Как подключить светодиодную подсветку монитора из китая dim ena
Рассмотрим последовательность и особенности установки LED подсветки для монитора, на примере нашей универсальной LED подсветки для монитора с алюминиевой подложкой. Такая замена особенно целесообразна при выходе из строя сразу нескольких ламп CCFL. Но в нашем случае замену проведем для эксперимента. Возьмем исправную матрицу с CCFL подсветкой и установим в нее набор ЛЕД подсветки для мониторов. Перед заменой проведем замеры качества CCFL подсветки, что позволит после замены сравнить картинку по яркости, равномерности подсветки, оттенку и т.д.
Подготовка к установке
Прежде чем приступить к замене, убедитесь, что купленная вами подсветка подойдет к вашему монитору. Необходимо проверить:
Достаточная ли длинна светодиодных лент. В нашем случае монитор 19”, а стандартные светодиодные стринги идут до 24”, значит можно просто подрезать длину светодиодных полос. Если же 24” вам недостаточно, то нужно просто выбрать набор со светодиодными планками большей длинны.
Соответствует ли напряжение и ток блока питания монитора приобретенному комплекту. Наш драйвер, как и многие другие, рассчитан под напряжение от 11 до 30 В. БП монитора выдает 13 В, что вписывается в требуемый диапазон. За ток можно особо не переживать, т.к. потребление светодиодной подсветки практически всегда ниже CCFL.
Достаточная ли толщина матрицы для установки подсветки. Светодиодные стринги на базе светодиодов 2835 имеют толщину 4 мм и подходят почти ко всем мониторам. Исключением могут быть только экзотические малоразмерные мониторы, которые собраны на базе матриц портативных устройств. В этом случае необходимо взять универсальный набор LED подсветки матрицы ноутбука на базе светодиодов 4020 или 3020 с толщиной линейки 2 мм.
После этого можно приступать к разборке монитора. В детали разбора монитора вникать не будем, считаем, что читатель это умеет.
Спешить разбирать матрицу не стоит, прежде находим необходимые сигнальные линии для управления подсветкой, а именно нас интересует питание, которое обычно обозначают уровнем напряжения, например, «+13V», земля «GND», включение подсветки «BL_ON» или «ON», управление яркостью «BRIGHT», «ADJ», «DIM».
Если вы нашли все необходимые линии можно приступать к разборке матрицы, нет – ищите схемы, разбирайтесь с распиновкой соединительных разъемов и только потом приступайте к разборке матрицы.
Установка ЛЕД планок
Разборка матрицы самый ответственный этап и требует чистоты и аккуратности. Рабочее место выбирается чистое, а помещение безпыльное, попадание частиц мусора и пыли в матрицу негативно скажется на результате и по виду будет напоминать черные битые пиксели и пятна. Светорассеивающие слои менять местами нельзя, а также они чувствительны к жиру с пальцев и если есть необходимость прикасаться к этим слоям, то лучше использовать чистые одноразовые перчатки. На рабочий стол, во избежание появления царапин, желательно положить мягкую безворсую подложку.
Матрицу к световоду прижимает с довольно большим усилием металлическая рамка, и чтобы ее снять необходимо очень аккуратно отщелкнуть защелки по периметру.
При работе лишняя торопливость ни к чему, будьте крайне внимательны и аккуратны, избегайте перекосов рамки, без надобности лишний раз не прикасайтесь и не изгибайте шлейфы, идущие к матрице. После снятия рамки, существует несколько вариантов установки светодиодных лент.
Первый, самый простой, но возможен только на матрицах, в которых предусмотрена конструкция быстрого монтажа лотков подсветки.В этом случае достаточно вытянуть лотки, которые доступны с торцов, демонтировать лампы и установить ЛЕД подсветку.
Следующий способ тоже довольно простой, но не очень качественный. Во многих мониторах легкого способа демонтировать лотки нет. Но есть возможность получить доступ торцам лотков или кассет с лампами. Способ заключается в том, что перекусывают провода питания CCFL ламп и через боковые отверстия вынимают лампы, без дальнейшего разбора матрицы.
Затем вместо ламп, также через торцы, вставляют светодиодные линейки. Этот метод плох тем, что мы не можем проконтролировать укладку линеек, а также не можем их равномерно приклеить. Это влечет за собой локальные перегревы и ухудшение равномерности подсветки.
И последний способ наиболее сложен, он требует дальнейшей разборки матрицы. Нам потребуется снять еще одну внутреннюю, на этот раз пластиковую рамку, которая прижимает светорассеивающие пленки к световоду. После ее снятия, у нас освободятся кассеты с лампами, и мы сможем их легко снять со световода.
Получив доступ к лоткам с лампами, удаляют лампы. Затем нужно примерить нашу светодиодную линейку, подбираем наиболее подходящую длину руководствуясь правилом «3 светодиода». Оставшееся число светодиодов должно быть строго кратно трем, в прочем, как и число откусываемых светодиодов. Если мы откусываем светодиодную линейку на алюминиевой подложке, то настоятельно рекомендуется надфилем обработать торец во избежание замывания токоведущих линий на подложку. В линейках на текстолитовой подложке никаких дополнительных обработок обычно не требуется.
Далее сдираем защитную пленку токопроводящего скотча и клеем на дно кассеты по одной линейке на каждую касету. Если светодиодная линейка без такого скотча, то мы настоятельно рекомендуем его наклеить. Это улучшит теплоотвод, зафиксирует линейку в правильном положении и положительно скажется на однородности подстветки. Обратите внимание, что кассеты с лампами не одинаковые, а есть верхняя и нижняя, после удаления ламп запомните их расположение, чтобы случайно не перепутать или не наклеить неправильно светодиодную планку.
Сборка матрицы осуществляется в обратной последовательности также с предельной аккуратностью.
Подключение драйвера универсальной подсветки монитора.
ВНИМАНИЕ! Несмотря на то, что разъем светодиодной линейки и родного блока розжига CCFL комплементарен, НИ В КОЕМ СЛУЧАЕ не соединяйте их, это гарантировано выведет из строя светодиоды, а также может привести к прочим дополнительным повреждениям.
После сборки приступаем к установке драйвера. Сперва нужно обесточить родной инвертор. Как правило для этого достаточно выпаять перемычку или предохранитель по питанию инвертора. При желании инвертор можно полностью демонтировать, мы же в данном случае делать этого не будем. Также, чтобы не тянуть длинные провода от скалера находим управляющие подсветкой проводники и отключаем их от инвертора. Это также можно сделать удалением соответствующих перемычек или резисторов.
Определение способа управления яркостью (прямое или инверсное), лучше делать по факту. Инвертор рассчитан на инверсное управление яркостью и значит мы принимаем, что управление инверсное, а если проверка работы покажет, что оно прямое, то мы просто внесем коррективы в драйвер.
ОБРАТИТЕ ВНИМАНИЕ! Инвертор с инверсным управлением будет работать с любыми платами управления, только в случаях плат с прямым управлением, минимум и максимум яркости будет инвертирован.
Инвертор с прямым управлением будет работать только с соответствующими скалерами. В мониторе из примера управление было инверсное, и никакая переделка не потребовалась.
Но если понадобится переделка драйвера, то рекомендуем переделать драйвер руководствуясь рекомендациями производителя микросхемы. Подробней можно почитать в статье «Выбор и устройство универсальной LED подсветки для монитора».
Красным обозначены элементы, которые нужно удалить, а зеленым, которые добавить. Из элементов нам понадобится любой диод общего назначения и резистор любой мощности на 10 кОм. Трассировка платы выполнена так, что удобней всего расположить элементы следующим образом.
ОБРАТИТЕ ВНИМАНИЕ! При таком расположении элементов линии «яркость» и «включение» меняются местами, и если проводники уже припаяны, то нужно либо перепаять их, либо просто поменять контакты в разъеме местами.
На этом установка универсальной LED подсветки для монитора завершается, остается только собрать сам монитор.
Сравнение изображения CCFL и LED
Проведем сравнение изображения до и после установки новой подсветки монитора. Фотографии были сделаны при фиксированных настройках фотоаппарата. Неоднородность подсветки фотографировалась с высокой выдержкой. Баланс белого на фотоаппарате зафиксирован на уровне 5800 К. Настройки монитора выбраны таким образом, чтобы получить максимальную яркость изображения.
Что касается неоднородности подсветки, несмотря на то, что световод матрицы рассчитан на установку CCFL, тем не менее светодиодная подсветка показала более равномерное свечение, чем родная CCFL подсветка.
Возможно это связанно с тем, что светодиоды глубже сидят в кассете и свет, доходя до торца световода успевает равномерно смешаться. Что касается «полосатости», то при желании ее можно разглядеть, но на фоне общей неоднородности подсветки она слабо выражена и трудноразличима.
Темный фон ЛЕД подсветки выглядит заметно светлее ввиду большей световой эффективности светодиодов. В дневное время это положительно скажется на картинке, а любителям ночных посиделок достаточно в меню монитора снизить яркость. Замена подсветки монитора на LED не только может вдохнуть вторую жизнь вашему старому монитору, но и повысит яркость экрана, которой ох как не хватало первым LCD мониторам.
Мы будем благодарны, если вы ознакомитесь с нашим ассортиментом универсальных LED подсветок монитора.
В первой части статьи мы рассмотрели работу подсветки на лампах CCFL, для которых необходимо сверхвысокое напряжение. Инвертор, выдающий такое напряжение, должен следить за током ламп, согласовывать выходной каскад инвертора со входным сопротивлением ламп, обеспечивать защиту от короткого замыкания.
Подсветка на CCFL лампах имеет более сложную схемотехнику и значительное энергопотребление. Таких недостатков лишена LED подсветка.
LED (Light Emitting Diode) или светодиод - это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Для "зажигания" светодиода используется низкое напряжение. Он имеет высокий КПД, большой срок службы, отсутствие ртути, отсутствие выгорания и широкий цветовой охват.
Внимание. В мониторе присутствует опасное для жизни напряжение, поэтому все, что дальше описано в статье, Вы делаете на свой страх и риск!
Будем менять подсветку в мониторе Samsung SyncMaster 2343NW на LED. ]]> Комплект подсветки ]]> , который будет использован для замены, состоит из двух линеек белых сверхярких светодиодов и DC драйвера, через который управляются светодиоды:
Драйвер светодиодов промаркирован как СA-155 Rev:02 и имеет следующие контакты
- VIN - плюс питания DC 10-24V (красный провод)
- ENA - отключение/включение подсветки 0 - 3,3V (желтый провод)
- DIM - регулировка яркости светодиодов 0,8 - 2,5V (желтый провод)
- GND - минус питания (черный провод)
- входное напряжение в диапазоне от 5 до 24V
- плавный старт
- регулировка яркости от 10% до 100%
- защита от короткого замыкания и перенапряжения
- контроль тока светодиодной линейки
Микросхема поддерживает три режима управления яркостью – раздельный, одним сигналом и смешанное управление. На модуле CA-155 реализовано инвертированное аналоговое управление яркостью. Размеры модуля 65мм x 20мм .
LED линейка имеет следующую маркировку CA-540-530MM-24W-96LED
Длинна LED линеек, которые я заказал, составляет 537мм, что с запасом хватает для 23" монитора Samsung SyncMaster 2343NW.
Светодиодная линейка представляет из себя полоску текстолита, шириной 4мм, на которую напаяно 96 сверхярких светодиодов белого свечения SMD3528 размером 3.5 х 2.8 х 1.8 мм (Д x Ш x В). Светодиоды подключёны параллельно-последовательно группами по 3 шт. Напряжение питания группы 9,6V. При необходимости ленту можно укорачивать до нужной длинны, но сохраняя при этом кратность диодов равную трем.
Установка LED подсветки
Для установки LED подсветки нам необходим двухсторонний белый или прозрачный скотч. Ширина LED линейки такова, что она точно становится в паз, где раньше стояли лампы CCFL Предварительно нам необходимо обрезать LED линейку до необходимой длинны. В моем случае пришлось отрезать три крайних светодиода. После укорачивания LED линеек, повторно проверяем их в работе. Наклеиваем скотч на нижнюю сторону линейки и освободив вторую сторону скотча от пленки, вклеиваем LED линейки в пазы находящиеся сверху и снизу. Очень важно провода LED линейки вывести с той стороны, где они были выведены раньше.
Теперь можно положить белую отражающую пленку, рассеивающее оргстекло и проверить перед окончательной сборкой матрицы. Если все сделано правильно, Вы увидите однотонную яркую подсветку экрана. Дальше все собираем в обратном порядке, по инструкции описанной в первой части статьи.
Переходим к плате инвертора и делаем небольшую доработку. Для этого выпаиваем предохранитель F41, через который подается +16V на питание инвертора. В моем случае выпаян и трансформатор инвертора, из-за сгоревшей обмотки.
Разберемся с сигналами, которые нам необходимы для подключение DC драйвера к комбинированной плате.
Необходимые сигналы выделены прямоугольниками:
- "Контакт 2" +16V плюс питания драйвера
- "Контакт 3" GND минус питания драйвера
- "Контакт 7" A-DIM регулировка яркости
- "Контакт 8" ON/OFF включение/отключение подсветки
Давайте разберем почему A-DIM, а не B-DIM. Я экспериментировал с обоими сигналами. Отличие сигналов состоит в том, что первый используется для аналоговой регулировки яркости. Сигнал A-DIM формируется микропроцессором монитора и изменяет величину напряжения постоянного тока. Увеличение сигнала А-DIM приводит к увеличению напряжения обратной связи и наоборот. Правда при регулировке яркости с панели управления монитора, значение изменяется только в пределах от 1 до 10 единиц. Мне этого вполне достаточно.
Из всего вышесказанного я выбрал подключение к A-DIM без доработок. Пределы изменения регулировки яркости меня полностью устраивают.
Вернемся к подключению DC драйвера на комбинированную плату. Провода с разъемом, идущим в комплекте, довольно короткие, поэтому я вызвонил тестером дорожки на плате и подпаял провода к ближайшим участкам. Вот что у меня получилось:
Плату DC драйвера подсветки я расположил так, чтобы она находилась на основной плате инвертора и был свободный доступ к подключению светодиодных линеек. Саму плату драйвера я посадил на термоклей. Теперь можно проверять работу подсветки и собирать монитор. После сборки всех плат, подключение светодиодов получилось довольно удобным.
После окончательной сборки мне захотелось проверить потребление монитора на полной яркости. По паспортным данным потребление монитора Samsung SyncMaster 2343NW составляет 44Вт. После установки светодиодов потребление составило 23,8Вт, практически в два раза меньше!
После установки светодиодов монитор стал немного "зеленить", но это решается настройками каналов RGB в меню монитора или видеокарты. Яркости и контрастности достаточно, картинка получилась довольно сочная.
Подводим итоги
Минусы:
- Немного смещен баланс белого в сторону зеленых тонов
- Регулировка яркости с ШИМ может дать эффект мерцания
- Минимальное потребление при использовании светодиодов
- Достаточная яркость и контрастность экрана
- Более простая схемотехника, чем у инвертора с CCFL лампами
- Отсутствие высокого напряжения, нагреаа и выгорания как у CCFL ламп
- Увеличенный срок службы, по сравнению с CCFL лампами
Стремительное развитие LED технологий позволило уменьшить габариты техники, улучшить их характеристики, а самое главное значительно снизить энергопотребление, что в наше время является одним из самых важных показателей.
И так, когда-то очень-очень давно, я покупал пару мониторов Samsung SyncMaster 943n. Мониторы мне эти очень нравились. Хорошее качество, приятная картинка, диагональ 19 дюймов (да-да, когда то это было достаточно круто). Но со временем, у них начали садиться лампы. Один из мониторов я благополучно продал, а другой остался у меня. В какой-то момент я заменил в нём лампы, но все, же около года назад, монитор стал выключать подсветку, сразу после включения.
Так как менять лампы не целесообразно, в мониторе их аж 4, по 2 сверху и снизу, я решил поставить LED подсветку. Так сказать стильно, модно, современно. Да и по цене выходит даже дешевле.
Выбор пал вот на такой драйвер (GYD-9E) с двумя светодиодными планками.
Замена ламп
И так, приступим. Для начала, необходимо выполнить самую кропотливую, как я считаю работу — разобрать экран монитора и заменить старые лампы новыми светодиодными планками.
Далее, после полной разборки монитора, снимаем короба с лампами со стекла. Как видно по фото, у меня лампы вышли из строя из-за оплавления контактов.
Теперь, вынимаем старые лампы и очищаем металлические короба от мусора, остатков ламп и пр. Желательно немного обезжирить поверхность крепления диодных линеек. Я для этого использую изопропиловый спирт.
Далее потребуется подогнать размер линеек под короба. Увы, но подогнать именно ровно по длине не выйдет, т. к. диоды с линеек надо отрезать по 3 шт. Таким образом, примеряем линейки так, чтобы поместилось максимальное количество диодов, но при этом, отрезая от линейки их по 3 шт. Я отрезал по 6 диодов от каждой линейки, у меня вышло вот так.
Ну, а дальше всё обратном порядке. Собираем экран строго в обратной последовательности, внимательно все, проверяя на каждом этапе сборки, защёлкивая все клипсы и крепления, чтобы в дальнейшем не пришлось разбирать всё снова.
Установка драйвера
Ну вот, с экраном разобрались. Теперь займёмся платой монитора и драйвером управления.
Так как блок инвертора на плате нам больше не требуется, я частично демонтировал детали схемы инвертора, тем самым отключив сам инвертор и положив несколько деталей в закрома.
Как видно по фотографии, я снял трансформатор инвертора, выходные ёмкости, предохранитель и прочий мелкий обвес. Тут ничего сложного. Кому ничего этого не требуется, могут просто снять в данной цепи предохранитель и всё.
Теперь переходим к самому интересному — установке драйвера подсветки. При установке драйвера подсветки, основной особенностью работы самого драйвера является регулировка яркости нашей будущей подсветки. Есть несколько нюансов с инвертирование управления и пр. Расскажу несколько подробнее.
Канал регулировки драйвера подсветки можно подключить к одной из 2-х шин на блоке монитора: A-Dim или B-Dim. Отличие сигналов состоит в том, что первый используется для аналоговой регулировки яркости. Сигнал A-Dim формируется микропроцессором монитора и изменяет величину напряжения постоянного тока. Увеличение сигнала A-Dim приводит к увеличению напряжения обратной связи и наоборот. Правда при регулировке яркости с панели управления монитора, значение изменяется только в пределах от 1 до 10 единиц.
Если же вам регулировка по каналу A-Dim покажется недостаточно удобной, то вы можете воспользоваться каналом B-Dim, но тогда вам придётся модифицировать схему драйвера, т. к. при подключении к каналу B-Dim вы получите инвертированное управление. Т. е. при увеличении яркости в меню, подсветка будет становиться тусклее, а при уменьшении яркости — ярче. Если вам это не важно, или подсветка и так вас устраивает, то подключайте к шине A-Dim и не парьтесь. Я поступил именно так. Если изучить вопрос более детально, я рекомендую вам вот эту статью. Всё очень понятно и доходчиво написано, а так же имеются схемы модификации драйвера.
Осталось разобрать, что и куда подключать. У нас имеются следующие провода на драйвере:
- VIN — плюс питания DC 10-24V (красный провод)
- ENA — отключение/включение подсветки 0 — 3,3V (желтый провод)
- DIM — регулировка яркости светодиодов 0,8 — 2,5V (желтый провод)
- GND — минус питания (черный провод)
Осталось определиться, куда припаять их на плате монитора.
Тут тоже всё достаточно просто. Внимательно смотрим на плату, там всё подписано. Таким образом, моя схема подключения драйвера выглядит вот так:
- VIN — 2 контакт разъёма монитора.
- ENA — 8 контакт разъёма монитора.
- DIM — 7 контакт разъёма монитора.
- GND — 3 контакт разъёма монитора.
Собираем, проверяем. Всё работает.
Даже на полной яркости работа подсветки меня устраивает. Но работа по такому типу подключения накладывает ограничения, о которых я писал выше, при регулировке яркости, сила подсветки меняется только на первых 10 делениях. Т. е. в меню вся шкала составляет от 0 до 100, яркость изменяется только на этапе от 0 до 10, на этапе от 11 до 100 уже ничего не меняется, яркость находится в максимальном значении. Более понятно я думаю, станет, если вы сами поэкспериментируете и решите для себя, как вам больше подходит. Меня же устроил и такой вариант.
Время незаметно идет и казалось бы недавно купленная техника уже выходит из строя. Так, отработав свои 10000 часов, приказали долго жить лампы моего монитора (AOC 2216Sa). Вначале подсветка стала включаться не с первого раза (после включения монитора подсветка выключалась через несколько секунд), что решалось повторным включением/выключением монитора, со временем монитор приходилось выключать/выключать уже 3 раза, потом 5, потом 10 и в какой-то момент он не мог включить подсветку уже вне зависимости от числа попыток включения. Извлеченные на свет божий лампы оказались с почерневшими краями и законно отправились в утиль. Попытка поставить лампы на замену (были куплены новые лампы подходящего размера) успехом не увенчалась (несколько раз монитор смог включить подсветку, но быстро опять ушел в режим включился-выключился) и выяснение причин в чем может быть проблема уже в электронике монитора привели меня к мысли о том что проще будет собрать собственную подсветку монитора на светодиодах чем ремонтировать имеющуюся схему инвертора для CCFL ламп, тем более в сети уже попадались статьи показывающие принципиальную возможность такой замены.
Разбираем монитор
На тему разборки монитора уже написано немало статей, все мониторы очень похожи между собой, поэтому вкратце:
1. Откручиваем крепление поставки монитора и единственный болтик внизу, который придерживает заднюю стенку корпуса
2. В низу корпуса есть два пазика между передней и задней частью корпуса, в один из которых засовываем плоскую отвертку и начинаем снимать крышку с защелок по всему периметру монитора (просто проворачивая аккуратно отвертку вокруг своей оси и приподнимая этим крышку корпуса). Излишних усилий прилагать не надо, но тяжело снимается с защелок корпус только первый раз (за время ремонта я его открывал много раз, поэтому защелки стали сниматься со временем гораздо легче).
3. Нам открывается вид на монтаж внутренней металлической рамы в передней части корпуса:
Вынимаем из защелок плату с кнопками, вынимаем (в моем случае) разъем динамиков и отогнув две защелки внизу вынимаем внутренний металлический корпус.
4. Слева виднеются 4 провода подключения ламп подсветки. Вынимаем их слегка сдавливая, т.к. для предотвращения выпадения разъем сделан в виде маленькой прищепки. Так же вынимаем широкий шлейф идущий к матрице (вверху монитора), сдавливая его разъем по бокам (т.к. в разъеме боковые защелки, хотя при первом взгляде на разъем это и не очевидно):
5. Теперь необходимо разобрать «сендвич» содержащий саму матрицу и подсветку:
По периметру находятся защелки, которые открываются легким поддеванием той же плоской отверткой. Вначале снимается металлическая рама придерживающая матрицу, после чего можно открутить три меленьких болтика (обычная крестиковая отвертка не подойдет ввиду их миниатюрного размера, понадобится особо мелкая) удерживающих плату управления матрицей и матрицу можно снять (лучше всего положить монитор на твердую поверхность, например стол, покрытую тканью матрицей вниз, открутив плату управления положить ее на стол развернув через торец монитора и просто внять корпус с подсветкой подняв его вертикально вверх, а матрица так и останется лежать на столе. Ее можно накрыть чем-то чтобы не пылилась, а собирать точно в обратном порядке — т.е. накрыть лежащую на столе матрицу собранным корпусом с подсветкой, обернуть через торец шлейф к плате управления и прикрутив плату управления аккуратно поднять блок в собранном виде).
Получается матрица отдельно:
И блок с подсветкой отдельно:
Блок с подсветкой разбирается аналогично, только вместо металлической рамы, подсветка удерживается пластмассовой рамкой, которая одновременно позиционирует оргстекло, используемое для рассеивания света подсветки. Большинство защелок находятся по бокам и похожи на те что удерживали металлическую раму матрицы (открываются поддеванием плоской отверткой), но по бокам есть несколько защелок открывающихся «вовнутрь» (на них отверткой нужно надавить, чтобы защелки ушли во внутрь корпуса).
Вначале я запоминал положение всех снимаемых частей, но потом выяснилось, что «неправильно» их собрать не получится и даже если детали выглядят абсолютно симметричными расстояния между защелками на разных сторонах металлической рамы и фиксирующие выступы по бокам пластиковой рамы удерживающей подсветку не дадут собрать их «неправильно».
Вот собственно и все — мы разобрали монитор.
Подсветка светодиодной лентой
Вначале решено было делать подсветку из светодиодной ленты с белыми светодиодами 3528 — 120 светодиодов на метр. Первое что оказалось — ширина ленты 9 мм, а ширина ламп подсветки (и посадочного места под ленту) — 7 мм (на самом деле бывают лампы подсветки двух стандартов — 9 мм и 7 мм, но в моем случае были 7 мм). Поэтому, после осмотра ленты, было принято решение обрезать по 1 мм с каждого края ленты, т.к. это не задевало токопроводящих дорожек на лицевой части ленты (а на обратной вдоль всей ленты идут две широкие жилы питания, которые от уменьшения на 1 мм своих свойств на длине подсветки 475 мм не потеряют, т.к. ток будет небольшой). Сказано — сделано:
Точно так же аккуратно светодиодная лента обрезается по всей длине (на фотографии пример того что было до и что стало после обрезки).
Нам понадобится две полоски ленты по 475 мм (19 сегментов по 3 светодиода в полоске).
Хотелось чтобы подсветка монитора работала так же как и штатная (т.е. включалась и выключалась контроллером монитора), а вот яркость я хотел регулировать «вручную», как на старых CRT мониторах, т.к. это часто используемая функция и лазить по экранным меню каждый раз нажимая несколько клавиш мне надоело (в моем мониторе клавиши вправо-влево регулируют не режимы монитора, а громкость встроенных динамиков, так что режимы каждый раз приходилось менять через меню). Для этого был найден в сети мануал на мой монитор (кому пригодится — прилагается в конце статьи) и на странице с Power Board по схеме найдены +12V, On, Dim и GND которые нас интересуют.
On — сигнал с платы управления на включение подсветки (+5V)
Dim — ШИМ управление яркостью подсветки
+12V оказались далеко не 12, а где-то 16V без нагрузки подсветкой и где-то 13.67V с под нагрузкой
Так же было решено никаких ШИМ регулировок яркости подсветки не делать, а запитывать подсветку постоянным током (заодно решается вопрос с тем, что у некоторых мониторов ШИМ подсветки работает на не очень высокой частоте и у некоторых от этого чуть больше устают глаза). В моем мониторе частота «родного» ШИМ была 240 Гц.
Дальше на плате были найдены контакты на которые подается сигнал On (помечен красным) и +12V на блок инвертора (перемычка которую необходимо выпаять чтобы обесточить блок инвертора помечена зеленым). (фотографию можно увеличить чтобы увидеть пометки):
В качестве основы схемы управления был взять линейный регулятор LM2941 в основном за то, что при токе до 1А он имел отдельный вывод управления On/Off, который предполагалось использовать для управления включением/выключением подсветки сигналом On с платы управления монитора. Правда в LM2941 этот сигнал инвертированный (т.е. на выходе есть напряжение когда на входе On/Off — нулевой потенциал), так что пришлось собрать инвертор на одном транзисторе для согласования прямого сигнала On с платы управления и инвертированного входа LM2941. Никаких других излишеств схема не содержит:
Расчет выходного напряжения для LM2941 производится по формуле:
Vout = Vref * (R1+R2)/R1
где Vref = 1.275V, R1 в формуле соответствует R1 на схеме, а R2 в формуле соответствует паре резисторов RV1+RV2 на схеме (введено два резистора для более плавной регулировки яркости и сокращения диапазона регулируемых переменным резистором RV1 напряжений).
В качестве R1 я взял 1кОм, а подбор R2 осуществляется по формуле:
Максимальное необходимое нам напряжение для ленты — 13В (я взял четь больше чем номинальные 12В чтобы не терять в яркости, а лента такой легкое перенапряжение переживет). Т.е. максимальное значение R2 = 1000*(13/1.275-1) = 9.91кОм. Минимальное напряжение при котором лента еще хоть как-то светится — около 7 вольт, т.е. минимальное значение R2 = 1000*(7/1.275-1) = 4.49кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 9.91кОм — 4.49кОм = 5.42кОм (выбираем ближайшее значение RV1 — 5.1кОм), а RV2 выставляем примерно в 9.91-5.1 = 4.81кОм (на самом деле лучше всего вначале собрать схему, выставить максимальное сопротивление RV1 и измеряя напряжение на выходе LM2941 выставить сопротивление RV2 таким чтобы на выходе было нужное максимальное напряжение (в нашем случае около 13В).
Монтаж светодиодной ленты
Поскольку после обрезания ленты на 1 мм по торцам ленты оголились жилы питания, на корпус в месте где будет клеиться лента я наклеил изоленту (к сожалению не синюю а черную). Поверх клеится лента (хорошо прогревать поверхность феном, т.к. к теплой поверхности скотч клеится гораздо лучше):
Дальше монтируются задняя пленка, оргстекло и светофильтры которые лежали поверх оргстекла. По краям я подпер ленту кусочками стирательной резинки (чтобы края на скотче не отходили):
После чего блок подсветки собирается в обратном порядке, устанавливается на место матрица, провода подсветки выводятся наружу.
Схема собиралась на макетке (ввиду простоты решил плату не разводить), крепилась на болтиках через отверстия в задней стенке металлического корпуса монитора:
Питание и сигнал управления On заводились с платы блока питания:
Расчетная мощность, выделяемая на LM2941 рассчитывается по формуле:
Pd = (Vin-Vout)*Iout +Vin*Ignd
- Используется стандартная светодиодная лента
- Простая плата управления
- Недостаточная яркость подсветки при ярком дневном свете (монитор стоит напротив окна)
- Светодиоды в ленте расположены недостаточно часто, поэтому видны небольшие световые конусы от каждого отдельного светодиода возле верхней и нижней кромок монитора
- Баланс белого немного нарушен и уходит слегка в зеленоватые оттенки (скорее всего решается регулировками баланса белого либо самого монитора либо видеокарты)
Регулировка яркости с помощью ШИМ
Для тех хаброжителей, которые в отличие от меня не вспоминают с ностальгией аналоговые ручки управления яркостью и контрастностью на старых ЭЛТ мониторах можно сделать управление от штатного ШИМ генерируемого платой управления монитором без выведения каких-либо дополнительных органов управления наружу (без сверления корпуса монитора). Для этого достаточно собрать на двух транзисторах схему И-НЕ на входе On/Off регулятора и убрать регулировку яркости на выходе (выставить выходное напряжение постоянным в 12-13В). Модифицированная схема:
Сопротивление подстроечного резистора RV2 для напряжения 13В должно быть в районе 9.9кОм (но лучше выставить точно при включенном регуляторе)
Более плотная LED подсветка
- Достаточно большая яркость (возможно сравнимая, а возможно даже превосходящая яркость старой CCTL подсвтеки)
- Отсутствие световых конусов по краям монитора от индивидуальных светодиодов (светодиоды расположены достаточно часто и подсветка равномерная)
- Все еще простая и дешевая плата управления
- Никак не решился вопрос с балансом белого, уходящим в зеленоватые тона
- LM2941 хоть и с большим радиатором, но греется и греет все внутри корпуса
Плата управления на основе Step-down регулятора
Для устранения проблемы нагрева решено было собрать регулятор яркости на базе Step-down регулятора напряжения (в моем случае был выбран LM2576 с током до 3А). Он так же имеет инвертированный вход управления On/Off, поэтому для согласования присутствует такой же инвертор на одном транзисторе:
Катушка L1 влияет на КПД преобразователя и должна быть 100-220 мкГ для тока в нагрузке около 1.2-3А. Напряжение на выходе рассчитывается по формуле:
Привет друзья!
Хочу поделиться опытом подключения светодиодной подсветки из матриц, в моем случае разбитой)
Многие спросят "Почему бы не купить просто светодиодную ленту?".
А потому что в плату матрицы встроен достаточно продвинутый светодиодный драйвер.
Он позволяет запитываться напряжением от 5 до 30 вольт, не меняя интенсивности свечения. Следовательно можно смело подключать в машину не боясь что светодиоды начнут выгорать, или будут светить не полную яркость.
Итак начнем:
Берем любую разбитую матрицу с LED подсветкой, моя на 15.6" называется B156HW02
Для управления подсветкой нам нужный 4 вывода:
1. Питание от 5 до 30 вольт
2. Масса
3. Сигнал включения подсветки
4. Сигнал управления яркостью
у большинства обитающих ныне матриц вот такой разъем
Интресесуют нас вот эти пины
38 VLED LED Power Supply 7V-20V
39 VLED LED Power Supply 7V-20V
40 VLED LED Power Supply 7V-20V
31 VLED_GND LED Ground
32 VLED_GND LED Ground
33 VLED_GND LED Ground
35 PWM System PWM Signal Input
36 LED_EN LED enable pin(+3V Input)
по фотке слева 1 пин, справа 40.
Часто на платах ближе к разъему подключения светодиодов есть площадки с этими выводами, их я и использовал. Видите подписано V_LED, PWM и LED_EN? это они есть
Уровень сигнала включения должен быть 3 вольта, а яркость регулируется подачей от 0 до 3 вольт. Мы подадим на них 5 вольт, ничего не сгорит. Для этого беру маленькую кренку на 5в. припаиваю к плате, у меня все выводы расположились рядом. И закорачиваю между собой PWM и LED_EN, т.о. сигнал включения есть и яркость будет максимальной.
Подключаем и видим подсветка зажглась
Теперь можно разобрать матрицу и вынуть саму светодиодную ленту и снять плату
Этот модуль со светодиодным драйвером всегда идет обособленно на краю платы и т.к. я подключался не к разъему а площадкам возле драйвера, остальная плата мне не нужна и я отломал остальной кусок платы для экономии места
Читайте также: