Клавиатура байера что такое
От увеличения количества пикселей уже все устали. Но очередная технология компании Sony может перевернуть отрасль цифровой фотографии! Если верить информации китайского интернет-издания Cnbeta, японский производитель разработал и готовит к анонсу уже в следующем году матрицу с так называемой технологией «выборки цвета активными пикселями» (Active-Pixel Color Sampling, APCS).
Уникальный сенсор будет иметь разрешение всего 4,8 млн пикселей. Как мало по сегодняшним меркам! Но APCS-матрицы имеют кардинальное отличие от традиционных решений, использующих фильтр Байера. Напомним, фильтр Байера представляет собой двумерный массив цветных фильтров, которыми покрыты фотодиоды матриц. Он состоит из 25 % красных элементов, 25 % синих и 50 % зелёных элементов и повсеместно используется для получения цветного изображения в современных цифровых фотоаппаратах, видеокамерах, сканерах. В APCS-матрице каждый пиксель способен захватывать полную информацию о цвете (как объясняется, с помощью электрически перемещающегося цветового фильтра, но подробности технологии неизвестны), то есть интерполяции информации с четырёх пикселей RGBG больше не требуется. Новая технология кажется даже более совершенным решением, чем сенсор Sigma Foveon. Сенсор Sigma, представляющий альтернативу фильтру Байера, использует три вертикально ориентированных слоя R, G и B. В этом случае также необходимо «смешивать» информацию с трёх пикселей, кроме того, повышается уровень шумов за счет поглощения электронов на каждом из слоёв.
Среди положительных черт новинки можно отметить более крупные пиксели по сравнению с байеровскими сенсорами такого же разрешения. Это позволит ощутимо увеличить не только динамический диапазон, но и чувствительность матрицы. Также отпадает необходимость в сглаживающем фильтре. Меньшее количество пикселей означает снижение нагрузки на процессор и более высокую производительность. В характеристиках новинки отмечается поддержка съёмки 2K-видео на невероятной скорости до 16 тысяч кадров в секунду.
Неофициальные источники утверждают, что первый APCS-сенсор будет представлен в конце 2015 или начале 2016 года. А пока остаётся довольствоваться слухами. Напомним, в прошлом году мы уже вкратце упоминали о грядущей новинке. Теперь стало доступно больше информации со сканами документов (возможно, ненастоящих).
Байеровская схема цветных светофильтров матрицы названа так в честь доктора Брайса Э. Байера (Bryce Bayer), научного сотрудника компании Kodak, кoтoрый в 1976 году запатентовал свою систему фильтров.
Брайс Байер
Фильтр Байера состоит из четырех светофильтров, которые расположены в следующем порядке: 1-й ряд — R-G, 2-й ряд — G-B, см. рис.1.
Рис.1. Байеровская схема расположения светофильтров.
Байеровская схема расположения цветных светофильтров в матрице.
Эту схему называют GRGB (зеленый — красный — зеленый — синий) или RGBG ( чтобы подчеркнуть диагональное расположение красного и синего фильтров). Такая схема расположения фильтров называется аддитивной Байеровской схемой.
Фильтр Байера содержит 25% красных светофильтров, 25% – синих и 50% – зеленых.
Получается, что зеленых светофильтров больше, чем красных и синих. В чем причина такого расположения фильтров? Дело в том, что человеческое зрение более восприимчиво к зеленому цвету, пoэтoмy увеличение числа элементов чувствительных к этому цвету, а соответственно увеличение чувствительности матрицы в этой области спектра соответствует особенностям человеческого зрения. Второй причиной является тот факт что и ПЗС-элементы матрицы тaкжe более чувствительны к зеленому цвету.
В результате матрица выглядит кaк мозаика, состоящая из отдельных цветов, а кaк же получается цветная картина?
Для получения цветного изображения необходимо в каждом пикселе установить цвет, соответствующий действительности. Этим занимается электроника фотоаппарата, которая производит интерполяцию цветов. (Интерполяция известна в математике, где она используется для получения величин, значения, которых не определены, а получаются вычислением некого среднего значения из сравнения c рядом расположенными).
Как работает алгоритм интерполяции в расчете цвета конкретной ячейки? Возьмем к примеру ячейку c зеленым светофильтром. В такой ячейке получается информация только о яркости зеленой составляющей света. Однако в соседних пикселах, окружающих данный зеленый имеется пара пикселей синего цвета и пара — красного. Вычисляются средние значения каждого из этих цветов и считается, что эти средние значения соответствуют реальным величинам каждой составляющей света для данной ячейки. (В действительности эти величины если и будут отличаться от реальных то весьма незначительно, для глаза совершенно незаметно.) Затем вычисленные значения цветов красного и синего добавляются к зеленому и получается реальный цвет данного пиксела.
Однако если при расчете интерполяции использовать только близлежащие элементы, то такой расчет оказывается недостаточно точным и приводит к искажениям изображения в виде цветного муара. В идеале для расчета необходимо учитывать более 10 точек. Но при этом резко возрастают требования к процессору фотокамеры и к увеличению объема запоминающего устройства (ОЗУ).
Для того , чтобы уменьшить объем вычислительных ресурсов фотокамеры, была разработана так называемая модифицированная Байеровская схема. В этой схеме в качестве опорной группы используются не 4 элемента, а 12 или 24 (см. рис. 2) . Расположены эти элементы псевдослучайным образом, что уменьшает склонность к диагональному муару.
Рис.2. Модифицированная Байеровская схема расположения светофильтров.
Правда в этом случае расположение элементов должно храниться в памяти вычислительного устройства и использоваться при восстановлении цвета.
Кроме описанных Байеровских схем используется тaкжe субтрактивная Байеровская схема. Она использует цветовую модель CMYG (голубой-пурпурный-желтый-зеленый). В данном случае к обычной модели CMYK добавлен еще зеленый цвет по причинам описанным выше (повышенная чувствительность глаза к зеленому цвету и более высокая чувствительность ПЗС-элемента).
В некоторых случаях в этой схеме половину зеленых элементов заменяют сине-зелеными, отличающимися более темным оттенком, чем голубой (cyan) цвет.
Причины применения таких схем Байеровских фильтров заключаются в технологии создания светофильтра в матрице. А фильтры эти создаются путем напыления тонких пленок нa поверхность пиксела. Пленки создаются из CMYK красителей. Для создания фильтра RGB-модели необходимо напылять по две пленки: для создания красного светофильтра необходимо использовать красители пурпурный и желтый, для создания синего — пурпурный и голубой, для зеленого — желтый и голубой (См. рис.3)
Рис.3. Цветовая модель CMYK.
Использование модели CMYK позволяет обходиться однoй пленкой, что пoвышaeт светопроницаемость фильтра и спoсoбствyeт повышению чувствительности матрицы. Правда в данном случае повышается сложность расчета цветов, получаемых такими матрицами, кроме того следует учесть, что c помощью RGB-модели мoжнo получить больше оттенков, чем в модели CMYK.
Для лучшего понимания того, что же такое фильтр Байера, просмотрите рисунки, представленные ниже.
Картинка, полученная чeрeз фильтр Байера.
Фильтр Байера нa матрице фотокамеры.
Как работают фильтр Байера и микролинзы в матрице фотоаппарата.
Как работает фильтр Байера.
Из всeгo сказанного выше становится ясно, что в отличие от пленочной фотографии, где изображение получается в результате объективных физико-химических процессов, протекающих в пленке, фотобумаге и т.д., цифровая фотография является плодом обработки цифровыми устройствами, то есть продуктом электроники.
А давайте-ка сегодня поговорим немного о системах цветоразделения и вариантах байера - история интересная.
Вообще самый качественный вариант цветоразделения - 3 матрицы с дихроической призмой - 3CCD. Здесь и далее картинки натырены из Википедии.
Активно применялся и применяется в видеокамерах. Для фотокамер этот способ малоприменим - дело в том, что практически невозможно чисто механически совместить три изображения на трех отдельных сенсорах настолько точно, чтобы получить разрешение хотя бы в несколько мегапикселей. Кроме того, конструкция получается довольно громоздкой. Поэтому решение используется только в видеокамерах.
Второй вариант - многослойные сенсоры, которые по структуре в чем-то имитируют цветную фотопленку. Самый известный пример - сигмовский X3 Foveon. Принцип действия такого сенсора основан на том, что свет с разными длинами волн проникает в кремний на разную глубину.
Поскольку нет мозаики байеровского фильтра, то не нужна интерполяция, и разрешение картинки получается по-настоящему честным.
Но у фовеона свои проблемы, в частности искажение цвета из-за метода цветоразделения, особенно в красном канале, который на сенсоре лежит в самом низу, и до него доходят лучи, искаженные предыдущими двумя слоями. Все эти искажения приходится исправлять с помощью матричных профилей, из-за чего сильно растут шумы, деградирует картинка.
Камеры Sigma достаточно дороги и в целом коммерческим успехом не пользуются. Хотя у Фовеона множество приверженцев-энтузиастов.
Третий и самый популярный вариант - классический байеровский фильтр и его вариации.
Принцип действия фильтра прост - поверх ячеек лежит мозаика из цветных фильтров, пропускающих лучи разного цвета. Получается три ЧБ канала, каждый из которых отражает яркость лучей, прошедших через свой цветной фильтр. При обработке вся эта информация из трёх черно-белых каналов интерполируется в конечное цветное изображение.
На самом деле, можно считать, что у байера четыре канала, потому что зеленых ячеек вдвое больше, чем красных или синих. Это связано с тем, что зеленый канал наиболее важен для человеческого зрительного аппарата и несет для нас наиболее полезную яркостную информацию. Тогда как синий и красный каналы по сути являются цветоразностными.
У байера есть свои недостатки. В первую очередь это недостаточное цветовое разрешение итоговой картинки - поскольку она всегда является плодом интерполяции. Сейчас RAW-конвертеры научились более-менее сносно интерполировать недостающую информацию, однако все равно тот же 4-мегапиксельный Фовеон по разрешающей способности приравнивают к 10-мегапиксельному байеру - и не зря. Простейшую геометрию не обманешь никакими алгоритмами. Поэтому пришлось наращивать мегапиксели и упираться в дифракцию.
В разное время в истории развития цифровых камер появлялись разного рода "экзотические" вариации байеровского фильтра.
Например, в начале 2000-х Sony сделала вариант RGBE (E for Emerald), где половина зеленых ячеек заменена изумрудными:
Вроде бы как это позволило значительно улучшить цветопередачу и приблизить ее к тому, как цвет воспринимается человеческим глазом.
Рассматривая семплы со знаменитой в свое время камеры Sony F-828, в принципе я могу сказать, что цвет у нее неплохой, но принципиальных отличий от современных камеры с обычным байером я не вижу, если честно.
Технология RGBE использовалась Сони недолго, и они вернулись к улучшению традиционного байера.
В конце 90-х также появились сенсоры с байером, основанном на инвертированном наборе первичных цветов - CYGM (cyan, yello, green, magenta). Вот оказывается даже такое было.
Использовались такие сенсоры в некоторых компактах Кэнона и Никона, а также у Кодака, на рубеже 90-х и 2000-х годов.
Основной плюс такого фильтра в том, что он очевидно более "прозрачен", чем классический байеровский. То есть его светопропускание значительно выше, значит можно увеличить чувствительность сенсора и расширить динамический диапазон.
Но все это происходит в ущерб качеству цветоразделения, поскольку каждый фильтр пропускает сравнительно широкую полосу спектра, и разделить соседние оттенки при этом довольно трудно.
Поэтому фотографии с таких камер получались довольно "тухлые" по цвету, и даже агрессивная обработка тут не помогала - что матрица не захватила, то можно только нафантазировать.
Эта технология по вполне понятным причинам тоже долго не прожила.
За несколько лет до своего банкротства в 2007-м году Кодак успел запатентовать еще один вид байера, где половина зеленых ячеек были сделаны совершенно прозрачными. В нескольких вариациях.
Ячейки без фильтров должны по идее улучшить общую чувствительность сенсора.
Пошли такие сенсоры в какие-то реальные модели камер или не пошли - мне лично не известно. Скорее всего на их основе делаются высокочувствительные сенсоры специального назначения.
В течение почти десяти лет Фуджи делала камеры на основе собственной технологии байера "EXR" в нескольких вариациях.
Ячейки в таком сенсоре расположены по диагонали, что позволяет объединять соседние ячейки одного цвета для получения большей чувствительности. Кроме того, при таком расположении ячеек возможны более сложные структуры, позволяющие часть ячеек экспонировать сильнее, а другую часть - слабее, получая больший динамический диапазон.
На основе технологии Фуджи сделали два вида сенсоров CCD (SuperCCD), в которых за счет такой структуры не только повышается разрешение, но и за счет дополнительных маленьких ячеек с низкой чувствительностью можно получить расширенный динамический диапазон.
SuperCCD продержался аж до 2010 года в разных моделях камер Фуджи, но позже все равно уступил место BSI (back side illuminated) CMOS, но с диагональным байером.
Проблема любого байеровского фильтра в том, что он склонен после интерполяции давать цветной муар на периодических структурах. По сути это биение частот, а цветной рисунок возникает как раз именно из-за чередования цветных ячеек на байере. Чтобы уменьшить этот эффект, в 90% камер перед сенсором ставят специальный фильтр "АА" (anti alias), который по сути размывает изображение. Естественно при этом сильно теряется и без того невысокое разрешение изображений, получаемых путем интерполяции, но зато в какой-то степени уходит муар.
Поэтому Фуджи придумали особый вид байера X-Trans CMOS, который якобы должен уменьшить возможность появления муара и позволить безбоязненно делать сенсоры без АА-фильтра. Новый байер выглядит вот так:
Такая мозаика байеровского фильтра, по мнению Фуджи, должна давать большее яркостное и цветовое разрешение, препятствовать появлению муара и давать более "пленочное" зерно за счет того, что в каждом ряду ячеек теперь есть все три цвета, а их расположение как бы более хаотичное, подобно зерну на пленке.
Муара на таком сенсоре действительно не будет, но что касается разрешения, то вопрос крайне спорный.
Ведь, если задуматься, на классическом байере зеленые ячейки, дающие основную яркостную информацию, расположены более "равномерно", не сгруппированы в крупные квадраты 2х2, и, соответственно, яркостное разрешение должно быть несколько выше.
На самом деле, чисто на практике никаких особых преимуществ перед обычным байером X-Trans не показал. В целом разрешающая способность такого сенсора примерно на уровне традиционных аналогов, никакого особого "теплого лампового зерна" я не заметил.
А вот при обработке RAW-файлы с экзотического байера доставляют головную боль. Дело в том, что поначалу вообще ни один конвертер, кроме родного фуджевского, адекватно не интерпретировал такую мозаику. Да и позднее, когда тот же Adobe сделали апдейт и улучшили интерполяцию, результат ничем не лучше обычного байера, а может быть в каких-то ситуациях даже и хуже.
Лично я обращал внимание на отчетливую "пунктирность" всяких вертикальных элементов изображения - очевидно, из-за крупных 2х2 зеленых ячеек.
Кстати, та же самая ситуация наблюдается с их старым SuperCCD, который до сих пор никто толком не умеет правильно интерполировать.
Так получается, что традиционный байер пока что дает самый надежный и удобный для интерпретации результат, проверенный временем.
Возможно именно поэтому Фуджи сейчас на беззеркальной камере нижнего сегмента решила обкатать свежий сенсор с обычным байером, безо всяких выкрутас. Наигрались?
Вы ни когда не задумывались что от вас скрывает фотоаппарат? Тайны, интриги, расследования?
Как-то на форуме была дисскусия, о строении фотоаппаратов, и один очень упёртый юзверь никак не мог понять что не все так просто в строении столь технически сложного устройства. Тот спор сподвиг меня написать данную небольшую статью.
В интернете полно статей о строение современных матриц фотоаппаратов, размеры пикселей, байеровский фильтр, его фуджиковская замена на другую решетку (X-Trans CMOS) (которая волшебным образом должна привезти к лучшей детализации — привет маркетологам) и многое другое, но очень редко упоминается о том, что стоит непосредственно перед матрицей. Для желающих восполнить этот пробел в своих знаниях я сделал страшное — докопался до самой матрицы, ну а по дороге посмотрел что же там стоит перед ней.
Итак, для начала немного о самих цифровых матрицах.
На сегодняшний день самыми распространенными являются матрицы произведенные по технологии CMOS в той, или иной вариации. Каждый пиксель накрыт светофильтром определенного цвета. Есть несколько основных схем светофильтров. Использовать светофильтры необходимо потому, что фотодиоды не могут распознать цветовые характеристики света. По сути, все что выдает каждый отдельный светодиод — это определенный уровень сигнала, никак не связанный с цветовыми составляющими. Соответственно, если не использовать светофильтры, то на выходе будет информация только о уровне яркости, без цветовой составляющей. Кстати, именно так поступила компания Leica в своей черно-белой камере Leica M Monochrom (Type 246) — камера снимает исключительно черно-белые снимки.
И если вы вдруг скажете: «Постойте, но тот же Фотошоп уже очень давно умеет восстанавливать цвет из черно-белых снимков!» - уметь-то умеет, вот только это восстановление можно назвать только приближенным, ни о каком правильном цветовоспроизведении речи и быть не может.
А вот чтобы получить цветное изображение надо как-то выкручиваться. Все мы знаем, что для получения любого цвета необходимо три исходных — красный, зеленый, голубой. Соответственно, если заставить отдельные пиксели получать информацию только об одном каком-то цвете, то потом, после объединения можно восстановить исходный цвет.
Фильтр Байера (шаблон Байера) — это двумерный массив цветных фильтров, которыми накрыты фотодиоды фотоматриц. Используется для получения цветного изображения в матрицах цифровых фотоаппаратов, видеокамер и сканеров. Фильтр Байера состоит из 25 % красных элементов, 25 % синих и 50 % зелёных элементов, расположенных как показано на рисунке.
Соответственно каждый пиксель получает только часть информации соответствующей его цвету. Затем, в процессе обработки сигнала, происходит процесс дебайеризации — восстановление исходного цвета по информации с группы 4 пикселей — RGGB.
Кстати, у цветовых фильтров есть еще один важный параметр — плотность. Чем выше плотность цветового фильтра, тем более сочный и насыщенный цвет получится в итоге, но при этом страдает чувствительность. Отдельные производители, в погоне за высокими значениями ИСО, делали эти самые фильтры меньшей плотности, в результате получали бОльшую чувствительность, но при этом более бледные цвета. Официального подтверждения подобной ситуации вы не найдете, возможно это всего лишь мнение отдельных людей и не соответствует действительности, но. «Совпадение? Не думаю. »
Существуют и другие вариации схемы цветовых фильтров. Когда-то очень ждали развития схемы RGBW — красный, зеленый, голубой, белый. Три основных цветовых фильтра давали показания итогового цвета, а фильтр «белый» давал дополнительную общую информацию об уровне. В теории подобная схема должна была дать выигрыш в 1,5-2 ступени по светочувствительности и больший динамический диапазон. Но не вышел каменный цветок. За исключением нескольких моделей ничего дельного не получилось.
Отдельно можно отметить технологию предложенную компанией Sigma - Foveon X3.
Foveon X3 - серия фотоматриц, в которой цветоделение на аддитивные цвета RGB проводится послойно, по толщине полупроводникового материала, с использованием физических свойств кремния.
Технология позволяет получить бОльшую детализацию в сравнении с классическими типами матриц, но на первых этапах были большие проблемы с цветопередачей. Подобные матрицы используются в камерах компании Sigma. И, как правило, это очень дорогие камеры
Есть еще и более экзотические варианты, например, в видеокамерах могут применяться 3CCD матрицы — разделение светового потока на 3 пучка, каждый под свой цвет, соответственно ставится 3 матрицы, каждая для своего цвета. Технология не прижилась в фотоаппаратах, можно встретить только в видеокамерах.
А теперь перейдем непосредственно к разбору нашего подопытного.
В качестве донора выступает Olympus E-P2. Весь процесс разбора описывать не буду, перейдем сразу у блоку с матрицей.
Вот так выглядит сам блок с матрицей.
Внимательный зритель должен воскликнуть: «Что это за фигня? Черное стекло? У меня в фотоаппарате все совсем не так!». И будет прав.
На фотографии выше была произведена небольшая модификация, замена блока фильтров на специальный ИК-фильтр.
Ни для кого не секрет, что помимо видимого человеческим глазом диапазона света есть еще инфракрасный диапазон и ультрафиолетовый. Глаз человека их не видит, а вот фотодиоды матрицы способны их принимать. Что может внести искажения в уровни сигнала, а соответственно и в правильность цветопередачи. Те, кто в школе физику учил знают, что отсечь УФ диапазон очень просто — любое стекло отсекает большую часть УФ диапазона, остатками можно пренебречь. С ИК диапазоном сложнее, на помощь приходят специальные ИК-фильтры. Где он находится в фотоаппарате будет показано далее.
Так вот, в данном примере, в блоке с матрицой сделана замена. Берем ИК отсекающий фильтр и заменяем его на ИК оставляющий — то есть отсекается видимый диапазон света, а остается только ИК. ИК фотография это отдельная и очень большая тема в фотографии, картинки получаются просто сказочные)
Что-что? Почему нельзя просто накрутить ИК фильтр на объектив и получить ИК фотографию? Можно, конечно, но вот только у вас на порядок увеличивается выдержка, и далеко не весь ИК диапазон задействуется.
Ладно, вернем все на место.
Вот так выглядит блок с матрицей.
Снимаем защитное стекло.
Что, а вы боялись повредить матрицу при чистке или смене объектива? Скажу по секрету: «До матрицы еще далеко».
Идем дальше. Перед матрицей стоит еще вот такой бутерброд.
А вот сверху тот кусок ИК фильтра что стоял в начале.
Кстати, на этой фотографии хорошо виден ИК отсекающий фильтр (прозрачный) и ИК оставляющий — черный, непрозрачный в видимом диапазоне. А вот если бы я взял фотоаппарат переделанный под ИК съемку, то ситуация была ровно наоборот — прозрачным был бы ИК оставляющий фильтр, а черным и непрозрачным ИК отсекающий.
Ну а вот и сама матрица.
Тут тоже есть небольшой защитный слой.
Ну и вот что у нас в итоге получилось.
А теперь пара слов о том, что же таит в себе тот самый «бутерброд» перед матрицей.
Точных данных по фотоаппаратам Олимпус я не нашел, но следуя логике картина у всех должна быть примерно одинаковая. Есть очень хорошая иллюстрация на примере Nikon D800.
Возможно не в таком порядке, но и у Olympus суть примерно такая же. ИК-фильтр, полярик и два низкочастотных фильтра (в вертикальной и горизонтальной плоскости).
Низкочастотные фильтры (АА-фильтр) исторически нужны были для того, чтобы избежать такого явления как муар и отдельные ошибки цветовоспроизведения. Причем «толщина» АА-фильтров могла сильно варьироваться у разных камер. Соответственно и «мыльность» картинки была разная, попиксельной резкости было не добиться ни при каких условиях.
Но развитие современных технологий в общем, и более производительные процессоры применяемые в камерах в частности, позволили бороться с муаром на программном уровне. Нужно было только убрать АА-фильтры перед матрицей. Но нельзя так просто взять и убрать АА-фильтр. Соответственно что нужно сделать? Правильно, берется один АА-фильтр разделяющий в горизонтальной(ну или вертикальной) плоскости, а вместо второго АА-фильтра ставится реверсивный первому.
Именно по такой схеме пошли инженеры в компании Nikon, и что-то мне подсказывает, что именно так поступают и все остальные производители.
Хотя, возможно я не прав, и инженеры в Olympus смогли совсем убрать АА-фильтр. Последних моделей фотоаппаратов, в которых нет АА-фильтра (А это модели Е-М1, Е-М5 II, E-M10II, Pen-F и по некоторым данным E-PL7) у меня либо нет, либо рука не поднимется их разобрать (хотя если кто-то из читателей согласен оказать спонсорскую помощь на сумму равную стоимости какого-либо из данных фотоаппаратов, то я с радостью приму предложения и разберу фотоаппарат, докопаюсь до самой сути).
В разное время компании Никон и Кенон выпускали спецверсии своих фотоаппаратов без АА-фильтра. Также, есть подобное и у Пентакс. Есть примеры и у представителей среднего формата, и, конечно же, у Leica. А вот среди известных мне более-менее распространенных и серийных камер об отсутствии АА-фильтра заявляли в компании FujiFilm (модели с матрицами X-Trans CMOS), и Olympus с моделями последних пары лет (Е-М1, Е-М5 II, E-M10II, Pen-F и по некоторым данным E-PL7).
PS Статья отражает личное мнение автора и по отдельным вопросам не претендует на истину в последней инстанции.
Читайте также: