Какое устройство называется маской монитора
Для того чтобы починить ЖК монитор своими руками, необходимо в первую очередь понимать, из каких основных электронных узлов и блоков состоит данное устройство и за что отвечает каждый элемент электронной схемы. Начинающие радиомеханики в начале своей практики считают, что успех в ремонте любого прибора заключается в наличии принципиальной схемы конкретного аппарата. Но на самом деле, это ошибочное мнение и принципиальная схема нужна не всегда.
Итак, вскроем крышку первого попавшегося под руку ЖК монитора и на практике разберёмся в его устройстве.
ЖК монитор. Основные функциональные блоки.
Жидкокристаллический монитор состоит из нескольких функциональных блоков, а именно:
Жидкокристаллическая панель представляет собой завершённое устройство. Сборкой ЖК-панели, как правило, занимается конкретный производитель, который кроме самой жидкокристаллической матрицы встраивает в ЖК-панель люминесцентные лампы подсветки, матовое стекло, поляризационные цветовые фильтры и электронную плату дешифраторов, формирующих из цифровых сигналов RGB напряжения для управления затворами тонкоплёночных транзисторов (TFT).
Рассмотрим состав ЖК-панели компьютерного монитора ACER AL1716. ЖК-панель является завершённым функциональным устройством и, как правило, при ремонте разбирать её не надо, за исключением замены вышедших из строя ламп подсветки.
Маркировка ЖК-панели: CHUNGHWA CLAA170EA
На тыльной стороне ЖК-панели расположена довольно большая печатная плата, к которой от основной платы управления подключен многоконтактный шлейф. Сама печатная плата скрыта под металлической планкой.
ЖК-панель компьютерного монитора Acer AL1716
На печатной плате установлена многовыводная микросхема NT7168F-00010. Данная микросхема подключается к TFT матрице и участвует в формировании изображения на дисплее. От микросхемы NT7168F-00010 отходит множество выводов, которые сформированы в десять шлейфов под обозначением S1-S10. Эти шлейфы довольно тонкие и на вид как бы приклеены к печатной плате, на которой находиться микросхема NT7168F.
Печатная плата ЖК-панели и её элементы
Микропроцессор SM5964 выполняет довольно небольшое число функций. К нему подключена кнопочная панель и индикатор работы монитора. Этот процессор управляет включением/выключением монитора, запуском инвертора ламп подсветки. Для сохранения пользовательских настроек к микроконтроллеру по шине I2C подключена микросхема памяти. Обычно, это восьмивыводные микросхемы энергонезависимой памяти серии 24LCxx.
Основная плата (Main board) ЖК-монитора.
Вторым микропроцессором на плате управления является так называемый мониторный скалер (контроллер ЖКИ) TSU16AK. Задач у данной микросхемы много. Она выполняет большинство функций, связанных с преобразованием и обработкой аналогового видеосигнала и подготовке его к подаче на панель ЖКИ.
В отношении жидкокристаллического монитора нужно понимать, что это по своей сути цифровое устройство, в котором всё управление пикселями ЖК-дисплея происходит в цифровом виде. Сигнал, приходящий с видеокарты компьютера является аналоговым и для его корректного отображения на ЖК матрице необходимо произвести множество преобразований. Для этого и предназначен графический контроллер, а по-другому мониторный скалер или контроллер ЖКИ.
Мониторный скалер TSU16AK взаимодействует с управляющим микроконтроллером SM5964 по цифровой шине. Для работы ЖК-панели графический контроллер формирует сигналы синхронизации, тактовой частоты и сигналы инициализации матрицы.
Микроконтроллер TSU16AK через шлейф связан с микросхемой NT7168F-00010 на плате ЖК-панели.
При неисправностях графического контроллера у монитора, как правило появляются дефекты, связанные с правильным отображением картинки на дисплее (на экране могут появляться полосы и т.п). В некоторых случаях дефект можно устранить пропайкой выводов скалера. Особенно это актуально для мониторов, которые работают круглосуточно в жёстких условиях.
При длительной работе происходит нагрев, что плохо сказывается на качестве пайки. Это может привести к неисправностям. Дефекты, связанные с качеством пайки нередки и встречаются и у других аппаратов, например, DVD плееров. Причиной неисправности служит деградация либо некачественная пайка многовыводных планарных микросхем.
Блок питания и инвертор ламп подсветки.
Наиболее интересным в плане изучения является блок питания монитора, так как назначение элементов и схемотехника легче в понимании. Кроме того, по статистике неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Поэтому практические знания устройства, элементной базы и схемотехники блоков питания непременно будут полезны в практике ремонта радиоаппаратуры.
Блок питания ЖК монитора состоит из двух. Первый – это AC/DC адаптер или по-другому сетевой импульсный блок питания (импульсник). Второй – DC/AC инвертор. По сути это два преобразователя. AC/DC адаптер служит для преобразования переменного напряжения сети 220 В в постоянное напряжение небольшой величины. Обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 вольт.
Инвертор DC/AC наоборот преобразует постоянное напряжение (DC) в переменное (AC) величиной около 600 — 700 В и частотой около 50 кГц. Переменное напряжение подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.
Вначале рассмотрим AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров (за исключением дешёвых зарядников для мобильного, например).
Так в блоке питания ЖК монитора Acer AL1716 применена микросхема TOP245Y. Документацию (datasheet) по данной микросхеме легко найти из открытых источников.
В документации на микросхему TOP245Y можно найти типовые примеры принципиальных схем блоков питания. Это можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы.
Вот несколько примеров принципиальных схем блоков питания на базе микросхем серии TOP242-249.
Рис 1 .Пример принципиальной схемы блока питания
В следующей схеме применены сдвоенные диоды с барьером Шоттки (MBR20100). Аналогичные диодные сборки (SRF5-04) применены в рассматриваемом нами блоке монитора Acer AL1716.
Рис 2. Принципиальная схема блока питания на базе микросхемы из серии TOP242-249
Заметим, что приведённые принципиальные схемы являются примерами. Реальные схемы импульсных блоков могут несколько отличаться.
Микросхема TOP245Y представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ – контроллер и мощный полевой транзистор, который переключается с огромной частотой от десятков до сотен килогерц. Отсюда и название — импульсный блок питания.
Блок питания ЖК монитора (AC/DC адаптер)
Схема работы импульсного блока питания сводится к следующему:
Выпрямление переменного сетевого напряжения 220В.
Эту операцию выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе напряжение чуть больше чем сетевое. На фото показан диодный мост, а рядом фильтрующий электролитический конденсатор (82 мкФ 450 В) – синий бочонок.
Преобразование напряжения и его понижение с помощью трансформатора.
Коммутация с частотой в несколько десятков – сотен килогерц постоянного напряжения (>220 B) через обмотку высокочастотного импульсного трансформатора. Эту операцию выполняет микросхема TOP245Y. Импульсный трансформатор выполняет ту же роль, что и трансформатор в обычных сетевых адаптерах, за одним исключением. Работает он на более высоких частотах, во много раз больше, чем 50 герц.
Поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди. Но необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 герц. Те, кто не знает, что такое трансформатор и зачем он применяется, сперва ознакомьтесь со статьёй про трансформатор.
В результате трансформатор получается очень компактным. Также стоит отметить, что импульсные блоки питания очень экономичны, у них высокий КПД.
Выпрямление пониженного трансформатором переменного напряжения.
Эту функцию выполняют мощные выпрямительные диоды. В данном случае применены диодные сборки с маркировкой SRF5-04.
Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом. Обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но используются для выпрямления больших напряжений (20 – 50 вольт). Это нужно учитывать при замене дефектных диодов.
У диодов Шоттки есть некоторые особенности, которые нужно знать. Во-первых, эти диоды имеют малую ёмкость перехода и способны быстро переключаться – переходить из открытого состояния в закрытое. Это свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 вольт, против 0,6 – 0,7 вольт у обычных диодов. Это свойство повышает их КПД.
Есть у диодов с барьером Шоттки и нежелательные свойства, которые затрудняют их более широкое использование в электронике. Они очень чувствительны к превышению обратного напряжения. При превышении обратного напряжения диод Шоттки необратимо выходит из строя.
Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоках питания. Это стоит учитывать в проведении диагностики и ремонте.
Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи. На схеме обозначена как R15C14 (см.рис.1).
При анализе схемотехники блока питания ЖК монитора Acer AL1716 на печатной плате также обнаружены демпфирующие цепи, состоящие из smd резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811). Они защищают диоды Шоттки (D803, D805).
Демпфирующие цепи на плате блока питания
Также стоит отметить, что диоды Шоттки используются в низковольтных цепях с обратным напряжением, ограниченным единицами – несколькими десятками вольт. Поэтому, если требуется получение напряжения в несколько десятков вольт (20-50), то применяются диоды на основе p-n перехода. Это можно заметить, если просмотреть datasheet на микросхему TOP245, где приводятся несколько типовых схем блоков питания с разными выходными напряжениями (3,3 B; 5 В; 12 В; 19 В; 48 В).
Диоды Шоттки чувствительны к перегреву. В связи с этим их, как правило, устанавливают на алюминиевый радиатор для отвода тепла.
Отличить диод на основе p-n перехода от диода на барьере Шоттки можно по условному графическому обозначению на схеме.
Условное обозначение диода с барьером Шоттки.
Условное обозначение диода на основе p-n перехода.
После выпрямительных диодов ставятся электролитические конденсаторы, служащие для сглаживания пульсаций напряжения. Далее с помощью полученных напряжений 12 В; 5 В; 3,3 В запитываются все блоки LCD монитора.
По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами (ЭПРА), которые нашли широкое применение в осветительной технике для питания бытовых осветительных люминесцентных ламп. Но, между ЭПРА и инвертором ЖК монитора есть существенные различия.
Инвертор ЖК монитора, как правило, построен на специализированной микросхеме, что расширяет набор функций и повышает надёжность. Так, например, инвертор ламп подсветки ЖК монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G. Микросхема контроллера смонтирована на печатной плате планарным монтажом.
Микросхема контроллера OZ9910G
Инвертор преобразует постоянное напряжение, значение которого составляет 12 вольт (зависит от схемотехники) в переменное 600-700 вольт и частотой 50 кГц.
Контроллер инвертора способен изменять яркость люминесцентных ламп. Сигналы для изменения яркости ламп поступают от контроллера ЖКИ. К микросхеме-контроллеру подключены полевые транзисторы или их сборки. В данном случае к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (На корпусе микросхемы указано только 4501S).
Сборка полевых транзисторов AP4501SD и её цоколёвка
Также на плате блока питания установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.
Плата инвертора и её элементы
Информацию по ремонту ЖК мониторов можно найти в специализированных журналах по ремонту. Так, например, в журнале “Ремонт и сервис электронной техники” №1 2005 года (стр.35 – 40), подробно рассмотрено устройство и принципиальная схема LCD-монитора “Rover Scan Optima 153”.
Среди неисправностей мониторов довольно часто встречаются такие, которые легко устранить своими руками за несколько минут. Например, уже упомянутый ЖК монитор Acer AL1716 пришёл на стол ремонта по причине нарушения контакта вывода розетки для подключения сетевого шнура. В результате монитор самопроизвольно выключался.
После разборки ЖК монитора было обнаружено, что на месте плохого контакта образовывалась мощная искра, следы которой легко обнаружить на печатной плате блока питания. Мощная искра образовывалась ещё и потому, что в момент контакта заряжается электролитический конденсатор в фильтре выпрямителя. Причина неисправности — деградация пайки.
Деградация пайки, вызвавщая неисправность монитора
Также стоит заметить, что порой причиной неисправности может служить пробой диодов выпрямительного диодного моста.
Большинство используемых и выпускаемых ныне мониторов построены на электронно-лучевых трубках (ЭЛТ). В английском языке — Cathode Ray Tube (CRT), дословно — катодно-лучевая трубка. Иногда CRT расшифровывают как Cathode Ray Terminal, что соответствует уже не самой трубке, а устройству, на ней основанному. Электронно-лучевая технология была разработана немецким ученым Фердинандом Брауном в 1897 году и первоначально создавалась в качестве специального инструмента для измерения переменного тока, то есть для осциллографа.
Электронно-лучевая трубка, или кинескоп, — самый важный элемент монитора. Кинескоп состоит из герметичной стеклянной колбы, внутри которой находится вакуум (основные конструкционные узлы кинескопа показаны на рис. 1). Один из концов колбы узкий и длинный — это горловина. Другой — широкий и достаточно плоский — экран. Внутренняя стеклянная поверхность экрана покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов — иттрия, эрбия и т. п. Люминофор — это вещество, которое при бомбардировке заряженными частицами испускает свет. Заметим, что иногда люминофор называют фосфором, но это не верно, так как люминофор, используемый в покрытии ЭЛТ, не имеет ничего общего с фосфором. Более того, фосфор светится только в результате взаимодействия с кислородом воздуха при окислении до P2O5, и ссвечение длится очень недолго (кстати, белый фосфор — сильный яд).
Рисунок 1. Конструкция электронно-лучевой трубки.
Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками.
Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы (см. рис. 2). Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку итмеют пониженный уровень излучения.
Конструкция отклоняющей системы
Рисунок 2. Устройство отклоняющей системы ЭЛТ.
Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а две другие — в вертикальной.
Изменение магнитного поля возникает под действием переменного тока, протекающего через катушки и изменяющегося по определенному закону (это, как правило, пилообразное изменение напряжения во времени), при этом катушки придают лучу нужное направление. Путь электронного луча на экране схематично показан на рис. 3. Сплошные линии — это активный ход луча, пунктир — обратный.
Путь электронного луча
Рисунок 3. Схема развертки электронного луча.
Частота перехода на новую линию называется частотой строчной (или горизонтальной) развертки. Частота перехода из нижнего правого угла в левый верхний называется частотой вертикальной (или кадровой) развертки. Амплитуда импульсов перенапряжения на катушках строчной развертки возрастает с частотой строк, поэтому этот узел оказывается одним из самых напряженных мест конструкции и одним из главных источников помех в широком диапазоне частот. Мощность, потребляемая узлами строчной развертки, также является одним из серьезных факторов, учитываемых при проектировании мониторов.
После отклоняющей системы поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию (E=mV 2 /2, где E-энергия, m-масса, v-скорость), часть из которой расходуется на свечение люминофора.
Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, то есть поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT мониторе используется три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся.
Известно, что глаза человека реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз не всегда может различить их). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов — триады).
Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.
Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно различие в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой.
Итак, каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.
Теневая маска
Теневая маска (shadow mask) — самый распространенный тип масок. Она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.
Конструкция теневой маски
Рисунок 5. Конструкция теневой маски (увеличенно).
Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади (см. рис. 5, 6). Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара. Инвар (InVar) — магнитный сплав железа (64%) с никелем (36%). Этот материал имеет предельно низкий коэффициэнт теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов — зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.
Конструкция теневой маски 2
Рисунок 6. Конструкция теневой маски (общий вид).
Одним из слабых мест мониторов с теневой маской является ее термическая деформация. На рис. 7 показано, как часть лучей от электронно-лучевой пушки попадает на теневую маску, вследствие чего происходит нагрев и последующая деформация теневой маски. Происходящее смещение отверстий теневой маски приводит к возникновению эффекта пестроты экрана (смещения цветов RGB). Существенное влияние на качество монитора оказывает материал теневой маски. Предпочтительным материалом маски является инвар.
Конструкция отклоняющей системы 2
Рисунок 7. Конструкция отклоняющей системы.
Недостатки теневой маски хорошо известны: во-первых, это малое соотношение пропускаемых и задерживаемых маской электронов (только около 20-30% проходит через маску), что требует применения люминофоров с большой светоотдачей, а это в свою очередь ухудшает монохромность свечения, уменьшая диапазон цветопередачи, а во-вторых, обеспечить точное совпадение трех не лежащих в одной плоскости лучей при отклонении их на большие углы довольно трудно. Теневая маска применяется в большинстве современных мониторов — Hitachi, Panasonic, Samsung, Daewoo, LG, Nokia, ViewSonic.
Шаг теневой маски
Рисунок 8. Шаг теневой маски.
Минимальное расстояние между люминофорными элементами одинакового цвета в соседних строках называется шагом точек (dot pitch) и является индексом качества изображения (см. рис. 8). Шаг точек обычно измеряется в миллиметрах (мм). Чем меньше значение шага точек, тем выше качество воспроизводимого на мониторе изображения. Расстояние между двумя соседними точками по горизонтали равно шагу точек, умноженному на 0,866.
Апертурная решетка
Есть еще один вид трубок, в которых используется Aperture Grille (апертурная решетка). Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология, где имеется три лучевые пушки, три катода и три модулятора, но при этом имеется одна общая фокусировка (см. рис. 9).
Конструкция апертурной решетки
Рисунок 9. Конструкция апертурной решетки.
Апертурная решетка — это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но одинаковые по сути, например, технология Trinitron от Sony, DiamondTron от Mitsubishi и SonicTron от ViewSonic. Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий (см. рис. 10). Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска, применяемая в трубках фирмы Sony (Mitsubishi, ViewSonic), представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной (одной в 15", двух в 17", трех и более в 21") проволочке, тень от которой видна на экране. Эта проволочка применяется для гашения колебаний и называется damper wire. Ее хорошо видно, особенно при светлом фоне изображения на мониторе. Некоторым пользователям эти линии принципиально не нравятся, другие же наоборот довольны и используют их в качестве горизонтальной линейки.
3.5. ВИДЕОСИСТЕМА КОМПЬЮТЕРА
Мониторы на основе ЭЛТ – наиболее распространенные и старые устройства отображения графической информации. Используемая в этом типе мониторов технология была разработана много лет назад и первоначально создавалась в качестве специального инструментария для измерения переменного тока, т.е. для осциллографа.
Конструкция ЭЛТ-монитора
Большинство используемых и выпускаемых ныне мониторов построены на электронно-лучевых трубках (ЭЛТ). В английском языке — Cathode Ray Tube (CRT), дословно — катодно-лучевая трубка. Иногда CRT расшифровывают как Cathode Ray Terminal , что соответствует уже не самой трубке, а устройству, на ней основанному. Электронно-лучевая технология была разработана немецким ученым Фердинандом Брауном в 1897 году и первоначально создавалась в качестве специального инструмента для измерения переменного тока, то есть для осциллографа .Э лектронно-лучевая трубка, или кинескоп, — самый важный элемент монитора. Кинескоп состоит из герметичной стеклянной колбы, внутри которой находится вакуум. Один из концов колбы узкий и длинный — это горловина. Другой — широкий и достаточно плоский — экран. Внутренняя стеклянная поверхность экрана покрыта люминофором ( luminophor ). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов — иттрия, эрбия и т. п. Люминофор — это вещество, которое при бомбардировке заряженными частицами испускает свет. Заметим, что иногда люминофор называют фосфором, но это не верно, так как люминофор, используемый в покрытии ЭЛТ, не имеет ничего общего с фосфором. Более того, фосфор светится только в результате взаимодействия с кислородом воздуха при окислении до P2O5, и ссвечение длится очень недолго (кстати, белый фосфор — сильный яд).
Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы. Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные . Последние предпочтительнее, поскольку итмеют пониженный уровень излучения.
Отклоняющая система состоит из нескольких катушек индуктивности, размещенных у горловины кинескопа. С помощью переменного магнитного поля две катушки создают отклонение пучка электронов в горизонтальной плоскости, а две другие — в вертикальной. Изменение магнитного поля возникает под действием переменного тока, протекающего через катушки и изменяющегося по определенному закону (это, как правило, пилообразное изменение напряжения во времени), при этом катушки придают лучу нужное направление. Сплошные линии — это активный ход луча, пунктир — обратный.
Частота перехода на новую линию называется частотой строчной (или горизонтальной) развертки. Частота перехода из нижнего правого угла в левый верхний называется частотой вертикальной (или кадровой) развертки. Амплитуда импульсов перенапряжения на катушках строчной развертки возрастает с частотой строк, поэтому этот узел оказывается одним из самых напряженных мест конструкции и одним из главных источников помех в широком диапазоне частот. Мощность, потребляемая узлами строчной развертки, также является одним из серьезных факторов, учитываемых при проектировании мониторов. После отклоняющей системы поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате электроны приобретают большую энергию (E=mV 2 /2, где E-энергия, m-масса, v-скорость), часть из которой расходуется на свечение люминофора.
Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, то есть поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе. Как правило, в цветном CRT мониторе используется три электронные пушки , в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся.
Известно, что глаза человека реагируют на основные цвета: красный ( Red ), зеленый ( Green ) и синий ( Blue ) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов (настолько маленьких, что человеческий глаз не всегда может различить их). Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов — триады).
Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные люминофорные частицы, чье свечение основными цветами с различной интенсивностью комбинируется и в результате формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.
Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно различие в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой.
Итак, каждая пушка излучает электронный луч (или поток, или пучок), который влияет на люминофорные элементы разного цвета (зеленого, красного или синего). Понятно, что электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность ( растровость ) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно-расположенных луча практически одинаково и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.
Типы ЭЛТ
В зависимости от расположения электронных пушек и конструкции цветоделительной маски различают ЭЛТ четырех типов, используемые в современных мониторах:
ЭЛТ с теневой маской ( Shadow Mask )
ЭЛТ с теневой маской наиболее распространены в большинстве мониторов, производимых LG, Samsung , Viewsonic , Hitachi , Belinea , Panasonic , Daewoo , Nokia.Теневая маска ( shadow mask ) — самый распространенный тип масок. Она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.
Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади. Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара. Инвар ( InVar ) — магнитный сплав железа (64%) с никелем (36%). Этот материал имеет предельно низкий коэффициэнт теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов — зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.
Одним из слабых мест мониторов с теневой маской является ее термическая деформация. На рисунке ниже, как часть лучей от электронно-лучевой пушки попадает на теневую маску, вследствие чего происходит нагрев и последующая деформация теневой маски. Происходящее смещение отверстий теневой маски приводит к возникновению эффекта пестроты экрана (смещения цветов RGB). Существенное влияние на качество монитора оказывает материал теневой маски. Предпочтительным материалом маски является инвар.
Недостатки теневой маски хорошо известны: во-первых, это малое соотношение пропускаемых и задерживаемых маской электронов (только около 20-30% проходит через маску), что требует применения люминофоров с большой светоотдачей, а это в свою очередь ухудшает монохромность свечения, уменьшая диапазон цветопередачи, а во-вторых, обеспечить точное совпадение трех не лежащих в одной плоскости лучей при отклонении их на большие углы довольно трудно. Теневая маска применяется в большинстве современных мониторов — Hitachi , Panasonic , Samsung , Daewoo , LG, Nokia , ViewSonic .
Минимальное расстояние между люминофорными элементами одинакового цвета в соседних строках называется шагом точек ( dot pitch ) и является индексом качества изображения. Шаг точек обычно измеряется в миллиметрах ( мм ). Чем меньше значение шага точек, тем выше качество воспроизводимого на мониторе изображения. Расстояние между двумя соседними точками по горизонтали равно шагу точек, умноженному на 0,866.
ЭЛТ с апертурной решеткой из вертикальных линий ( Aperture Grill )
Есть еще один вид трубок, в которых используется апертурная решетка. Эти трубки стали известны под именем Trinitron и впервые были представлены на рынке компанией Sony в 1982 году. В трубках с апертурной решеткой применяется оригинальная технология, где имеется три лучевые пушки , три катода и три модулятора, но при этом имеется одна общая фокусировка.
Апертурная решетка — это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но одинаковые по сути, например, технология Trinitron от Sony , DiamondTron от Mitsubishi и SonicTron от ViewSonic . Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии. Маска, применяемая в трубках фирмы Sony ( Mitsubishi , ViewSonic ), представляет собой тонкую фольгу, на которой процарапаны тонкие вертикальные линии. Она держится на горизонтальной (одной в 15", двух в 17", трех и более в 21") проволочке, тень от которой видна на экране. Эта проволочка применяется для гашения колебаний и называется damper wire . Ее хорошо видно, особенно при светлом фоне изображения на мониторе. Некоторым пользователям эти линии принципиально не нравятся, другие же наоборот довольны и используют их в качестве горизонтальной линейки.
Минимальное расстояние между полосами люминофора одинакового цвета называется шагом полос ( strip pitch ) и измеряется в миллиметрах (см. рис. 10). Чем меньше значение шага полос, тем выше качество изображения на мониторе. При апертурной решетке имеет смысл только горизонтальный размер точки. Так как вертикальный определяется фокусировкой электронного луча и отклоняющей системой.
ЭЛТ со щелевой маской( Slot Mask )
Щелевая маска ( slot mask ) широко применяется компанией NEC под именем « CromaClear ». Это решение на практике представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов.
Щелевая маска используется, помимо мониторов от NEC (где ячейки эллиптические), в мониторах Panasonic с трубкой PureFlat (ранее называвшейся PanaFlat ). Заметим, что нельзя напрямую сравнивать размер шага для трубок разных типов: шаг точек (или триад) трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, — по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Для примера, шаг полос 0.25 мм приблизительно эквивалентен шагу точек, равному 0.27 мм . Также в 1997 году компанией Hitachi — крупнейшим проектировщиком и изготовителем ЭЛТ — была разработана EDP — новейшая технология теневой маски. В типичной теневой маске триады размещены более или менее равносторонне, создавая треугольные группы, которые распределены равномерно поперек внутренней поверхности трубки. Компания Hitachi уменьшила расстояние между элементами триады по горизонтали, тем самым, создав триады, более близкие по форме к равнобедренному треугольнику. Для избежания промежутков между триадами сами точки были удлинены, и представляют собой скорее овалы, чем круг.
Оба типа масок — теневая маска и апертурная решетка — имеют свои преимущества и своих сторонников. Для офисных приложений, текстовых редакторов и электронных таблиц больше подходят кинескопы с теневой маской, обеспечивающие очень высокую четкость и достаточный контраст изображения. Для работы с пакетами растровой и векторной графики традиционно рекомендуются трубки с апертурной решеткой, которым свойственны превосходная яркость и контрастность изображения. Кроме того, рабочая поверхность этих кинескопов представляет собой сегмент цилиндра с большим радиусом кривизны по горизонтали (в отличие от ЭЛТ с теневой маской, имеющих сферическую поверхность экрана), что существенно (до 50%) снижает интенсивность бликов на экране.
Основные характеристики ЭЛТ-мониторов
Диагональ экрана монитора – расстояние между левым нижним и правым верхним углом экрана, измеряемое в дюймах. Размер видимой пользователю области экрана обычно несколько меньше, в среднем на 1", чем размер трубки. Производители могут указывать в сопровождающей документации два размера диагонали, при этом видимый размер обычно обозначается в скобках или с пометкой « Viewable size », но иногда указывается только один размер — размер диагонали трубки. В качестве стандарта для ПК выделились мониторы с диагональю 15", что примерно соответствует 36- 39 см диагонали видимой области. Для работы в Windows желательно иметь монитор размером, по крайней мере, 17". Для профессиональной работы с настольными издательскими системами (НИС) и системами автоматизированного проектирования (САПР) лучше использовать монитор размером 20" или 21.".
Размер зерна экрана определяет расстояние между ближайшими отверстиями в цветоделительной маске используемого типа. Расстояние между отверстиями маски измеряется в миллиметрах. Чем меньше расстояние между отверстиями в теневой маске и чем больше этих отверстий, тем выше качество изображения. Все мониторы с зерном более 0,28 мм относятся к категории грубых и стоят дешевле. Лучшие мониторы имеют зерно 0,24 мм , достигая 0,2 мм у самых дорогостоящих моделей.
Разрешающая способность монитора определяется количеством элементов изображения, которые он способен воспроизводить по горизонтали и вертикали. Мониторы с диагональю экрана 19" поддерживают разрешение до 1920 * 14400 и выше.
Потребляемая мощность монитора
Покрытия экрана
Покрытия экрана необходимы для придания ему антибликовых и антистатических свойств. Антибликовое покрытие позволяет наблюдать на экране монитора только изображение, формируемое компьютером, и не утомлять глаза наблюдением отраженных объектов. Существует несколько способов получения антибликовой (не отражающей) поверхности. Самый дешевый из них — протравливание. Оно придает поверхности шероховатость. Однако графика на таком экране выглядит нерезко , качество изображения низкое. Наиболее популярен способ нанесения кварцевого покрытия, рассеивающего падающий свет; этот способ реализован фирмами Hitachi и Samsung . Антистатическое покрытие необходимо для предотвращения прилипания к экрану пыли вследствие накопления статического электричества.
Защитный экран (фильтр)
Защитный экран (фильтр) должен быть непременным атрибутом ЭЛТ-монитора , поскольку медицинские исследования показали, что излучение, содержащее лучи в широком диапазоне (рентгеновское, инфракрасное и радиоизлучение), а также электростатические поля, сопровождающие работу монитора, могут весьма отрицательно сказываться на здоровье человека.
По технологии изготовления защитные фильтры бывают: сеточные, пленочные и стеклянные. Фильтры могут крепиться к передней стенке монитора, навешиваться на верхний край, вставляться в специальный желобок вокруг экрана или надеваться на монитор.
Сеточные фильтры практически не защищают от электромагнитного излучения и статического электричества и несколько ухудшают контрастность изображения. Однако эти фильтры неплохо ослабляют блики от внешнего освещения, что немаловажно при длительной работе с компьютером.
Пленочные фильтры также не защищают от статического электричества, но значительно повышают контрастность изображения, практически полностью поглощают ультрафиолетовое излучение и снижают уровень рентгеновского излучения. Поляризационные пленочные фильтры, например фирмы Polaroid , способны поворачивать плоскость поляризации отраженного света и подавлять возникновение бликов.
Стеклянные фильтры производятся в нескольких модификациях. Простые стеклянные фильтры снимают статический заряд, ослабляют низкочастотные электромагнитные поля, снижают интенсивность ультрафиолетового излучения и повышают контрастность изображения. Стеклянные фильтры категории «полная защита» обладают наибольшей совокупностью защитных свойств: практически не дают бликов, повышают контрастность изображения в полтора-два раза, устраняют электростатическое поле и ультрафиолетовое излучение, значительно снижают низкочастотное магнитное (менее 1000 Гц) и рентгеновское излучение. Эти фильтры изготавливаются из специального стекла.
Если в качестве устройств ввода информации в начале компьютерной эры использовались перфоленты и клавишные пульты, которые эволюционировали в клавиатуру и мышь, то в качестве устройств вывода использовались большие лампы накаливания. Но так долго продолжаться не могло. Поэтому, в результате развития технологий, было изобретено такое устройство как монитор. В этой статье поговорим о том, для чего нужен монитор компьютера и что он делает.
Что такое монитор
Для начала, разберемся что это за устройство. Перейдем к определению:
Если в ПК экран соединяется с видеокартой при помощи HDMI или VGA кабеля, то, например, в телефонах материнская плата соединяется с дисплеем посредством шлейфа. Так как в мобильных (и других) устройствах стоит вычислительный процессор. Это делает слова монитор, дисплей и экран синонимами.
История
Как было написано выше, раньше для вывода данных использовались лампы. Работать с ними было неудобно, экономически невыгодно, да и в связи с развитием технологий, они стали неспособны выводить некоторые типы информации.
Поэтому учеными был предложен вариант использовать экран для отображения результатов вычислений и отслеживания выполнения других программ на ПК. По сравнению с лампами накаливания это было более гибкое и прогрессивное решение.
Из чего состоит
Итак, современные дисплеи состоят из следующих компонентов:
- Экран;
- Микросхема;
- Корпус;
- Источник питания.
Области применения
Мониторы встречаются вам на каждом шагу и на данный момент используются в таких отраслях как:
- Военная;
- Топливная;
- Электроэнергетическая
И многих других. Это связано с информационной революцией и большими возможностями ПК.
Аналоги
Если из-за неисправности, или по другой причине, вам нужно найти замену вашему устройству, то для этого хорошо подойдет телевизор. Почти все современные телевизоры оснащены качественными IPS, LED или AMOLED матрицами и имеют хорошую частоту обновления экрана.
Рассмотрим популярные виды экранов, которые использовались раньше и используются сейчас:
CRT (ЭЛТ)
TFT (Жидкокристаллические)
Экраны основанные на жидкокристаллических матрицах стали набирать популярность с начала двухтысячного года. В отличие от предыдущей категории эти приборы обладают большим списком достоинств. Самые весомые из них:
- Намного меньшая нагрузка на зрение;
- Плоский экран;
- Более четкая картинка;
- Меньший вес.
OLED (самоподсвечивающиеся пиксели)
Относительно новая технология. Суть её заключается в том, что каждый пиксель в экране имеет свою собственную подсветку. В результате изображения обладают очень высокой четкостью и цветопередачей. Ну и, конечно же, тут не обошлось без недостатков. На данный момент продукция, основанная на этой технологии, стоит очень дорого и через несколько лет пиксели на дисплее начинают самопроизвольно выгорать.
Характеристики и как выбрать
Для того чтобы выбрать монитор необходимо ознакомиться с его характеристиками. Ниже, мы приведем самые важные параметры, которые стоит оценивать при выборе:
Диагональ экрана
Я думаю, что никому не надо объяснять за что отвечает этот параметр. Однако если у вас стоит вопрос с какой диагональю приобретать дисплей, то оптимальным для вас станет размер в 24 дюйма. Такой диагонали хватит для комфортной работы, просмотра видео и игр.
Разрешение
Разрешение экрана следует выбирать исходя из его диагонали. Чем больше пикселей приходится на дюйм, тем картинка лучше.
Для двадцати четырех дюймовых дисплеев следует выбирать разрешение от Full HD и выше.
Частота обновления кадров (FPS)
Здесь нужно отталкиваться от того, для каких целей вы собираетесь использовать монитор. Если вы покупаете экран для работы, серфинга в интернете и просмотра фильмов, то вам хватит устройства на 60 Гц.
Если же вы собираетесь играть в компьютерные игры, то желательно приобретать дисплей с частотой обновления кадров 144 Гц. Особенно это касается динамичных игр, где все события происходят быстро (например CS и Dota ).
Яркость и контрастность
Очень важные параметры. Чем больше яркость вашего экрана, тем красочнее будут цвета.
В заключение
Итак, я привел знания, которые сам считаю наиболее важными. Я очень надеюсь, что это статья вам помогла. Спасибо за прочтение.
Читайте также: