Какой тип маски используется в мониторах с технологией trinitron
Выпускается фирмой Sony, имеет плоскую внешнюю поверхность экрана (даже модели с диагональю 15 дюймов). Технология, которую Sony использует в своих мониторах, разрабатывается компанией уже более тридцати лет, и не будет преувеличением сказать, что она приобрела всемирную известность, В 1982 г. фирма Sony выпустила первый компьютерный дисплей, в котором была применена ЭЛТ Trinitron. В 1998 г. компания представила первый монитор с плоской поверхностью экрана, выполненный по технологии FD Trinitron.
ЭЛТ Trinitron, которые всем хорошо известны по бытовым телевизорам, отличались от обычных тем, что имели не сферическую поверхность экрана, а цилиндрическую. Остановимся на некоторых основных моментах, отличающих технологию FD Trinitron. Прежде всего, это высокое разрешение. Чтобы достигнуть высокой разрешающей способности, необходимо наличие трех составляющих — очень тонкой экранной маски, минимального диаметра электронного луча и безошибочного позиционирования этого луча на всей поверхности экрана. Решение этой задачи связано с немалыми трудностями. Например, уменьшение диаметра электронного луча уменьшает яркость изображения. Чтобы компенсировать потери яркости, нужно увеличить мощность электронного луча, но это сокращает срок службы люминофорного покрытия и катода электронной пушки.
В FD Trinitron применена конструкция электронной пушки под названием SAGIC (Small Aperture G1 with Impregnated Cathode). В ней используется обычный для пушек бариевый катод, но обогащенный вольфрамом, что позволяет продлить срок службы ЭЛТ. Кроме того, в конструкции электронной пушки предприняты специальные меры по сужению электронного луча.
В качестве экраннной маски фирма Sony использует апертурную решетку с шагом 0,22 - 0,28 мм. Этот параметр изменяется не только в зависимости от модели монитора, но и от периферии к центру маски. Применение апертурной решетки вместо обычной теневой маски позволяет увеличить количество электронов, достигающих поверхности люминофорного покрытия, а это дает более чистое, лучше сфокусированное и яркое изображение. Все мониторы с ЭЛТ FD Trinitron имеют специальное многослойное покрытие (от 4 до 6 слоев), которое выполняет несколько функций. Во-первых, оно позволяет получать истинные цвета на поверхности экрана за счет уменьшения отраженного света. Во-вторых, благодаря дополнительному специальному черному слою антибликового покрытия (Hi-Con™) повышается контрастность, значительно улучшается передача серых оттенков.
Большинство используемых и выпускаемых ныне мониторов построены на электронно-лучевых трубках (ЭЛТ). В английском языке — Cathode Ray Tube (CRT), дословно — катодно-лучевая трубка. Иногда CRT расшифровывают как Cathode Ray Terminal, что соответствует уже не самой трубке, а устройству, на ней основанному. Электронно-лучевая технология была разработана немецким ученым Фердинандом Брауном в 1897 году и первоначально создавалась в качестве специального инструмента для измерения переменного тока, то есть для осциллографа.
Электронно-лучевая трубка, или кинескоп, — самый важный элемент монитора. Кинескоп состоит из герметичной стеклянной колбы, внутри которой находится вакуум (основные конструкционные узлы кинескопа показаны на рис. 1). Один из концов колбы узкий и длинный — это горловина. Другой — широкий и достаточно плоский — экран. Внутренняя стеклянная поверхность экрана покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов — иттрия, эрбия и т. п. Люминофор — это вещество, которое при бомбардировке заряженными частицами испускает свет. Заметим, что иногда люминофор называют фосфором, но это не верно, так как люминофор, используемый в покрытии ЭЛТ, не имеет ничего общего с фосфором. Более того, фосфор светится только в результате взаимодействия с кислородом воздуха при окислении до P2O5, и ссвечение длится очень недолго (кстати, белый фосфор — сильный яд).
Рисунок 1. Конструкция электронно-лучевой трубки.
Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками.
Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы (см. рис. 2). Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку итмеют пониженный уровень излучения.
Конструкция отклоняющей системы
Рисунок 2. Устройство отклоняющей системы ЭЛТ.
Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а две другие — в вертикальной.
Изменение магнитного поля возникает под действием переменного тока, протекающего через катушки и изменяющегося по определенному закону (это, как правило, пилообразное изменение напряжения во времени), при этом катушки придают лучу нужное направление. Путь электронного луча на экране схематично показан на рис. 3. Сплошные линии — это активный ход луча, пунктир — обратный.
Путь электронного луча
Рисунок 3. Схема развертки электронного луча.
Частота перехода на новую линию называется частотой строчной (или горизонтальной) развертки. Частота перехода из нижнего правого угла в левый верхний называется частотой вертикальной (или кадровой) развертки. Амплитуда импульсов перенапряжения на катушках строчной развертки возрастает с частотой строк, поэтому этот узел оказывается одним из самых напряженных мест конструкции и одним из главных источников помех в широком диапазоне частот. Мощность, потребляемая узлами строчной развертки, также является одним из серьезных факторов, учитываемых при проектировании мониторов.
После отклоняющей системы поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию (E=mV 2 /2, где E-энергия, m-масса, v-скорость), часть из которой расходуется на свечение люминофора.
Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, то есть поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT мониторе используется три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся.
Известно, что глаза человека реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз не всегда может различить их). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов — триады).
Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.
Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно различие в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой.
Итак, каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.
Теневая маска
Теневая маска (shadow mask) — самый распространенный тип масок. Она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.
Конструкция теневой маски
Рисунок 5. Конструкция теневой маски (увеличенно).
Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади (см. рис. 5, 6). Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара. Инвар (InVar) — магнитный сплав железа (64%) с никелем (36%). Этот материал имеет предельно низкий коэффициэнт теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов — зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.
Конструкция теневой маски 2
Рисунок 6. Конструкция теневой маски (общий вид).
Одним из слабых мест мониторов с теневой маской является ее термическая деформация. На рис. 7 показано, как часть лучей от электронно-лучевой пушки попадает на теневую маску, вследствие чего происходит нагрев и последующая деформация теневой маски. Происходящее смещение отверстий теневой маски приводит к возникновению эффекта пестроты экрана (смещения цветов RGB). Существенное влияние на качество монитора оказывает материал теневой маски. Предпочтительным материалом маски является инвар.
Конструкция отклоняющей системы 2
Рисунок 7. Конструкция отклоняющей системы.
Недостатки теневой маски хорошо известны: во-первых, это малое соотношение пропускаемых и задерживаемых маской электронов (только около 20-30% проходит через маску), что требует применения люминофоров с большой светоотдачей, а это в свою очередь ухудшает монохромность свечения, уменьшая диапазон цветопередачи, а во-вторых, обеспечить точное совпадение трех не лежащих в одной плоскости лучей при отклонении их на большие углы довольно трудно. Теневая маска применяется в большинстве современных мониторов — Hitachi, Panasonic, Samsung, Daewoo, LG, Nokia, ViewSonic.
Шаг теневой маски
Рисунок 8. Шаг теневой маски.
Минимальное расстояние между люминофорными элементами одинакового цвета в соседних строках называется шагом точек (dot pitch) и является индексом качества изображения (см. рис. 8). Шаг точек обычно измеряется в миллиметрах (мм). Чем меньше значение шага точек, тем выше качество воспроизводимого на мониторе изображения. Расстояние между двумя соседними точками по горизонтали равно шагу точек, умноженному на 0,866.
Апертурная решетка
Есть еще один вид трубок, в которых используется Aperture Grille (апертурная решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология, где имеется три лучевые пушки, три катода и три модулятора, но при этом имеется одна общая фокусировка (см. рис. 9).
Конструкция апертурной решетки
Рисунок 9. Конструкция апертурной решетки.
Апертурная решетка — это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но одинаковые по сути, например, технология Trinitron от Sony, DiamondTron от Mitsubishi и SonicTron от ViewSonic. Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий (см. рис. 10). Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска, применяемая в трубках фирмы Sony (Mitsubishi, ViewSonic), представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной (одной в 15", двух в 17", трех и более в 21") проволочке, тень от которой видна на экране. Эта проволочка применяется для гашения колебаний и называется damper wire. Ее хорошо видно, особенно при светлом фоне изображения на мониторе. Некоторым пользователям эти линии принципиально не нравятся, другие же наоборот довольны и используют их в качестве горизонтальной линейки.
В рекламных проспектах продавцы и производители делают акцент на тех характеристиках монитора, которые им выгодны (и которые зачастую только им и понятны).
Рассмотрим мониторы на базе электронно-лучевой трубки. CRT (Cathode Ray Tube), или ЭЛТ (электронно-лучевая трубка).
На рынке традиционных ЭЛТ-мониторов в качестве диагонали экрана в технических характеристиках указывается размер трубки по диагонали, а видимая ее область при этом в среднем на 1 дюйм меньше, так как края трубки скрыты в корпусе.
Как устроена электронно-лучевая трубка
Электронно-лучевая трубка (ЭЛТ, или CRT, Cathode Ray Tube) — это традиционная технология формирования изображения на дне герметично запечатанной стеклянной «бутылки». Мониторы получают сигнал от компьютера и преобразуют его в форму, воспринимаемую электронно-лучевой пушкой, расположенной в «горлышке» этой огромной бутылки. Пушка «стреляет» в нашу сторону, а широкое дно (куда мы, собственно, и смотрим) состоит из маски и люминесцентного покрытия, на котором создается изображение. В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов (иттрия, эрбия и т.п.). Люминофор — это вещество, испускающее свет при бомбардировке его заряженными частицами. Электромагнитные поля управляют пучком электронов: поток на пути к люминофору проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов; отклоняющая система изменяет направление потока частиц таким образом, что они достигают нужного места на экране, проходя через теневую маску, падают на фосфоресцирующую поверхность и формируют на нем изображение (активизированный электронным лучом участок экрана испускает свет, видимый глазом,
). Такая технология называется эмиссионной.
Цвет — одно из свойств объектов материального мира, воспринимаемое нами как зрительное ощущение. Зрительные ощущения возникают под действием на органы зрения излучений видимого диапазона, длины волн которых находятся примерно в пределах 380-780 мкм. Физические свойства излучения тесно связаны со свойствами вызываемого ими ощущения: с изменением мощности изменяется светлота, а с изменением длины волны — цветность (характеристиками цвета являются цветовой тон и насыщенность). Таким образом, восприятие цвета — продукт нашего мозга, поэтому у каждого человека оно индивидуально.
Цвета на мониторе (впрочем, как и на телевизионном экране) получаются аддитивным (суммарным) смешением трех основных цветов — RGB, то есть красного (Red), зеленого (Green) и синего (Blue). Эта триада, смешанная с одинаковой интенсивностью, дает нам белый цвет, а для того, чтобы добиться цветовых оттенков, интенсивность каждого из этих цветов дозируется в необходимой пропорции.
ЭЛТ-мониторы, как правило, имеют три отдельные электронные пушки (по одной на каждый из основных цветов триады), которые бьют по небольшому участку люминофора своего цвета с различной интенсивностью.
Экран монитора представляет собой матрицу, состоящую из гнезд-триад, определенной структуры и формы (зависящей от конкретной технологии изготовления). Каждое такое гнездо состоит из трех элементов (точек, полос или других структур), формирующих RGB-триаду, в которой основные цвета располагаются настолько близко друг к другу, что отдельные элементы неразличимы для глаза.
Таким образом, электронно-лучевые трубки, используемые в современных мониторах, имеют следующие основные элементы:
· электронные пушки (по одной на каждый цвет RGB-триады или одну, но испускающую три пучка);
· отклоняющую систему, то есть набор электронных «линз», формирующих пучок электронов;
· маску, обеспечивающую точное попадание электронов от пушки каждого цвета в «свои» точки экрана;
· слой люминофора, формирующий изображение при попадании электронов в точку соответствующего цвета.
Указанные элементы и находятся в центре непрерывной борьбы производителей за качество изображения.
Электронная пушка состоит из подогревателя, катода, испускающего поток электронов, и модулятора, ускоряющего и фокусирующего электроны. В современных кинескопах применяются оксидные катоды, в которых электроны испускаются эмиссионным покрытием из редкоземельных элементов, нанесенным на никелевый колпачок с расположенной внутри него нитью накала. Подогреватель обеспечивает нагревание катода до температуры 850-880 °C, при которой происходит испускание (эмиссия) электронов с поверхности катода. Остальные электроды трубки используются для ускорения и формирования пучка электронов. Соответственно каждая из трех электронных пушек создает пучок электронов для формирования своего цвета. Электронные лучи, расходясь после соответствующей маски, попадают на точки люминофора нужного цвета и заставляют их светиться.
Классификация мониторов по типу маски
Современные мониторы с любым типом маски имеют практически плоский по форме экран, благодаря чему существенно снижаются искажения геометрии, особенно по углам. Поэтому тип маски по форме экрана определить не так просто.
На сегодняшний день в ЭЛТ-дисплеях используются три основные технологии формирования матриц и масок для RGB-триад:
трехточечная теневая маска (DOT-TRIO SHADOW-MASK CRT );
щелевая или гнездовая (SLOT-MASK CRT —);
апертурная решетка (APERTURE-GRILLE CRT;
Тип маски можно определить, посмотрев на экран в 10-20-кратную лупу.
При создании мониторов помимо масок используются различные отклоняющие системы и прочая сложная электроника. Хотя сам экран и является наиболее важным фактором, определяющим эксплуатационные параметры дисплея, отклоняющая система и видеоусилитель также играют значительную роль. Поэтому не следует думать, что при использовании одной и той же трубки изготовители получают мониторы с одинаковыми параметрами.
Производители различных моделей говорят о преимуществах именно своей технологии, но тот факт, что на рынке предлагается несколько моделей и, кроме того, многие производители мониторов выпускают модели с различными типами матриц, свидетельствует, что однозначного выбора быть не может. Предпочтения определяются только вкусами и целями пользователей.
Теневая маска
Итак, каждая пушка излучает пучок электронов, который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия, используется специальная маска, структура которой зависит от типа кинескопов разных производителей и обеспечивает дискретность изображения (растр). Самые распространенные типы масок — теневые, которые бывают двух типов: трехточечная теневая маска и щелевая маска. Электронный луч достигает экрана, пройдя через теневую маску, которая может иметь различную (точечную или линейную) структуру.
Наиболее старая и широко распространенная технология — трехточечная теневая маска. Она использует перфорированную металлическую пластину с однородными точками (они называются триадами, так как каждая такая точка состоит из трех элементов люминофора основных цветов — зеленого, красного и синего), которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента (пиксела) изображения, образуемого триадой. В современных моделях с теневой маской применяется инвар — специальный сплав железа и никеля с очень небольшим коэффициентом температурного расширения, поэтому смещение масок при нагреве остается минимальным. Однако практика показывает, что ни один из мониторов не обеспечивает идеального выполнения этой задачи по всей поверхности экрана.
Ранние ЭЛТ-дисплеи с теневой маской имели выраженную криволинейную (сферическую) поверхность. Это позволяло добиваться лучшей фокусировки и уменьшало нежелательные эффекты и отклонения, вызываемые нагревом. В настоящее время большинство современных мониторов имеют практически плоский прямоугольный экран (типа FST).
Мониторы с теневой маской имеют следующие преимущества:
· текст выглядит лучше (особенно при малом размере точек);
· цвета натуральнее и точнее (что особенно важно для компьютерной графики и в полиграфии);
· отлаженная технология обеспечивает лучшее соотношение стоимости и эксплуатационных качеств.
Следовательно, такие мониторы можно рекомендовать для универсального применения, офисных приложений и домашнего использования.
Из минусов можно отметить меньшую яркость этих мониторов, недостаточную контрастность изображения и более короткий срок службы по сравнению с другими типами дисплеев.
Расстояние между люминофорными элементами одинакового цвета здесь называется Dot Pitch, или шаг точки, и является индексом качества изображения. Шаг точки обычно измеряется в миллиметрах. Чем меньше значение шага точки, тем выше возможное разрешение монитора.
Щелевая маска
Щелевые маски (Slot Mask) используются в кинескопах с планарным расположением пушек, а люминофор трех основных цветов здесь наносится на экран не в виде точек, а в виде вертикальных чередующихся полосок (пунктиром) таким образом, чтобы одному щелевидному отверстию соответствовала своя RGB-триада. Вертикальные полосы фактически разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов. В таких ЭЛТ все три электронные пушки соосны друг другу, расположены в одной вертикальной плоскости и наклонены под небольшим углом к горизонтальной плоскости. Подобная гибридная технология позволяет сочетать все преимущества других типов масок — при отсутствии их недостатков. Четкий и ясный текст, натуральные, но достаточно яркие цвета и высокая контрастность изображения неизменно привлекают к этим мониторам внимание всех групп пользователей.
Расходясь после точки схождения, лучи образуют эллипс, охватывающий одновременно только одно отверстие щелевой маски и соответственно три полоски люминофора, находящиеся за ней. Отверстие щелевой маски находится напротив средней (зеленой) полоски люминофора.
Отношение площади отверстий к общей площади маски в электронно-лучевых трубках такого типа значительно выше, чем у обычной теневой маски, поэтому тот же уровень яркости свечения может быть достигнут при значительно меньшей мощности электронных пучков, следовательно, срок службы таких кинескопов существенно больше.
Минимальное расстояние между двумя ячейками называется Slot Pitch, или щелевой шаг. Чем меньше значение щелевого шага, тем выше возможное разрешение монитора.
Апертурная решетка
Апертурная решетка (Aperture Grill) — это тип маски, которую впервые предложила фирма Sony, выпустив мониторы с трубкой Trinitron. Теперь подобные технологии используются разными производителями кинескопов, в частности Diamondtron от Mitsubishi. В электронных пушках этих трубок используются динамические квадрупольные магнитные линзы, позволяющие формировать очень тонкий и точно направленный пучок электронов. Благодаря такому решению значительно снижается астигматизм — рассеивание электронного пучка, приводящее к недостаточной резкости и контрастности изображения (особенно по горизонтали). Но главное отличие от технологии теневой маски состоит в том, что вместо металлической пластины с круглыми отверстиями, выполняющей функции маски, здесь используется вертикальная проволочная сетка (апертурная решетка), люминофор наносится не в виде точек, а в виде вертикальных полос трех основных цветов. Для гашения поперечных колебаний и придания проволочной сетке дополнительной жесткости применяются горизонтальные проволочки, которые называются Damper Wire — демпферные нити (одна в 15-дюймовых, две — в 17-дюймовых и больших мониторах). Тени от нитей видны на экране, особенно на светлом фоне, и вызывают раздражение у некоторых пользователей. Кроме того, если в процессе работы такой монитор слегка качнуть, то колебания изображения будут видны даже невооруженным глазом. Именно поэтому мониторы с этими трубками не рекомендуется ставить на системные блоки типа desktop. Остается добавить, что в электронно-лучевых трубках Sony Trinitron используется система трех пучков электронов, излучаемых одной пушкой, а в трубках Diamondtron с подобной апертурной решеткой компании Mitsubishi — система из трех лучей с тремя пушками.
Мониторы с апертурной решеткой имеют много преимуществ:
· в тонкой сетке меньше металла, что позволяет использовать больше энергии электронов на реакцию с люминофором, а значит, меньше энергиирассеивается на решетке и уходит в тепло;
· увеличенная площадь покрытия люминофором позволяет повысить яркость излучения при той же интенсивности пучка электронов;
· в связи со значительным общим повышением яркости можно использовать более темное стекло и получать на экране более контрастное изображение;
· экран монитора с апертурной решеткой более плоский, чем у дисплеев с теневой маской, а в последних моделях даже не цилиндрический, как раньше, а почти абсолютно ровный, что гораздо удобнее в работе и уменьшает количество бликов и отражений;
· расширены возможности регулировки цветовой температуры и насыщенности цвета;
· дисплей с такой ЭЛТ можно откалибровать точнее, чем с теневой маской.
Такие дисплеи можно порекомендовать для профессионального использования, презентационной графики, мультимедиа и работы с цветом.
Минимальное расстояние между полосами люминофора одинакового цвета здесь называется Strip Pitch, или шаг полосы, и измеряется в миллиметрах. Чем меньше значение Strip Pitch, тем выше возможное разрешение монитора.
Разрешение
Разрешающая способность характеризует качество воспроизведения изображения монитором. Для получения высокого разрешения в первую очередь высококачественным должен быть видеосигнал. Электронные цепи должны обработать его таким образом, чтобы обеспечить правильные уровни и сочетания фокусировки, цвета, яркости и контраста. Разрешающая способность характеризуется числом точек или, как еще говорят, пикселов (Dot) на число строк (Line). Например, разрешение монитора 1024×768 означает возможность различить до 1024 точек по горизонтали при числе строк до 768.
Чтобы электронный луч каждой пушки попадал на люминофор только одного какого-либо цвета и не "засвечивал" другие точки, доступ к ним преграждается специальной маской, которая устанавливается перед экраном.
Структура маски зависит от типа ЭЛТ и ее производителя, от самой маски зависит также дискретность (растр) изображения. Рассмотрим существующие виды масок.
Теневая маска (shadow mask) – самый распространенный тип масок. Она применяется со времени появления первых цветных ЭЛТ. Поверхность у экрана монитора с теневой маской обычно сферической формы (выпуклая). Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину. Сама теневая маска представляет собой тонкий лист с отверстиями (рис. 1а), которые занимают примерно 25% площади. В качестве материала для теневых масок используют инвар (инвар (InVar) – магнитный сплав железа (64%) с никелем (36%)). Этот материал имеет предельно низкий коэффициент теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Маска размещается перед стеклянной трубкой с люминофорным слоем. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно они обеспечивают то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов.
Одним из слабых мест мониторов с теневой маской является ее термическая деформация, возникающая под действием лучей от электронно-лучевой пушки, последствием которой является смещение отверстий теневой маски, приводящее к возникновению эффекта пестроты экрана (смещения цветов RGB).
Минимальное расстояние между люминофорными элементами одинакового цвета в соседних строках называется шагом точек (dot pitch) и является индексом качества изображения (рис. 3.2.1, а). Шаг точек обычно измеряется в миллиметрах (мм). Чем меньше значение шага точек, тем выше качество воспроизводимого на мониторе изображения. Расстояние между двумя соседними точками по горизонтали равно шагу точек, умноженному на 0.866.
Апертурная решетка (aperture grille) – еще один вид масок, используемых в ЭЛТ, известных под торговой маркой Trinitron, которые впервые были представлены на рынке компанией Sony в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология формирования изображения, отличающаяся тем, что три электронные пушки, три катода и три модулятора используют общую систему фокусировки (см. рис. 3.2.1, б).
Как видно из рис. 3.2.1, б, апертурная решетка не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а состоит из решетки вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов, выстроенных в виде вертикальных полос трех основных цветов. Сама маска представляет собой тонкую фольгу, на которой выведены тонкие вертикальные линии. Маска держится на горизонтальных (одной в 15", двух в 17", трех и более в 21") нитях, тень от которой при внимательном рассмотрении видна на экране. Горизонтальная нить помимо крепления маски компенсирует колебания маски, возникающие при воздействии электронных лучей, поэтому ее обозначают как damper wire.
Минимальное расстояние между полосами люминофора одинакового цвета называется шагом полос (strip pitch) и измеряется в миллиметрах (рис. 3.2.1, б). Чем меньше значение шага полос, тем выше качество изображения на мониторе. При апертурной решетке имеет смысл только горизонтальный размер точки, так как шаг по вертикали определяется фокусировкой электронного луча и отклоняющей системой.
Щелевая маска (slot mask) – технология, последняя по времени разработки, поэтому включает достоинства предыдущих технологий. Маска представляет собой перфорированную пластину, но не круглыми отверстиями, а вертикальными щелями (slots), наподобие пунктирной линии (рис. 3.2.1, в). Люминофорные элементы расположены в вертикальных эллиптических ячейках. Каждая ячейка включает группу из трех люминофорных элементов трех основных цветов.
Рисунок 3.2.1.
Таблица 3.2.1. Сравнительная характеристика масок ЭЛТ
Вид маски | Достоинства | Недостатки | Производитель и технология ЭЛТ и сфера применения |
Теневая маска | · лучше отображается текст; · более натурально осуществляется передача цветов. | · меньшая яркость и контрастность по сравнению с другими технологиями; · термическая деформация маски. | Samsung – DynaFlat; Hitachi – FlatFace; Daewoo и LG. Офисные приложения (текстовые редакторы и электронные таблицы) |
Апертурная решетка | · меньше энергии рассеивается на решетке и уходит в тепло; · увеличенная площадь покрытия люминофором позволяет повысить яркость излучения при той же интенсивности пучка электронов; · возможность использования более темного стекла для получения более контрастного изображения; · более плоский экран. | · тени от стабилизаторов; · качание изображения при вибрации монитора или всего рабочего места. | Sony – Trinitron; Mitsubishi – DiamondTron; ViewSonic – SonicTron. Пакеты растровой и векторной графики. |
Щелевая маска | технология сочетает в себе все преимущества теневой маски и апертурной решетки. | NEC – CromaClear; Panasonic – PureFlat; LG – Flatron. |
При сравнении ЭЛТ с различными масками необходимо учитывать, что нельзя напрямую сравнивать размер шага для ЭЛТ разных типов, поскольку шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, – по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Например, шаг полос 0.25 мм приблизительно эквивалентен шагу точек, равному 0.27 мм.
Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Различие в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой. Так, например, ограничения на частоту кадров связаны с параметрами блока развертки монитора.
Теневая маска (shadow mask) - это самый распространенный тип масок, она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). то сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.
Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади. Находится маска перед стеклянной трубкой с люминофорным слоем. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов - зеленного, красного и синего - которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.
Есть еще один вид трубок, в которых используется "Aperture Grille" (апертурная решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony в 1982 году.
Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии.
Щелевая маска (slot mask) - это технология широко применяется компанией NEC под именем "CromaClear". Это решение на практике представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цвето
3.2. LCD - мониторы
Экраны LCD-мониторов сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.
Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 г. Однако долгое время никто не знал, как их применить на практике. И вот в конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы.
Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы "просеивает" свет, данный эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.
Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-дисплеи для настольных компьютеров.
Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которыми можно манипулировать для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается.
При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы.
Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации.
Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD монитора, и позволяет нам отображать даже сложные изображения в цвете. Для вывода цветного изображения необходима подсветка монитора сзади, таким образом, чтобы свет исходил из задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.
Читайте также: