйвера дисплея. Поэтому есть возможность одну и ту же видеопамять использовать для различной разрешающей способности экрана (изменяя длину битовой плоскости) и для различного количества воспроизводимых на экране цветов (изменяя количество битовых плоскостей). Следовательно, при фиксированном объеме памяти можно увеличить разрешающую способность (но при этом сократится количество воспроизводимых цветов) или увеличить количество воспроизводимых цветов (снизив соответственно разрешающую способность экрана). Если же видеоплоскости реализованы аппаратно, переключение режимов (мод экрана) может в ограниченных пределах эмулироваться драйвером дисплея.
Для воспроизведения динамических (движущихся, анимационных) изображений видеопамять приходится делить на страницы, которые поочередно выводятся на экран при каждой регенерации (пока одна страница выводится на экран, вторая заполняется очередным кадром).
Во всех адаптерах часть видеопамяти отводится под знакогенератор, в котором записаны коды формы выводимых на экран символов. В некоторых случаях в видеопамяти приходится хранить несколько знакогенераторов, например, с национальными шрифтами.
Кроме видеопамяти, в состав адаптера входят блок сопряжения с монитором, блок управления, различные ускорители (графический, Windows -ускоритель, 3D -ускоритель, и др.), которые предназначены для выполнения вычислительных операций без обращения к МП ЭВМ.
Все видеоустройства имеют плоский экран. Естественным для такого экрана является двумерное (плоское) изображение. В то же время для человека более естественным является объемное (трехмерное) изображение. Поэтому разрабатываются устройства и способы создания если не трехмерного изображения, то хотя бы имитирующего его.
Один из способов создания эффекта глубины изображения заключается в использовании декартовой системы координат и нанесения на рисунок только видимых линий.
Другой способ - "перспективу" - используют художники: все параллельные линии, уходящие вглубь экрана, сходятся в одной точке на линии горизонта (условной линии, расположенной в верхней части экрана).
Более сложный метод создания объемного изображения основан на явлении стереоэффекта. Стереоизображение состоит из двух, выполненных для правого и для левого глаза. Но каждое из них должен видеть только тот глаз, для которого оно предназначено. Один из способов достижения этого - выполнение изображений в разных цветах (например, одно - в красном, а другое - в зеленом). Наблюдатель одевает очки, которые содержат стекла разного цвета (одно - красное, второе - зеленое). Через красный светофильтр видно зеленое изображение, а через зеленый - красное. Другой способ разделить изображения - применить не цветные, а поляризационные фильтры.
Еще более сложным способом создания объемного изображения является голография. Голографический метод формирования изображения известен с конца 40-х гг. В начале 60-х гг. Ю. Н. Денисюк изобрел метод формирования голограмм в трехмерных средах при использовании для записи встречных пучков. Этот метод позволял избавиться от фантомов - так назывались сопутствующие основному, лишние (дополнительные) изображения. На основе этого метода разработана цифровая голография, которую можно реализовать с помощью ЭВМ, без задействования дополнительной аппаратуры.
Голография по Денисюку предусматривает наличие когерентного источника света, который излучает свет в виде лучей, выходящих из источника в одной и той же фазе. Это точечный источник света, имеющий достаточно малые размеры. Если на пути световых лучей поставить линзу, лучи преломляются и далее следуют параллельно друг другу. На их пути устанавливается прозрачная стеклянная фотопластинка. Лучи света проходят через нее и освещают какой-либо объемный предмет. Отражаясь от этого предмета, лучи снова попадают на фотопластинку. Но если при движении к объекту лучи проходили сквозь пластинку, находясь в одной и той же фазе и имея одинаковую интенсивность, то возвращаются назад они после отражения от объекта в разных фазах и с разной интенсивностью. Фазы у них разные, так как расстояние от фотопластинки до различных частей отражающего объекта различно, а интенсивность изменилась по сравнению с начальной, поскольку отражающая способность разных частей объекта различна. На фотопластинке прямой и обратный лучи суммируются. Степень засвечивания фотослоя зависит от яркости, которая определяется полученной суммой. На пластинке образуется интерференционная картина. Если пластинку проявить, интерференционная картина становится видимой. При рассматривании ее невооруженным глазом в рассеянном свете видны только темные и светлые пятна различной формы, даже отдаленно не напоминающие объект, который фотографировался. Если теперь в эту установку поместить проявленную пластинку и убрать объект, то при включении когерентного источника света на месте, где раньше находился объект, появится его объемное изображение.
Стеклянная пластинка имеет следующее свойство: если пластинку разбить, то каждый ее кусочек несет полную картину изображения, правда, не такого яркого, как целая пластинка.
Цифровая голография позволяет получать интерференционную картину без использования когерентного источника света и фотопластинок по трем плоским изображениям объекта, сделанным в трех разных взаимно перпендикулярных плоскостях. Интерференционная картина вычисляется на ЭВМ. Если ее вывести на принтер, сфотографировать, а затем полученную фотопластинку поместить в установку Денисюка и осветить когерентным источником света, то появится объемное изображение исходного объекта.
Впоследствии оказалось, что если снятую с принтера распечатку разглядывать, фокусируя по-разному зрение, можно увидеть объемное изображение объекта и без использования дополнительной аппаратуры.
Содержание
Монитор - устройство визуального отображения текстовой и графической информации, преобразует цифровую и (или) аналоговую информацию в видео изображение.
По способу формирования изображения мониторы делятся на жидкокристаллические (LCD) и построенные на основе электронно-лучевой трубки (CRT).
Мониторы на электронно-лучевой трубке (CRT)
Изображение на экране монитора получается в результате облучения люминофорного покрытия остронаправленным пучком электронов, разогнанных в вакуумной колбе.
Для получения цветного изображения люминофорное покрытие имеет точки или полоски трех типов, светящиеся красным, зеленым и синим цветом.
Чтобы на экране все три луча сходились строго в одну точку и изображение было четким, перед люминофором ставят маску - панель с регулярно расположенными отверстиями или щелями.
Часть мониторов оснащена маской из вертикальных проволочек, что усиливает яркость и насыщенность изображения.
Чем меньше шаг между отверстиями или щелями (шаг маски), тем четче и точнее полученное изображение.
Шаг маски измеряют в долях миллиметра. В настоящее время наиболее распространены мониторы с шагом маски 0.25-0.27 миллиметров.
Одним из главных параметров монитора является частота кадровой развертки, называемой также частотой регенерации (обновления) изображения (частота смены изображения на экране).
Она показывает, сколько раз в течение секунды монитор может полностью сменить изображение (поэтому ее также называют частотой кадров).
Частоту регенерации изображения измеряют в герцах (Гц).
Чем она выше, тем четче и устойчивее изображение, тем меньше утомление глаз, тем больше времени можно работать с компьютером непрерывно.
Этот параметр зависит не только от монитора, но и от свойств и настроек видеоадаптера, хотя предельные возможности определяет все-таки монитор.
При частоте регенерации порядка 60 Гц мелкое мерцание изображения заметно невооруженным глазом. Сегодня такое значение считается недопустимым.
Минимальным считают значение 75 Гц, нормативным - 85 Гц и комфортным - 100 Гц и более.
При работе с компьютером нужно помнить, что главная нагрузка приходится на зрение и если изображение будет дрожать на экране глаза будут сильно утомляться.
Размер монитора измеряется между противоположными углами трубки кинескопа по диагонали. Единица измерения - дюймы. Стандартные размеры: 14', 15', 17', 19', 21'.
В настоящее время наиболее универсальными являются мониторы размером 15 и 17 дюймов, а для операций с графикой желательны мониторы размером 19-21 дюйм. 14 дюймовые мониторы сейчас в основном используются на серверных платформах.
Класс защиты монитора определяется стандартом, которому соответствует монитор с точки зрения требований техники безопасности.
В настоящее время общепризнанными считаются следующие международные стандарты: MPR-2, ТСО-92, ТСО-95, ТСО-99 (приведены в хронологическом порядке).
Стандарт MPR-2 ограничил уровни электромагнитного излучения пределами, безопасными для человека.
В стандарте ТСО-92 эти нормы были сохранены, а в стандартах TСО-95 и TСО-99 ужесточены.
Эргономические и экологические нормы впервые появились в стандарте ТСО-95, а стандарт TСО-99 установил самые жесткие нормы по параметрам, определяющим качество изображения (яркость, контрастность, мерцание, антибликовые свойства покрытия).
Большинством параметров изображения, полученного на экране монитора, можно управлять программно. Программные средства, предназначенные для этой цели, обычно входят в системный комплект программного обеспечения.
Мониторы на жидких кристаллах (LCD)
Мониторы на катодно-лучевой трубке (CRT) устареют в течение ближайших нескольких лет. Их место займут тонкие и плоские дисплеи на жидких кристаллах, до сих пор использовавшиеся в ноутбуках и компьютерах laptop.
Основными достоинствами LCD мониторов являются:
- более живые и естественные цвета и образы;
- отсутствие искривления экрана;
- меньшее тепловое излучение;
- потребление почти на 65% меньше энергии, чем CRT мониторы;
- отсутствие электромагнитного излучения (полностью безопасны для здоровья);
- вес примерно в два раза меньше традиционных мониторов занимаемая площадь на столе почти в два раза меньше, чем у CRT мониторов. LCD дисплеи настолько тонки, что их можно крепить к стене.
Дополнительная информация по теме
Описание, что есть программное обеспечение для компьютера и на какие классы оно подразделяется
Статья о компьютерной модернизации, описание различных способов модернизации и где это можно произвести недорого
Подробное описание управление множеством компьютеров со стороны сервера программного комплекса SD 3000
С помощью данной статьи вы с легкостью определитесь, какая операционная система наилучшим образом подойдет вам и вашему компьютеру
Большие и поменьше, плазма и ЖК, с подсветкой и без нее – есть мониторы на любой вкус. При этом большинство покупателей желают иметь непременно качественный, яркий, суперконтрастный и долговечный экран.
Прежде, чем приступить к такой ответственной покупке, стоит выяснить, каких типов бывают сами мониторы и какие матрицы в них установлены? Ведь для онлайн-сражений и профессиональной работы с фото подойдут разные по видам экраны. Один должен иметь отличную скорость отклика, другой – обладать достоверностью цветопередачи. Также не лишним будет разобраться с интерфейсом подключения девайсов.
Типы экранов
Сегодня пользователи отдают предпочтение ЖК-экранам, популярностью пользуются LED и OLED дисплеи. Подобные экраны используются во всех видах гаджетов: от навигаторов до ПК. При этом все они обладают собственным набором преимуществ и недочетов. Как выбрать самый лучший, яркий и контрастный монитор? Какие бывают типы матриц? Об этом – далее в статье.
Жидкокристаллическая матрица
Представляет собой стеклянную пластину с жидкими кристалликами внутри. Как же работают ЖК-мониторы? Кристаллики меняют оттенки по схеме RGB: красный, зеленый, синий. Пассивная ЖК-матрица реагирует на электрические сигналы и отображает инфо на дисплее, активная (TFT) – имеет элементы управления оттенком и яркостью.
А как устроен ЖК-монитор? Он сконструирован из:
- жидкокристаллической матрицы;
- источника света для подсветки;
- контактных проводков;
- оболочки с рамкой из металла для придания жесткости изделию.
Далее подробнее о том, какие бывают ЖК-мониторы, а также о технологиях IPS и TN.
Такие экраны пользуются популярностью у производителей TV, используются и для мобильных девайсов. Аббревиатура расшифровывается как Liquid Crystal Display. Дословный перевод – жидкокристаллический экран. С момента своего появления LCD успешно «подвинул» ЭЛТ дисплеи.
Сокращение от Thin Film Transistor. Технология экранов с активной матрицей. Это обыкновенный ЖК-экран, но на тонкопленочных транзисторах. Большая часть мониторов в продаже – это LCD TFT.
Как же устроен LCD монитор? Его основа – пиксели и субпиксели, с помощью которых можно создавать миллионы оттенков на экране. Отдельный субпиксель включает в себя: цветовой, вертикальный и горизонтальный фильтр, прозрачные электроды и ЖК-молекулы.
Как работает LCD монитор? Каждый из огромного числа пикселей несет цветовую информацию в отдельный временной отрезок, что в совокупности дает картинку. Для ее выведения на экран используется матрица и подсветка из светодиодов.
Жидкокристаллическая матрица. Была создана для ликвидации недостатков TN матрицы. Технология увеличила обзор до 178° по вертикали и горизонтали, ее характеризует высокий уровень контрастности и хорошая передача оттенков. Такая матрица позволяет создать яркую и четкую картинку. Оптимально подходит для экранов, которые используются для работы в инете, просмотра кинолент, обработки фото.
Одна из самых простых технологий матрицы. TN плюс film означает дополнительный слой, используемый для обеспечения обзора на 90-170 градусов по горизонтали и 65-160 – по вертикали. Слово film часто упускают в названии, называя просто – мониторы T. Они наиболее бюджетные из всех описанных выше. Из-за того, что у таких экранов не идеальное изображение при просмотре под углом и цветопередача уступает мониторам на IPS или MVA, их не рекомендуют приобретать фоторедакторам или видеомонтажерам.
TN матрицы обладают высокой скоростью отклика, что делает ее очень популярной среди геймеров. К тому же, мониторы TN экономичны в энергопотреблении и долговечны.
Мониторы LED: что это такое?
Самый популярный тип подсветки в современных ЖК-мониторах – светодиодная (LED).
Светодиоды отличаются низким энергопотреблением, минимальным уровнем нагрева и стойкостью к высоким нагрузкам. Именно по этим причинам технология быстро осваивалась производителями разнообразной техники и развивается в настоящее время. Нашла свое применение в экранах для TV (например, Sony 40RE453) и ПК.
На полках интернет и оффлайн-магазинов можно встретить экраны:
- LED – разновидность подсветки ЖК-матриц, где вместо ламповой используется светодиодная LED-подсветка монитора, что же это такое? Светодиоды находятся либо по краям панели, либо позади кристалликов, подсвечивая матрицу. Последняя регулирует степень проходящего света, создавая картинку на экране. Изображение здесь очень сочное и контрастное. Также присутствует невероятная глубина черного оттенка. Благодаря светодиодной подсветке картинка становится максимально реалистичной.
- OLED – монитор, в матрице которого основным элементом являются органические светодиоды. OLED мониторы (есть TV с ними, например, LG 55EG9A7V) не нуждаются в дополнительной подсветке, т.к. органические светодиоды излучают свет самостоятельно. Благодаря отсутствию подсветки такие устройства могут быть очень тонкими. Подобные изделия менее распространены из-за дороговизны.
Данная технология широко используются в экранах для суперсовременных TV, смартфонов. При прямых солнечных лучах изображение остается четким и контрастным.
Еще несколько достоинств LED технологии:
- существенная экономия электроэнергии;
- не содержит вредных веществ (например, ртуть);
- способность выдерживать вибрации, низкие температуры;
- позволяет создавать супертонкие мониторы.
Минус – OLED дисплеи в настоящее время достаточно дорогие.
Плазменная панель
На сегодняшний день эта технология устарела и практически не представлена на рынке. Тем не менее, будет полезно знать принцип ее работы. В плазме каждая ячейка экрана – самостоятельно светящийся элемент. Мерцание происходит настолько быстро, что человеческий глаз его не улавливает, перед юзером предстает только насыщенное изображение с высоким уровнем цветопередачи.
Плюсы плазменных панелей:
- плоский и очень яркий экран с минимальной толщиной;
- можно конструировать большие по размеру панели;
- широкие углы обзора экрана;
- изображение с суперконтрастностью;
- длительный срок службы агрегатов (от 10 лет);
- дисплей не притягивает к себе пыль.
Среди недостатков плазмы – достаточно высокая стоимость и повышенное потребление электроэнергии. С учетом яркого, контрастного изображения плазма стоит того, чтобы на нее обратили внимание покупатели.
Какие бывают разрешения экрана для мониторов?
Всего их существует более одного десятка. Разрешение измеряется в пикселях и от него зависит четкость картинки на экране. Например, SXGA (1280х1024), WXGA+ (1440х900 точ), WFHD (2560 на 1080 px). Какое максимальное разрешение монитора? 8K. В пикселях это будет 7680 на 4320 точек. Подобные разрешения пока не сильно распространены из-за дороговизны поддерживающих их устройств и очень малого количества 8К контента.
Какое разрешение экрана для монитора лучше, зависит от целей использования агрегата: для развлечения, серфинга инета, работы с графикой и прочего подойдет стандартное – 1920 на 1080 px. Соотношение сторон при этом будет 16 на 9. Можно приобрести модель и с другим соотношением сторон: 16:10 соответствует разрешению 1920x1200 или 2560x1600, а новое популярное соотношение 21:9 – разрешению 2560х1080, 3440х1440 или 3840х1600. Все варианты прекрасно зарекомендовали себя в работе и играх.
Какое самое распространенное разрешение монитора:
- HD – недорогие мониторы (например, LG 19M38A-B), количество пикселей здесь составляет 1366 на 768. Несложные игрушки, видео, простая офисная работа – самое то для HD монитора.
- FullHD – составляет 1920х1080 пикс (Samsung Curved C24F390F), в настоящий момент это самое популярное разрешение.
- 4К – размеры здесь 3840 на 2160 px, оптимальный вариант для сферы развлечений: просмотр кино, игровые приложения.
Определяясь с параметрами разрешения, стоит также руководствоваться размерами дисплея. Какое нормальное разрешение экрана для монитора:
Интерфейсы мониторов
Основные разъемы экранов для подключения к ПК:
- VGA – аналоговый разъем. Стандарт появился в 1987-м, был создан компанией IBM. Разъем используется и поныне на некоторых видеокартах, компьютерных дисплеях, TV. Это 3-рядный 15-контактный DE-15 разъем. В новых девайсах обычно используется вместе с разъемами, представленными ниже.
- DVI – цифровой видеоинтерфейс (есть здесь: VC239H). DVI-I разъем может передавать цифровые данные и VGA сигнал.
- HDMI – мультимедийный интерфейс. Появился относительно недавно, в 2003 году. Чаще всего встречается в ЖК-дисплеях. Здесь используется метод цифровой передачи инфо. Есть передача аудиосигнала (в отличие от предыдущих вариантов).
- DP (DisplayPort) – один из новейших интерфейсов. В продаже также есть девайсы с DP++, с помощью переходников к ним можно присоединить мониторы HDMI и DVI.
Наличие дополнительных, современных портов в мониторе – расширение функциональности девайса.
При выборе типа мониторов стоит учитывать цели его использования: для ПК игр – устройства с минимальным временем отклика, для дизайнерских работ – с высоким уровнем передачи оттенков. LED – наиболее популярные экраны, а OLED более дорогостоящий вариант.
FullHD разрешение, несмотря на появление все новых типов, по прежнему в фаворитах у юзеров. А мониторы 4K уверенно продвигаются вперед. Фирмы-производители все чаще отступают от разъема VGA, переходя на HDMI и DP.
Монитор — конструктивно законченное устройство, предназначенное для визуального отображения информации.
Основные параметры:
- Соотношение сторон экрана — стандартный (4:3), широкоформатный (16:9, 16:10) или другое соотношение (например, 5:4).
- Размер экрана — определяется длиной диагонали, чаще всего в дюймах.
- Разрешение — число пикселей по горизонтали и вертикали.
- Глубина цвета — количество бит на кодирование одного пикселя (от монохромного до 32-битного).
- Размер зерна или пикселя.
- Частота обновления экрана (Гц).
- Время отклика пикселей (не для всех типов мониторов).
- Угол обзора.
Дисплей (англ. display — показывать, от лат. displicare — рассеивать, разбрасывать) — электронное устройство, предназначенное для визуального отображения информации. Дисплеем в большинстве случаев можно назвать часть законченного устройства, используемую для отображения цифровой, цифро-буквенной или графической информации электронным способом.
Современный монитор состоит из экрана (дисплея), блока питания, плат управления и корпуса. Информация для отображения на мониторе поступает с электронного устройства, формирующего видеосигнал (в компьютере — видеокарта). В некоторых случаях в качестве монитора может применяться и телевизор.
Классификация мониторов
По виду выводимой информации:
- алфавитно-цифровые [система текстового (символьного) дисплея (character display system) — начиная с MDA]:
- дисплеи, отображающие только алфавитно-цифровую информацию,
- дисплеи, отображающие псевдографические символы,
- интеллектуальные дисплеи, обладающие редакторскими возможностями и осуществляющие предварительную обработку данных.
- графические, для вывода текстовой и графической (в том числе видео-) информации:
- векторные (vector-scan display),
- растровые (raster-scan display) — используются практически в каждой графической подсистеме PC; IBM назвала этот тип отображения информации (начиная с CGA) отображением с адресацией всех точек (All-Points-Addressable, APA), — в настоящее время дисплеи такого типа обычно называют растровыми (графическими), поскольку каждому элементу изображения на экране соответствует один или несколько бит в видеопамяти.
По типу экрана:
- ЭЛТ — монитор на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)
- ЖК — жидкокристаллические мониторы (англ. liquid crystal display, LCD)
- Плазменный — на основе плазменной панели (англ. plasma display panel, PDP, gas-plazma display panel)
- Проектор — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал); и проекционный телевизор
- LED-монитор — на технологии LED (англ. light-emitting diode — светоизлучающий диод)
- OLED-монитор — на технологии OLED (англ. organic light-emitting diode — органический светоизлучающий диод)
- Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза
- Лазерный — на основе лазерной панели (пока только внедряется в производство).
По размерности отображения:
- двумерный (2D) — одно изображение для обоих глаз,
- трёхмерный (3D) — для каждого глаза формируется отдельное изображение для получения эффекта объёма.
Электронная бумага
Электронная бумага (англ. e-paper, electronic paper; также электронные чернила, англ. e-ink) — технология отображения информации, разработанная для имитации обычной печати на бумаге и основанная на явлении электрофореза.
В отличие от традиционных плоских жидкокристаллических дисплеев, в которых используется просвет матрицы для формирования изображения, электронная бумага формирует изображение в отражённом свете, как обычная бумага, и может хранить изображение текста и графики в течение достаточно длительного времени, не потребляя при этом электрической энергии и затрачивая её только на изменение изображения. В отличие от традиционной бумаги, технология позволяет произвольно изменять записанное изображение.
Первая электронная бумага, названная Гирикон (англ. Gyricon), состояла из полиэтиленовых сфер от 20 до 100 мкм в диаметре. Каждая сфера состояла из отрицательно заряженной чёрной и положительно заряженной белой половины. Все сферы помещались в прозрачный силиконовый лист, который заполнялся маслом, чтобы сферы свободно вращались. Полярность подаваемого напряжения на каждую пару электродов определяла, какой стороной повернется сфера, давая, таким образом, белый или чёрный цвет точки на дисплее.
В 1990-х годах Джозеф Якобсон изобрел другой тип электронной бумаги.
Принцип действия был следующий: в микрокапсулы, заполненные окрашенным маслом, помещались электрически заряженные белые частички. В ранних версиях низлежащая проводка управляла тем, будут ли белые частички вверху капсулы (чтобы она была белой для того, кто смотрит) или внизу (смотрящий увидит цвет масла).[6] Это было фактически повторное использование уже хорошо знакомой электрофоретической (от электро- и греч. φορέω — переносить) технологии отображения, но использование капсул позволило сделать дисплей с использованием гибких пластиковых листов вместо стекла.
Читайте также: