Как флешка хранит информацию без питания
Это я понимаю,но ведь если обесточить цепь,затвор исток сток просту будут куском железа.Без напряжения затвор не будет препятствовать прохождению электрического тока и наоборот.
Сергей Пименов Оракул (82236) заряд с затвора никуда не девается, только если его специально не разрядить.
Запирающий слой появлется только тогда когда есть напряжение на транзисторе
Сергей Пименов Оракул (82236) естественно флеш можно запрограммировать только от источника питания, для этого в микросхеме есть схема повышения напряжения при программировании.
Игорь Просветленный (47715) Их там оч много но для памяти не надо внешней энергии КАК НА ХАРДЕ
Там есть транзисторы - полевые, которые могут очень долго держать заряд на своем затворе. Отсутствие или наличие заряда на затворе определят записан "0" или "1"
че за бредятину ты несеш? 1 бит информации это два транзистора. к которым подведено питание. один заперт другой нет.Убери напряжение и все обнулится
Александр Цыганов Гуру (3126) Трудно спорить с мастером
Евгения X Просветленный (38411) И что это должно означать?
1 бит информации это два транзистора. к которым подведено питание. один заперт другой нет.Убери напряжение и все обнулится
На бумаге тоже сохраняется и тоже без питания . Содержит кристалы на которые записывается информация.
ну да щас на говорите вы бы еще древнегречиские деревянные дощечки в пример привели.
вы че инопланетяне думаете что вы самые умные что ли?
Всё правильно тебе обьясняют, кристалы кремния имеют свойство запоминать информацию . Дощечки , береста ,папирус ,винил . лазерные диски , флешки. Всё это носители информации , способы разные.
Mag И волшебник Знаток (375) Ну и как именно кристалл может запомнить 1 бит информации? по подробнее пожалуйста не надо в кратце
Та-же файловая система ,кремниевая решётка очень мелкая. Одна ячейка запоминает ноль, вторая 1 и Т.Д. Поэтому флешка форматируется чтобы комп . её понимал
В силу вредности характера.. .
какой смысл тебе пережёвывать научными терминами?
нет вы мне своими словами объясните как могут транзисторы быть открыты и закрыты без напряжения?
Добавлено 26 минут назад
"Я вижу тут нет компетентных людей .все верхушек нахватались и работают только по ссылкам. сами ничего не могут объяснить"
а еще больше людей, которые вместо того, чтобы самим думать своими мозгами ждут готового и еще недовольны. гугль тебе в помощь, там достаточно инфы, захочешь - найдешь что надо.
в гугле одно вранье. своими мозгами работать надо если они есть конечно. а не повторять чужие глупости.
нифига себе еще одного инопланетянина подослали со мной разобраться))))))))))))))))))))))))))))))
Работа запоминающей ячейки FRAM основана на том, что внешнее электрическое поле перемещает центральный атом сегнетоэлектрического кристалла в одно из двух стабильных положений. Все это сопровождается спонтанной поляризацией, которая характеризуется петлей гистерезиса. Существуют два порога напряжения, при достижении которых можно изменить направление поляризации на противоположное. Если электрическое поле отведено от кристалла, то центральный атом остается в том же положении, определяя состояние памяти. Поэтому, FRAM не нуждается в регенерации, и после отключения питания сохраняет свое содержимое.
Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям (1, 2, 3, 4). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.
Теоретическая часть
Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…
Какая память бывает?
На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.
Тут можно подробнее ознакомиться с ниже приведённой схемой и сравнением характеристик различных типов «твердотельной памяти». Или тут – жаль, что я был ещё ребёнком в 2003 году, в таком проекте не дали поучаствовать…
Современные типы «твердотельной памяти». Источник
Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах.
Что такое flash-память и какой она бывает (NOR и NAND)?
Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно подробная статья о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память (тут тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.
Схематическое представление транзистора с плавающим затвором. Источник
Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано тут. Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.
NB: «практически» — ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.
Там же, на ixbt, есть ещё одна статья, которая посвящена возможности записи на один транзистор с плавающим затвором нескольких бит информации, что существенно увеличивает плотность записи.
В случае рассматриваемой нами флешки память будет, естественно, NAND и, скорее всего, multi-level cell (MLC).
Если интересно продолжить знакомиться с технологиями Flash-памяти, то тут представлен взгляд из 2004 года на данную проблематику. А здесь (1, 2, 3) некоторые лабораторные решения для памяти нового поколения. Не думаю, что эти идеи и технологии удалось реализовать на практике, но, может быть, кто-то знает лучше меня?!
Что такое DRAM?
Если кто-то забыл, что такое DRAM, то милости просим сюда.
Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:
Устройство ячейки RAM. Источник
Опять-таки на ixbt есть неплохая статья, посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.
Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да, но всё-таки…
Часть практическая
Flash
Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:
Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти. Источник
Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы тут). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.
Корпус кварцевого генератора
Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:
Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита
А вот и первая важная деталь флешки – контроллер:
Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий
Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.
После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:
«Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)
Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:
СЭМ-изображения контактов, питающих чип памяти
Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности я отметил отдельную ячейку линиями):
Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки
Мне самому сначала это показалось как артефакт изображения, но обработав все фото дома, я понял, что это либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Хоть я и упомянул MLC выше, но всё-таки это вопрос. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм.
Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:
Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки
Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:
Другие структуры внутри чипов NAND памяти
Всю плату SO-DIMM от Samsung я, конечно же, не стал распиливать, лишь с помощью строительного фена «отсоединил» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом. Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора.
Однако по традиции начнём с контактов. Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:
«Скол» BGA-пайки
А вот и второй раз пора кричать: «Язь!», так как удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках. Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину.
Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:
DRAM память во всей красе
Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то тут можно посмотреть более «профессиональное» фото (правда без масштабной метки).
Единственный момент, который меня смутил, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся для меня под вопросом.
Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых я могу только догадываться:
Другие структуры внутри чипа DRAM-памяти
Послесловие
Помимо тех ссылок, что раскиданы по тексту, на мой взгляд, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора, которая фактически занимается реверс-инжинирингом.
К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей:
P.S.: Ещё раз всех с наступающим Новым Годом чёрного водяного дракона.
Странно получается: статью про Flash хотел написать одной из первых, но судьба распорядилась иначе. Скрестив пальцы, будем надеяться, что последующие, как минимум 2, статьи (про биообъекты и дисплеи) увидят свет в начале 2012 года. А пока затравка — углеродный скотч:
Углеродный скотч, на котором были закреплены исследуемые образцы. Думаю, что и обычный скотч выглядит похожим образом
Во-первых, полный список опубликованных статей на Хабре:
В-третьих, если тебе, дорогой читатель, понравилась статья или ты хочешь простимулировать написание новых, то действуй согласно следующей максиме: «pay what you want»
Вам стало, смешно прочитав заголовок этой статьи? Но это ненадолго.
реклама
Вернее до того момента, как ваша флешка или SSD диск пролежав некоторое время (например пол года или год, да ещё и в очень теплом месте) без подключения к питанию потеряет важную для вас информацию. А у меня такой случай с довольно немолодой флешкой, которая пролежала на полке больше года произошел.
Дешевая 3070 Gigabyte Gaming - успей пока не началосьДа, конечно же, я имел в виду не в буквальном смысле процесс заряда флеш накопителей, а необходимость периодического их подключения к питающему напряжению.
Давайте разберемся почему это необходимо. Кратко вспомним устройство и принцип работы флэш памяти.
реклама
var firedYa28 = false; window.addEventListener('load', () => < if(navigator.userAgent.indexOf("Chrome-Lighthouse") < window.yaContextCb.push(()=>< Ya.Context.AdvManager.render(< renderTo: 'yandex_rtb_R-A-630193-28', blockId: 'R-A-630193-28' >) >) >, 3000); > > >);Каждый бит флеш памяти состоит из ячейки транзистора с плавающим затвором, в котором при записи сохраняется инжектируемый в него заряд.
Другими словами плавающий затвор является одной из обкладок конденсатора который и запоминает приложенный к нему заряд. Поскольку технологические процессы изготовления накопителей малы и составляют в районе двух десятков нанометров, то толщина слоя диэлектрика этого конденсатора чрезвычайно мала, что приводит к преодолению электронами этого слоя диэлектрика и возникновению тока утечки. И чем выше температура хранения, тем больше ток утечки, и тем быстрее произойдет разряд ячейки памяти и утрата информации на накопителе.
реклама
Теперь выясним, какие процессы происходят в накопителе при его повседневной работе. Часть информации хранящейся на накопителе постоянно перезаписывается, старая удаляется, новая записывается (то есть на плавающие затворы транзисторов инжектируется свежая порция заряда ещё не подвергшаяся потерям от токов утечки, то есть отсчёт времени ее хранения начат с нуля). И эта информация вне опасности.
А что же происходит с информацией к которой ни сам пользователь, ни система не обращается, которая вообще не изменяется и перезапись которой ими не инициируется.
А ее спасет контроллер, который согласно алгоритму выравнивания износа ячеек из блока, который давно не обновлялся (не перезаписывался) произведет чтение данных, и их запись в другой блок, а высвободившийся блок сотрёт, обозначит его свободным дня записи новых данных. В результате и эти данные будут перезаписаны, и угрозы их утраты не будет.
реклама
Если в накопителе стоит «годный» контроллер и его работа обеспечивается «правильными» программными алгоритмами, то вероятность потери данных по причине утечки тока в ячейках памяти будет минимальна.
Но для этого накопитель на некоторое время после его использования (записи или чтения) необходимо оставлять под питанием. Так как перезапись и перераспределение данных происходит во время простоя накопителей. Вы может быть, не раз замечали как на флешке, с которой компьютер не выполняет никаких действий иногда радостно начинает мигать индикатор активности, так вот это и есть работа вышеуказанных процессов во время простоя флеш накопителя. Так что после окончания работы с флеш накопителями оставляйте их хотя бы на некоторое время под питанием.
Какой бывает флеш-память?
- SLC (Single Layer Cell, однослойная ячейка). Способна хранить в одной ячейке только один бит данных. Является самым дорогостоящим типом флеш-накопителей, поскольку потребляет меньше энергии, характеризуется более высокой скоростью записи и применяется в промышленности, а также для хранения важных данных.
- MLC (Multi Layer Cell, многослойная ячейка). Содержит два бита в одной ячейке. А следовательно, способна хранить в два раза больше информации. MLC чаще всего используют в продуктах потребительского класса. В большинстве случаев такая память дешевле, чем SLC. Она характеризуется более низким пределом выносливости (по сравнению с однослойной) и способна выдержать меньше циклов перезаписи.
- TLC (Triple Layer Cell, трехслойная ячейка). Содержит в одной ячейке целых три бита. TLC является самым дешевым типом флеш-памяти, обладая при этом максимальной плотностью хранения информации. Ее предел выносливости значительно ниже, чем у ранее рассмотренных типов флеш-памяти. Ее характеризует довольно низкая скорость чтения и записи данных. Обычно применяется в дешевых продуктах. TLC не рекомендуется использовать для хранения важных данных.
Как это часто бывает, существуют две стороны рассматриваемого вопроса. Те флеш-накопители, которые способны хранить в одной ячейке два, а то и три бита дешевле. На их базе можно сделать более емкие накопители. Но при этом страдают скорость и надежность. Вышеизложенная информация отвечает также и на вопрос: почему флешки меньшего объема порой стоят значительно дороже своих значительно более емких аналогов?
Флеш-накопители лишены движущихся деталей, они работают бесшумно и быстро. На фоне других типов хранилищ информации они выделяются своей компактностью. Флеш-память используется в принтерах, располагаясь на их платах и будучи покрытой пластиком или специальной резиной. Флеш-накопители вставляют в USB-порт компьютера или в его картридер при помощи специального адаптера. В современных компьютерах нет нужды ставить специальные драйверы для обеспечения поддержки флеш-накопителей. Не нужен им и дополнительный источник питания.
Причины повреждений и постепенной деградации флеш-накопителя
Большей частью к повреждению флеш-накопителя ведут те же причины, которые заставляют аккумулятор терять свой заряд после нескольких сот циклов перезарядки. Тысячи циклов перезаписи ведут к тому, что модули NAND-флеш теряют свою способность удерживать данные. SLC-флеш в десять раз более устойчива в этом отношении, чем MLC-флеш, и в двадцать раз, чем TLC-флеш. По этой причине для промышленных задач используется самый надежный тип: SLC, а в потребительских устройствах «средненький» MLC.
Чем старше флешка, тем она менее надежна. Этот процесс называется постепенной деградацией. Происходит это по мере старения даже в тех случаях, когда флешка не подвергалась явно выраженному неблагоприятному воздействию окружающей среды и не была физически повреждена.
Фактор, влияющий на надежность и долговечность флешки называют [способностью к] удержанию [информации]. По-английски просто «удержанием» («retention»). «Удержание» характеризует то, как долго ячейка памяти способна поддерживать свое ранее запрограммированное состояние. Этот фактор очень чувствителен к окружающей среде. Воздействие высоких температур ведет к сокращению времени «удержания». Число циклов перезаписи тоже ведет к удержанию, в особенности это ощутимо при работе с TLC-накопителями.
Под воздействием высоких температур и повышенной влажности образуется конденсат, который ведет к коррозии контактов и неблагоприятно воздействует на микросхему.
Но наиболее частой причиной потери данных на флешке является ее некорректное отключение от компьютера или иного устройства. Последствием неправильного отключения может стать повреждение файловой системы. Обычно в этой ситуации, даже если данные потеряны, сам накопитель остается физически исправным.
Но в некоторых редких случаях, неправильное отключение флешки может вести к повреждению ячеек флеш-памяти, в которых хранится внутренняя информация флеш-накопителя. В таких случаях к накопителю становится невозможно получить доступ средствами операционной системы и, следовательно, не получается и восстановить его работоспособность при помощи соответствующих программных утилит. Чтобы извлечь информацию в такой ситуации, потребуется помощь профессионала. Чтобы избежать подобного повреждения, следует всегда корректно отключать флешку. Особую опасность представляет для флешки ее отключение в процессе чтения или записи данных.
Поскольку флешка в любом случае подвергается неблагоприятному воздействию, она так или иначе подвержена постепенной деградации. Идеальных условий в реальном мире просто не бывает. В более благоприятных условиях (при отсутствии других повреждений и воздействия иных факторов) флешка прослужит дольше, но тоже не вечно. С годами желтеет и становится ломкой бумага, ржавеет и порой рассыпается в пыль железо. Флешка не является исключением из общего правила, распространяющегося на все предметы, которые подвергаются тем или иным воздействиям.
Как избежать потери флешкой данных?
Раз уж деградация неизбежна, необходимо соблюдать меры предосторожности. Следует довольно часто осуществлять резервное копирование важных данных. Техника, увы, несовершенна. Специалисты по восстановлению данных в некоторых случаях способны «вытянуть» информацию с поврежденного носителя, но это стоит дорого и потребует времени. Да и уверенности в том, что данные будут спасены нет и быть не может. Поэтому резервное копирование предпочтительнее.
Учитывая ограничения флеш-технологии, данные на этих накопителях не следует обновлять слишком часто. Для важных данных и приложений лучше использовать более надежную флеш-память, однослойную SLC.
Флешку следует извлекать по правилам и никогда не отключать ее в процессе чтения и записи данных. Необходимо избегать воздействия на флеш-накопитель высоких температур, повышенной влажности и давления.
Читайте также: