Что такое cdm в мониторах
Наверняка многие замечали, особенно те, кому в силу профессии приходится много времени проводить перед экраном компьютера, что к концу дня глаза могут «уставать». Мало того, этот не самый приятный «эффект» проявляется по-разному с разными мониторами. Если абстрагироваться от того, что мы слишком много проводим времени перед этим «телевизером», то одной из основных причин усталости глаз является технология регулировки яркости. Давайте сегодня поговорим о том, что такое ШИМ в мониторах – как работает, зачем используется, действительно ли было бы лучше, если этого не было.
Что такое ШИМ, используемая для регулировки яркости
Покупая монитор или ноутбук, мы привычно выставляем удобную для нас яркость, контрастность. Кто-то уделяет больше внимания еще и настройке качества изображения. При этом в большинстве случаев мы не задумываемся, как выполняются эти регулировки. В первую очередь – яркость.
Воспользовавшись житейским опытом и минимумом знаний из школьной программы несложно догадаться, что установить желаемый уровень свечения лампочки (в данном случае подсветки экрана) можно, если просто снижать напряжение на ней. Предположим, что напряжение питания подсветки составляет 18 В. Теперь, постепенно понижая его, мы получим соответствующее же снижение яркости.
Но есть другой путь, более простой в реализации и эффективный – не заниматься регулировкой напряжения напрямую, а использовать широтно-импульсную модуляцию, при помощи которой можно получить желаемое выходное напряжение.
Принцип действия тот же, что и в системе питания процессора или видеочипа, о чем мы говорили в статье, посвященной фазам питания CPU. Сейчас же давайте подробнее посмотрим, как работает ШИМ применительно к дисплеям.
Как работает ШИМ
Итак, на входе имеем некое напряжение, при котором можем получить максимальную яркость свечения ламп подсветки. Теперь задача – получить нужный уровень яркости экрана.
Для этого воспользуемся двумя свойствами – возможностью ламп подсветки быстро включаться и выключаться и инерционностью нашего зрения, которое при определенной частоте таких включений-выключений перестает замечать это, а свечение кажется постоянным. Об этом поговорим чуть позже.
Итак, для того, чтобы заставить лампы светиться как нам надо, требуется просто подавать импульсы напряжения нужной скважности. Скважность – отношение периода импульса к его длительности. Таким образом, если нам нужна максимальная яркость, достаточно, чтобы скважность стала равна 1, т. е. импульсов, по сути не будет.
Если же мы хотим, скажем, снизить яркость на 50%, то будет достаточно, если длительность импульса будет равна половине его периода, соответственно. Если требуется четверть свечения – скважность импульса составляет соответствующее значение. Все это наглядно показано на иллюстрации.
Принцип действия прост, ШИМ используется во многих случаях, и почему именно применительно к дисплеям об этом способе упоминают чаще всего? Проблема в том, что это непосредственно связано с воздействием на глаз человека, работающего за монитором, и воздействие это не сказать, что полезно.
Проблема стала несколько более острой после того, как в LCD панелях стала использоваться LED подсветка, т. е. в качестве источника света стали использоваться светодиоды. Перед этим использовалась несколько другая технология. Кратко вспомним ее.
CCFL vs LED
Некоторое время назад для подсветки экранов с жидкими кристаллами использовались лампы CCFL (Cold Cathode Fluorescent Lamp — люминесцентная лампа с холодным катодом). Не буду сейчас останавливаться на конструкции, достоинствах и недостатках этого вида подсветки. Сейчас CCFL почти вытеснена светодиодной подсветкой LED. Тем не менее, еще встречаются мониторы с этим типом ламп.
Почему с CCFL проблема мерцания была не столь актуальна, как сейчас? Принцип работы ШИМ абсолютно тот же, в течение периода импульса лампы часть времени горят, а в остальное время выключены. По крайней мере, на них не подается питающее напряжение. Мерцание есть, но оно несколько иное.
Дело в том, что у ламп CCFL присутствует заметная задержка, порядка 2-3 мс, в течение которого уменьшается яркость. Мало того, в силу свойств люминофора, которым покрыты стенки лампы, излучаемый спектр оказывается широким, с большой интенсивностью в ультрафиолетовом диапазоне и с большой неравномерностью в видимой части спектра.
Таким образом, при включении и выключении CCFL-лампы разные цвета излучаемого спектра реагируют в разное время. В частности, синий цвет срабатывает немного раньше на включение, и он же быстрее исчезает при снятии напряжения. Красный же наоборот, включается медленнее, и медленнее же отключается. Это показано на графике ниже.
В результате имеем несколько более «мягко» (если так можно сказать) работающую регулировку яркости при помощи ШИМ, но беда в том, что в силу задержек на включение и выключение CCFL-ламп частота импульсов оказывается низкой, к тому же может проявляться изменение цвета этих мерцаний.
LED подсветка более быстродействующая, тут практически отсутствуют задержки реакции на включение/выключение, да и продуцируемый свет не распадается на спектральные составляющие. Импульс имеет более приближенную к прямоугольнику форму, как показано на рисунке.
Так в чем проблема? Вот в этом быстродействии, как и спасение в нем же. При той же частоте следования импульсов, как и в случае с CCFL-лампами, мерцание становится гораздо более заметным, резким, хотя и лишенным «плавания» цветов. Включение/выключение ламп стало буквально «бросаться в глаза».
Снизить неприятный эффект позволяет более высокая частота импульсов, регулирующих яркость. Если в случае с CCFL частота обычно составляет 175 Гц, то ШИМ на этой частоте при использовании светодиодной подсветки будет означать, что у вас плохой монитор. Избавиться от неприятных ощущений позволяет поднятие частоты импульсов регулирования яркости экрана до килогерца, а лучше десятков килогерц.
Такая частота уже не различается человеческим глазом, и в случае, если тот или иной монитор имеет частоту ШИМ, скажем, 24 кГц, вполне можно считать, что данная модель дисплея практически безвредна и мерцание не будет утомлять.
Почему устают глаза
Ну хорошо, на какой частоте мерцание перестает быть заметным? Сначала давайте немного посмотрим, как вообще устроено наше зрение, вернее, рассмотрим то, что непосредственно относится к сегодняшней теме.
Изображение формируется на сетчатке глаза, на которой расположены два вида фоторецепторов – палочки (cone) и колбочки (rod cells).
Первые преимущественно расположены на периферических участках сетчатки, а светочувствительным пигментом в них является родопсин. Палочки весьма чувствительны к свету и в состоянии зафиксировать попадание даже 2-3 фотонов, что делает их ответственными за ночное зрение.
Спектральная чувствительность смещена в нижнюю часть видимого диапазона (примерно до 500 нм), а также зависит от уровня яркости объекта. При высокой яркости родопсин выцветает, чувствительность палочек падает, и они могут поглощать только излучения коротковолновой (синей) части спектра. Кстати, в последнее время при рассмотрении параметров монитора стали обращать внимание на излучение в синей части спектра, но это тема отдельного разговора и к ней мы, думаю, вернемся в другой раз.
Колбочки, наоборот, располагаются в центральной части сетчатки, содержат светочувствительный пегмент йодопсин, который в свою очередь состоит из нескольких зрительных пигментов. Диапазон воспринимаемых колбочками цветов смещен в желто-зеленую и желто-красную части спектра.
Есть еще одна характеристика, которую следует упомянуть – это «критическая частота слияния мельканий» (КЧСМ, flicker fusion threshold), и связанный с ней закон Тальбота (Talbot's law или Talbot-Plateau law). Согласно ему, «видимая яркость источника прерывистого света при частоте равной и выше критической частоты слияния мельканий (КЧСМ) эквивалентна (равна) видимой яркости непрерывного света, имеющего тот же световой поток».
Другими словами, есть некая частота, выше которой мерцания видно уже не будет. Точного значения этой частоты нет, но принято считать нормой частоту мерцаний 41-45 Гц. Правда, следует оговориться, что эти значения могут изменяться в зависимости от возраста, состояния здоровья, физического состояния (например, усталость). К тому же эти значения соответствуют центральной (макулярной) области глаза, т. е. той, где больше всего колбочек.
Мало того, проведенные исследования показали, что КЧСМ может варьироваться в зависимости от цвета, т. е. для зеленого это 48 Гц, а для синего – 44 Гц, красный – примерно посередине. Это опять-таки к разговору про излучение мониторами синего цвета.
Выше было сказано, что палочки имеют большую, чем у колбочек, чувствительность, которая еще увеличивается при снижении яркости. Таким образом, может создаться ситуация, что мерцание будет заметно периферийным зрением, хотя если смотреть на экран прямо, ничего такого видно не будет.
Все это справедливо для условного монитора с низкой частотой ШИМ. В действительности большинство экранов если и используют подобный способ регулирования яркости подсветки, то делают это на частотах порядка 200 Гц и выше.
Правда, т. к. чувствительность к мерцанию очень индивидуальна, в редких случаях некоторым индивидуумам удается «разглядеть» колебания яркости и на более высоких частотах. Это может быть связано как со спецификой изображения (быстрое перемещение объекта на экране или быстрый перевод взгляда с одной стороны дисплея на другой), так и с особенностями здоровья и физического состояния человека.
Для большинства людей мерцания на частоте в несколько сот герц заметно не будет, за что спасибо в том числе и нашему мозгу, который не успевает обрабатывать поступающую информацию с такой скоростью и воспринимает свечение как постоянное. Вот только глаза все равно устают. Почему? При частоте мерцаний, которую не распознает мозг, глаз успевает отреагировать на изменение яркости. Происходит что-то типа того, что показано ниже на иллюстрации.
Считается, что при повышении частоты ШИМ выше 2-3 кГц отрицательный эффект, особенно при использовании LED подсветки, от такого способа управления яркостью практически сводится на нет.
Заключение. ШИМ в дисплеях - что это, добро или зло?
Использование ШИМ производителями понять можно. Упрощение схемотехники, энергоэффективность, меньшая себестоимость… Проблема в том, что в данном случае воздействие производится на одну из самых уязвимых частей человеческого организма – глаза. Учитывая, что все больше и больше времени мы проводим перед экраном, очень хотелось бы, чтобы дисплеи были как можно менее вредными.
К счастью, производители ничего не имеют против того, чтобы предлагать экраны, в которых ШИМ либо отсутствует в принципе, либо работает на высоких частотах порядка десятков, а то и сотен килогерц. Беда в том, что наличие или отсутствие мерцания далеко не всегда указывается.
Если в случае с обычными мониторами сейчас можно встретить маркировку «Flicker-Free», то, когда речь заходит о ноутбуках, что за матрица стоит и в каком режиме она работает – загадка для посвященных. Узнать это можно только из обзоров или проведя самостоятельно примитивный тест на определение наличия ШИМ («карандашный» тест или при помощи обычного бытового вентилятора).
Я стараюсь сводить в таблицу информацию о ноутбуках с хорошими экранами, где помимо прочего еще указывается наличие ШИМ для управления яркостью. Выбирая ноутбук, все же не забывайте про глаза, и при возможности отдавайте предпочтение моделям, в которых отсутствует мерцание, благо их становится все больше и больше.
Что означают все эти аббревиатуры? Что нужно, чтобы разработать open source-плеер для просмотра видео с Amazon, Sky и других платформ и смотреть видео от любого провайдера? О том, как происходит процесс потоковой передачи видео, Себастьян Голаш (Sebastian Golasch) рассказал на конференции HolyJS 2018 Piter. Под катом — видео и перевод его доклада.
В данный момент Себастьян (Sebastian Golasch) занимает должность разработчика в Deutsche Telekom. Достаточно долго он работал с Java и PHP, а затем переключился на JS, Python и Rust. Последние семь лет трудится над фирменной платформой умного дома Qivicon.
Немного об истории потокового видео
Сначала давайте обратимся к истории веба, как мы пришли от QuickTime к Netflix за 25 лет. Все началось в 90-х, когда Apple изобрела QuickTime. Его использование в интернете началось в 1993-1994. В то время проигрыватель мог воспроизводить видео с разрешением 156×116 точек и частотой 10 FPS, без аппаратного ускорения (с использованием лишь ресурсов процессора). Такой формат был ориентирован на dial-up соединение 9600 бод – это 9600 бит в секунду, включая служебную информацию.
Это было время браузера Netscape. Видео в браузере выглядело не слишком хорошо, ведь оно не было нативным для веба. Для проигрывания использовалось внешнее программное обеспечение (тот же QuickTime) со своим интерфейсом, которое визуализировалось в браузере при помощи тега embed.
Ситуация стала немного лучше, когда Macromedia выпустила Shockwave Player (после поглощения Macromedia компанией Adobe он стал называться Adobe Flash Player). Первая версия Shockwave Player была выпущена в 1997 году, но воспроизведение видео в нем появилось лишь в 2002 году.
Там использовалсы кодек Sorenson Spark a.k.a. H.263. Он был оптимизирован для небольших разрешений и маленького размера файла. Что это значит? Например, видео продолжительностью 43 секунды, которое использовалось для тестирования Shockwave Player, весило всего 560 Кбайт. Конечно, фильм в таком качестве смотреть было бы не очень приятно, но сама технология для того времени была интересной. Однако, как и в случае с QuickTime, для работы Shockwave Player в браузере требовалась установка дополнительного ПО. У этого плеера было много проблем с безопасностью, но самое главное — это то, что видео все еще было надстройкой над браузером.
В 2007 году Microsoft выпустила Silverlight, чем-то напоминающий Flash. Мы не будем копать глубоко, но у всех этих решений было кое-что общее — «черный ящик». Все проигрыватели работали как надстройка над браузером, и вы понятия не имели, что происходит внутри.
Элемент < Video/ >
В 2007 году компания Opera предложила использовать тег < Video/ >, то есть сделать нативное видео в браузере. Мы используем его и сегодня. Это легко и удобно, и любое видео можно не только просмотреть, но и скачать. И если даже мы не хотим позволять скачивание видео, мы не можем запретить его загрузку в бразуер. Максимум — это сделать так, чтобы скачать видео было сложнее.
Тег <Video/> — полная противоположность «черному ящику», и просмотреть исходный код очень просто.
Однако вы не можете просто так кликнуть правой кнопкой мыши по видео на Netflix и выбрать пункт «Сохранить как». Причина этого — в DRM (Digital Restrictions Management, управление цифровыми ограничениями). Это не одна технология и не единое приложение, которое выполняет какую-либо задачу. Это общий термин для обозначения таких понятий, как:
- Аутентификация и пользовательское шифрование
- Шифрование, которое зависит от контента
- Определение прав и применение ограничений
- Отзыв и обновление
- Контроль вывода и защита ссылок
- Экспертиза и отслеживание нарушителей
- Управление ключами и лицензиями
- Владельцы контента — находятся на вершине экосистемы. Например, Disney, MGM или FIFA. Эти компании производят контент, и у них есть права на него.
- DRM Cores — это компании, которые предоставляют технологию DRM (например, Google, Apple, Microsoft и пр.) В настоящее время существует около 7–8 технологий DRM от разных компаний.
- Поставщики услуг — разрабатывают серверное ПО, которое шифрует видео.
- Браузеры, которые фактически являются проигрывателями.
- Поставщики контента — это компании типа Netflix, Amazon, Sky и пр. Как правило, они не владеют правами на контент, они лицензируют и распространяют его.
- Продавцы чипов/устройств — тоже вовлечены в экосистему, ведь DRM — это не только софтверная технология. Некоторые компании (преимущественно китайские) разрабатывают чипы, которые кодируют и декодируют видео.
Но если говорить о браузерах, то в них декодирование почти всегда выполняется программными средствами. Разные браузеры используют разные системы для DRM. Chrome и Firefox используют Widevine. Эта компания принадлежит Google и лицензирует их DRM-приложения. Таким образом, для декодирования Firefoх скачивает DRM-библиотеку у Google. В браузере можно увидеть, откуда именно идет загрузка.
Apple использует собственную систему FairPlay, которая была создана еще тогда, когда компания представила первые iPhone и iPad. Microsoft также использует свою разработку под названием PlayReady, которая встроена прямо в Windows. В остальных случаях чаще всего используется Widevine. Эта система существует и как приложение, и в виде аппаратного решения — чипов, которые декодируют видео.
Аббревиатура CDM расшифровывается как Content Decryption Module (модуль декодирования контента). Это какая-то часть программного или аппаратного обеспечения, которая может работать несколькими способами:
- Дешифровать видео, после чего оно визуализируется в браузере при помощи тега <Video/>.
- Дешифровать и декодировать видео, после чего передавать необработанные кадры видео для воспроизведения браузеру.
- Дешифровать и декодировать видео, после чего передавать необработанные кадры видео для воспроизведения при помощи GPU.
Cлои декодирования и дешифрования в браузере
Итак, как все это работает вместе? Чтобы это понять, посмотрим на слои декодирования и дешифрования в браузере. Они разделены на:
- Приложение JavaScript — оно говорит компьютеру, какое видео я собираюсь смотреть.
- Браузер — проигрыватель, который воспроизводит видеосодержимое.
- Модуль дешифрования контента.
- Управление цифровыми правами — все, что касается декодирования видео (я не мог придумать лучшего обозначения, поэтому назвал это именно так).
- Доверенная исполняющая среда.
- При этом два первых компонента являются DRM-плеером, модуль дешифрования контента — DRM-клиентом, а два последних компонента — ядром DRM.
То, что происходит, когда вы воспроизводите видео в браузере, показано на картинке ниже. Она, конечно, немного запутанная: тут много стрелок и цветов. Я пройдусь по ней по шагам, используя реальные кейсы, чтобы было понятнее
В качестве примера будем использовать Netflix. Я написал приложение для дебаггинга.
Начал я с того, с чего, думаю, начал бы каждый из вас: просмотрел запросы, которые делает Netflix, когда я запускаю видео, и увидел огромное количество записей.
Однако, если оставить только те, которые действительно нужны для воспроизведения видео, окажется, что их всего лишь три: manifest, license и первый фрагмент видео.
Плеер Netflix написан на JavaScript и содержит более 76 000 строчек кода, и, конечно, я не смогу разобрать его полностью. Но я хотел бы показать основные части, которые необходимы для воспроизведения защищенного видео.
Мы начнем с шаблона:
Но прежде чем мы углубимся в функции, нам необходимо познакомиться с еще одной технологией — EME (Encrypted Media Extensions, зашифрованные медиарасширения). Эта технология не выполняет дешифрования и декодирования, это просто API браузера. EME служит интерфейсом для CDM, для KeySystem, для сервера с лицензией и для сервера, на котором хранится контент.
Итак, давайте начнем с getKeySystemConfig.
Стоит иметь в виду, что она зависит от провайдера, поэтому тот config, который я привожу тут, работает для Netflix, но не работает, скажем, для Amazon.
В этом config мы должны сказать бэкенд-системе, какой уровень доверенной исполняющей среды мы можем предложить. Это может быть безопасное аппаратное декодирование или безопасное программное декодирование. То есть мы говорим системе о том, какое аппаратное и программное обеспечение будет использоваться для воспроизведения. И это определит качество контента.
После настройки config посмотрим на создание initial MediaKeySystem.
Тут начинается взаимодействие с модулем дешифрования контента. Необходимо сообщить API, какую DRM-систему и KeySystem мы используем. В нашем случае это Widevine.
Следующий шаг необязателен для всех систем, но обязателен для Netflix. Опять же, его необходимость зависит от провайдера. Нам нужно применить к нашим mediaKeys сертификат сервера. Сертификаты сервера представляют собой обычный текст в файле Cadmium.js от Netflix, который можно легко копировать. И когда мы применяем его к mediaKeys, то все общение между сервером с лицензией и нашим браузером становится безопасным благодаря использованию этого сертификата.
Когда это сделано, мы должны обратиться к оригинальному элементу видео и сказать: «Ок, это система ключей, которую мы хотим использовать, а это тег hello video. Давайте мы вас объединим».
А вот последняя функция, которая нужна для настройки видеосистемы.
Это DRM-сессия, или MediaKeySession. Это просто данные, которые идут от провайдера к модулю дешифрования, который подписывает ими запросы. Эти данные также представляют собой обычный текст, который спрятан за несколькими функциями в файле плеера Netflix, откуда я его и скопировал.
Тут интерес представляет cenc. Это ISO-стандарт шифрования, определяющий схему защиты для mp4-видео. У WebM это называется по-другому, но функцию выполняет ту же.
handleMessage — это интерфейс EventListener, который мы настраивали. Когда это событие вызывается событием message в keySession, мы знаем, что мы готовы получить лицензию с сервера.
И в этом callback мы лишь получаем запрос на сервер с лицензией, который отдает некоторые бинарные данные (они также могут отличаться в зависимости от провайдера). Эти данные мы используем для обновления текущей сессии, добавляя лицензию. То есть как только мы получили действующую лицензию с сервера, наша CDM знает, что мы можем декодировать и дешифровать видео.
Если применить это к диаграмме ниже, то получим вот что: мы хотим проиграть видео, и JavaScript-приложение говорит: «Привет, браузер! Я хочу проиграть видео!» — затем использует Encrypted Media Extensions и делает запрос к License Functions в Widevine CDM на получение лицензии. Этот запрос затем возвращается обратно в браузер, и мы можем обменять его на действующую лицензию на сервере лицензий, и затем нужно передать эту лицензию обратно к CDM. Этот процесс и был показан на коде выше.
Но обратите внимание, что мы еще не проиграли ни секунды видео, и это все нам нужно сделать, чтобы в будущем иметь возможность воспроизвести какие-нибудь видеоролики.
И еще одна технология, которую нам нужно исследовать, — это MSE (Media Source Extensions, расширения для источников мультимедиа). Ее можно назвать сводной сестрой EME (Encrypted Media Extensions). Это тоже API браузера, и она не имеет никакого отношения к DRM. Я рассматриваю ее как программный интерфейс к < Video/ > Src. С ее помощью можно создавать бинарные потоки в JavaScript и применять фрагменты видео к элементу < Video/ >. Таким образом, благодаря ей исходник тега < Video/ > становится динамическим.
Итак, мы можем использовать расширения для источников мультимедиа, инстанцировать и сделать обращение к видео, после чего загрузить фрагменты видео по частям и применить их к тегу < Video/ >.
Смысл в том, что, когда вы смотрите двухчасовое видео, вы не хотите ждать, пока оно загрузится полностью. Вместо этого вы разрезаете его на небольшие фрагменты размером примерно от 30 секунд до 2 минут и поочередно применяете их к элементу < Video/ >.
Как только наш буфер MediaSource готов и прилинкован к элементу < Video/ >, мы можем добавить SourceBuffer. Мы снова должны сказать ему, какой формат видео и какие кодеки мы используем, и тогда он будет создан.
Наконец теперь мы можем начать делать fetch из отдельных фрагментов и отправлять их на нашем SourceBuffer методом append к элементу <Video/>, получая динамически созданное видео. Это также можно использовать для других use-кейсов, когда люди могут самостоятельно комбинировать разные элементы видео, создавая собственные ролики, но мне не хотелось бы зарываться в это слишком глубоко.
Итак, это почти последний шаг, который мы должны сделать. У вас есть сеть распространения информации, у вас есть фрагменты, и затем браузер отправляет зашифрованные и сжатые фрагменты к CDM, где выполняется дешифрование и, возможно, декодирование. Затем дешифрованные и несжатые фрагменты отправляются обратно в браузер, где они визуализируются и показываются.
Manifest
Но есть еще один момент. Как мы узнаем, какие фрагменты нам нужно загрузить, откуда их загружать и когда? И это последняя часть, отсутствующий запрос из манифеста. Когда мы делаем запрос к Netflix за манифестом, ему требуется много данных. Если мы просто хотим проиграть видео, то для нас имеет значение, какую DRM-систему мы используем, какое видео мы хотим просмотреть (Netflix ID, который можно скопировать из URL) и профили. Профили определяют, в каком разрешении мы получаем видео, а также на каком языке мы получаем аудиодорожки, в каком формате (stereo, Dolby Digital и пр.), используем ли мы субтитры и т. д.
MPEG-DASH
Наиболее часто используемым форматом манифеста является MPEG-DASH. Правда, Apple использует иной формат — HSL, который по виду напоминает список файлов в старом плеере Winamp. Но Widevine и Microsoft используют именно MPEG-DASH. В его основе лежит XML, и он определяет все: продолжительность, размер буфера, типы контента, когда какие фрагменты загружаются, фрагменты для разных разрешений, а также адаптивное переключение битрейта. Последнее означает, что в случае если пользователь, например, смотрит видео и при этом скорость загрузки падает, воспроизведение не останавливается, а просто ухудшается качество видео. Это происходит за счет того, что в манифесте определены одни и те же части для разных разрешений, у них одна и та же продолжительность и одни и те же индексы. Поэтому при уменьшении скорости загрузки браузер может просто переключиться на поток с более низким разрешением, не приостанавливая загрузку и не буферизируя данные.
Вот так выглядит манифест для фильма «Стражи Галактики». В нем мы можем увидеть, что при разной скорости загрузки люди получат видео с разным качеством, а также то, что существуют аудиодорожки для людей с нарушениями слуха. В нем также прописано наличие субтитров.
У нас есть продолжительность и указание на время, с которого надо начать воспроизведение. Эта функция используется, например, тогда, когда вы прерываете просмотр и затем снова возвращаетесь к видео, начиная с того места, где остановились.
Тут также снова есть robustness, который говорит: вот этот фрагмент можно проиграть только в том случае, если ваша система соответствует требованиям. В данном случае это декодирование с помощью аппаратных средств — Hardware Secure Codecs.
Для одной и той же части видео можно определить сколько угодно фрагментов с разными разрешениями.
И затем вы получаете URL для загрузки фрагмента, а параметр range показывает диапазон значений в миллисекундах.
В общем-то, это все. Всего, что было сказано выше, достаточно для того, чтобы разработать open source плеер для просмотра видео с Amazon, Sky и других платформ и смотреть видео почти любого провайдера.
Также есть реализация на Python, которую мы написали с друзьями. Насколько я знаю, это единственный рабочий open source клиент для Netflix. Он работает с Kodi Media Center. Для визуализации можно использовать VLC Player или любое другое подходящее ПО.
И снова «черный ящик»
Итак, вы увидели, что нам понадобилось, чтобы внедрить все это, и насколько часто я упоминал CDM — «черный ящик», который загружается с сайта Google. Таким образом, мы снова вернули видео в «черный ящик». Прекрасный элемент <Video/> снова спрятан от нас. Мы добавили стороннее программное обеспечение, которое нам помогает, но которое при этом является закрытым и которым мы не можем управлять. Оно может делать много незаметных вещей: трекинг, аналитику, отправку данных…
Вот что по этому поводу говорил Тим Бернерс Ли: «Таким образом, в целом важно поддерживать EME как относительно безопасную онлайн-среду, в которой можно смотреть фильмы, а также как наиболее удобную и такую, которая делает ее частью взаимосвязанного дискурса человечества».
Но есть и другие мнения относительно этого. В частности, от Electronic Frontiers Foundation, которая до появления DRM была участником W3C. Вот что они говорят: «В 2013 году EFF была разочарована, узнав, что W3C взяла на себя проект стандартизации EME — зашифрованных медиарасширений. По сути, мы говорим об API, единственной функцией которого должно было стать обеспечение для DRM главной роли в экосистеме браузера. Мы будем продолжать бороться за то, чтобы интернет был свободным и открытым. Мы будем продолжать судиться с правительством США, чтобы отменить законы, которые делают DRM таким токсичным, и мы будем продолжать бороться на уровне общемирового законодательства».
Мне сложно сказать, как к этому относиться. С одной стороны, я всегда за открытый и свободный интернет, в браузерах которого нет закрытого кода, который может отправлять запросы неизвестно куда. С другой стороны, нам нужны сервисы наподобие Netflix, которые взимают плату за видео. Возможно, они могли бы создать собственные приложения для воспроизведения, и тогда интернет отказался бы от такого рода контента.
Уже через месяц, 24-25 ноября, в Москве пройдет HolyJS 2018 Moscow, где Себастьян выступит с докладом «The Universal Serial Web»: подробно разберет новый стандарт WebUSB, возможность работать с USB-устройствами из браузера. Всё это с живыми демо-примерами, очень интересно и наглядно.
В условиях ограниченного бюджета многие при сборке игрового ПК в первую очередь озадачены выбором видеокарты, ЦПУ, и других компонентов компьютера. И уже исходя из денежных остатков, подбирают себе монитор. Думаю, такой подход заведомо неверен, ведь на монитор вы будете смотреть буквально все время при использовании ПК. От этого зависит восприятие картинки и графики, игр в целом, не говоря уже о том, что правильно подобранный монитор может снизить нагрузку на глаза и, наконец, повысить результативность вашей игры. Поэтому здесь экономить не следует. В публикации ниже я постараюсь рассказать о важных технических характеристиках игровых мониторов исходя из современных тенденций.
Содержание
Диагональ и разрешение экрана
Конечно, одной из первых характеристик, на которую следует обратить внимание, является диагональ экрана монитора. Для игрового ПК, на мой взгляд, следует остановиться в диапазоне 21-27 дюймов. Маленькие мониторы дают плохой обзор и от них уже многие отвыкли, а вот слишком большой экран заставит часто слегка крутить шеей, что также неудобно. Оптимальным решением может стать экран с диагональю 24 дюйма. Также следует сказать, что большие экраны с характеристиками для современных игровых задач удовольствие, мягко говоря, не из дешевых.
Что касается разрешения экрана, то стоит начинать рассматривать модели мониторов с разрешением не менее Full HD 1920х1080. С таким разрешением можно подобрать неплохую модель монитора по всем характеристикам и цене, в диапазоне диагоналей 21-27 дюймов. Если же ваш выбор падает на модели с диагональю экрана более 27 дюймов, однозначно следует брать монитор с разрешением не менее Quad HD 2560х1440. Современные видеокарты при необходимости смогут обработать картинку в таком разрешении. Также обращаю ваше внимание, на то, что если взять экран с низким разрешением и большой диагональю, от этого сильно пострадает качество конечной картинки, она будет, как бы, размазанной. Это происходит из-за недостатка плотности упаковки пикселей, условно на единицу площади экрана.
Тип матрицы
Теперь давайте разберемся, какие типы матриц бывают и на что это влияет в финальном результате. Тип матрицы является также одним из ключевых параметров монитора, на эту тему можно писать отдельную публикацию, но я постараюсь кратко рассказать о базовых типах.
TN-матрицы – эти матрицы не так однозначны при детальном разборе, как может показаться. Обычно этот тип матриц крайне не рекомендуют приобретать, это довольно старая технология и самая дешевая. Матрица обладает плохими углами обзора, низкой максимальной яркостью, контрастность и цветопередача также хромают. Однако, их неоспоримым плюсом является высокое время отклика, речь сейчас идет о мониторах с частотой обновления кадров от 200 и выше Гц. Эти мониторы обладают откровенной плохой картинкой, но пользуются популярностью у профессиональных геймеров. Мне кажется, для домашнего использования брать такие матрицы не стоит. Все-таки иногда захочется посмотреть фильм или посидеть на youtube. Однако, если для вас важна каждая миллисекунда и мега плавная картинка в игре, то возможно это ваш выбор.
IPS-матрицы – эти матрицы с превосходной цветопередачей и отличной контрастностью. Также этот тип матриц имеет широкие углы обзора, которые достигают до 178 градусов, что действительно много. В не таком далеком прошлом эти матрицы имели один существенный минус, а именно — высокое время отклика. Однако сейчас технологии развиваются стремительно, и конструкторы создали ответвление от этого типа матрицы. Новая модификация носит название AH-IPS. В ней еще лучше поработали над цветопередачей, разрешением, а также PPI. Дополнительно конструкторам удалось снизить энергопотребление и увеличить максимально возможную яркость. А самое главное — время отклика теперь составляет около 5-6 мс. Добавлю, что новой модификации матрицы AH-IPS и стоит отдать предпочтение при выборе.
MVA/VA-матрицы – эти матрицы по характеристикам являются своего рода компромиссом между IPS и TN матрицами. Итак, плюсом MVA/VA в сравнении с TN матрицами, являются повышенные углы обзора. Если сравнить MVA/VA с IPS матрицами, то их плюсом является улучшенная контрастность. А вот самый главный минус этого типа матриц является большое время отклика, которое может в определенных ситуациях нарастать. Исходя из вышесказанного, этот тип матриц стоит избегать для использования в игровых целях.
Время отклика
Время отклика — это параметр, который отображает, за какой промежуток времени монитор способен сменить кадр на экране. То есть фактически можно узнать, сколько кадров покажет тот или иной монитор за 1 секунду. К примеру, средним приемлемым показателем является время отклика равное 5 мс. В более продвинутых мониторах этот показатель составляет 1-2 мс. Чем дольше монитору нужно времени для смены кадра, тем дерганей будет финальная картинка.
Яркость подсветки и контрастность
Также при выборе монитора стоит уделить внимание таким параметрам как яркость и контрастность. Яркость всех экранов измеряется в единице измерения под названием «Кандела» на один квадратный метр. Подробнее о методике измерения и почему применяется именно эта единица измерения, при желании лучше прочитать на Википедии. Однако я добавлю, что отличным решением для игрового монитора может стать яркость равная около 250-300 кд/м2. Более яркие мониторы всегда приветствуются, а вот мене яркие приобретать уже не стоит.
Далее следует обратить внимание на контрастность монитора, она в свою очередь подразделяется на статическую и динамическую. Статическая контрастность отображает соотношение яркостей между самой темной и самой светлой точкой на экране. Оптимальным вариантом принято считать значение статической контрастности равное 1:1000. Динамическая контрастность. Что бы сильно не путать вас скажу, что этот параметр можно упустить при выборе. Поскольку значение динамической контрастности значительно выше, продавцы часто пользуются этим и выдают одно за другое. Поэтому еще раз повторюсь, обращайте внимание в первую очередь на статическую контрастность.
Частота обновления экрана
Эта величина показывает, сколько раз за одну секунду монитор способен перерисовать картинку, то есть обновить кадр. Здесь все довольно просто, чем больше частота обновления, тем лучше, приятнее и плавнее будет картинка выдаваемая монитором. Для лучшего понимания рассмотрим небольшой пример. Если у вас монитор с частотой обновления 60 Гц, значит за одну секунду, он способен обновить 60 кадров, другими словами 60 FPS. Если даже ваша видеокарта способна корректно обработать 100-200 или более FPS, и при этом у вас будет установлен монитор с частотой обновления 60 Гц, как не крути, больше 60 FPS вы не увидите. Если вы позаботились о мощной видеокарте и других компонентах ПК, тогда и монитор следует приобретать с частотой обновления не менее 120 Гц, а при возможности и еще выше (144 иди 240 Гц).
На своем опыте добавлю, что с переходом с 60 на 120 Гц поначалу даже разницы не замечаешь. Но как только попробуешь спустя время переключить мониторы обратно, глаза начнут заметно дергаться в дискомфорте, даже при обычном серфинге по сайтам.
Добавлю небольшое видео, где более наглядно изображено вышесказанное.
Покрытие экрана
Несколько слов скажу о покрытиях экрана, они бывают разные и эти изменения влияют на конечный результат. Глянцевые покрытия мониторов способны лучше передавать цвета, а также стоит отметить, что цвета получаются более насыщенные. Однако, как всегда есть плюсы и минусы: к минусам можно отнести то, что глянцевые мониторы хорошо отражают и переотражают свет от различных источников, к примеру, окно в дневное время, дополнительный светильник и так далее. Поэтому при выборе глянцевого покрытия стоит позаботиться о плотных шторах и отставить всевозможные источники света.
Соответственно, при использовании матового покрытия решается проблема бликов и переотраженного света, но снижается насыщенность цветов.
Изогнутый экран
Уже достаточно давно производители радуют пользователей изогнутыми моделями мониторов. Такие мониторы как бы повторяют радиус зрения человека. Использование изогнутого монитора снижает усталость зрения при длительном использовании. Этому есть ряд научных подтверждений, в частности эти исследования подтверждает Медицинская школа при университете Гарварда.
При выборе изогнутого монитора стоит учесть один параметр под названием «радиус кривизны». К примеру, радиус кривизны бывает 1800R, 4000R, 2300R, 3000R, чем меньше радиус кривизны, тем большую вогнутость имеет монитор. К примеру, монитор со значением радиуса кривизны 2300R рассчитан, что зритель будет находиться на удалении от монитора не более чем на 2300 мм. В противном случае при просмотре будут возникать искажения и дискомфорт.
Вывод
Также рекомендую посетить мой блог на сайте, на котором вы сможете найти много различных публикаций и обзоров на разную тематику.
Как известно, LCD заняли почётное первое место на рынке, сместив старые ЭЛТ мониторы. В те времена, когда «пузатые ящики» стояли на каждом рабочем столе, выбор монитора был сильно ограничен. И при приобретении компьютерной техники большинство людей брали первый попавшийся дисплей на прилавке. Потому как они практически ничем не отличались друг от друга. «Трубчатые» мониторы имели ряд серьёзных проблем, в том числе и связанные со здоровьем пользователя. Ведь мерцание экрана негативно влияло на глаза. И люди, постоянно работающие за компьютером, регулярно портили себе зрение.
Подобные проблемы и внушительные габариты дисплеев CRT заставляли производителей постоянно улучшать технологии производства. И в результате на свет появились LCD экраны. Разработка получилась настолько удачной, что со временем LCD стали основой для развития всё новых технологий в мониторостроении.
Что означает LCD
Название «Liquid Crystal Display» переводится как «Жидкокристаллический дисплей». Эта технология делает мониторы гораздо тоньше. И при этом значительно увеличивается площадь экрана.
Жидкие кристаллы и управление ими
Liquid Crystal (жидкие кристаллы) представляет собой органические вещества. При воздействии электрического напряжения кристаллы способны менять интенсивность пропускаемого через них света.
LCD матрица устроена так, что между двумя пластинами из стекла или пластика расположена сетка из жидких кристаллов. ЖК кристаллы, в свою очередь, расположены параллельно друг к другу. И это позволяет свету проникать через панель. А когда на матрицу приходит электрический сигнал, кристаллы начинают менять своё положение. И перекрывают проходящий через них свет.
Любой современный ЖК-дисплей, будь то монитор компьютера, экран ноутбука или смартфона, имеет сотни тысяч таких кристаллов. И все они объединены в LCD матрицу. Именно с помощью таких ячеек, размером долей миллиметра, можно формировать изображение. А также менять яркость, контрастность и цветопередачу.
История создания жидкокристаллического дисплея
История ЖК технологий берёт начало с изобретения английскими учёными стабильного жидкого кристалла. Потому как первые жидкие кристаллы были очень нестабильны. А также потребляли огромное количество энергии. И для серийного производства они, мягко говоря, не годились. Однако в 71-м году, благодаря Джеймсу Ли Фергесону (Fergason), работавшему в корпорации RCA (Radio Corporation of America) , мир увидел более совершенную версию ЖК дисплея. Новое открытие вызвало бурю обсуждений, и было принято очень горячё. И с того момента ЖК дисплеи стали распространяться в массы.
Виды ЖК экранов
По типу матрицы мониторы делятся на:
Наибольшее распространение получили как раз TFT дисплеи. Потому как они имеют больший функционал и лучшую стабильность.
Стоит отметить профессиональные LTV мониторы для видеонаблюдения. Такие дисплеи разительно отличаются от обычных компьютерных. Например, могут плавно отображать сразу несколько видеотрансляций на одном экране.
Как устроен LCD дисплей
Устройство LCD дисплея напоминает собой сэндвич. То есть, различные слои наложены друг на друга. В основе лежат пластины из стекла или, редко, из пластика. А между этими пластинами находится «начинка»:
- тонкоплёночный транзистор,
- цветной фильтр, который содержит основные цвета (красный, зелёный и синий),
- слой жидких кристаллов.
Источником света в LCD мониторах являются флуоресцентные лампы или светодиоды.
ЖК матрица
Основой LCD дисплея является матрица. ЖК матрица же состоит из различных слоёв:
- рассеиватель света,
- электроды,
- стекло,
- поляризаторы,
- слой с жидкими кристаллами.
Изображение строится с помощью целого массива пикселей. Которые, в свою очередь, снабжены светодиодами красного, зелёного и синего цвета.
Пассивная матрица
Принцип работы пассивной матрицы состоит в том, что каждая строка и столбец дисплея имеет собственный драйвер. И этот драйвер быстро выполняет анализ сигнала для активации необходимых пикселей. Но в современных реалиях, при увеличении размеров монитора и параметров яркости, изготовление таких матриц становится затруднительным. Потому как приходится увеличивать мощность потока энергии через линию управления. И из-за этого светодиоды в таких дисплеях больше подвержены выгоранию.
Активная матрица
Этот вид матриц решает проблемы с потребляемой энергией за счёт внедрения TFT технологии. Тонкоплёночные транзисторы управляют током через светодиод. А значит, управляют и яркостью отдельного пикселя. В этом случае через матрицу может проходить и более слабый ток для понижения яркости экрана.
Таким образом, яркость, контрастность и отображение цвета на таких матрицах лучше. А потребляемая энергия меньше.
Модуль подсветки
Каждый LCD дисплей снабжён модулем подсветки, который и создаёт свет. Потому что, без дополнительного внутреннего свечения человеческий глаз попросту не распознает изображение.
На базе флуоресцентных ламп
Такой тип подсветки позволяет получить различные цвета, в том числе и белый цвет экрана, который чаще всего используется в LCD дисплеях. Потребление электроэнергии при подсветке флуоресцентными лампами невелико. Однако для стабильной работы нужен источник переменного напряжения 80-100 В.
Дисплеи с такой подсветкой потребляют меньше энергии, но срок службы не так уж и велик.
На базе светодиодов
В отличие от предыдущей схемы подсветки, светодиоды дают более продолжительный срок эксплуатации. А также большую яркость экрана. Такая подсветка может работать и без преобразователей. Но необходима установка токоограничительных транзисторов.
Модуль управления
Плата управления является важным узлом в устройстве дисплея.
Именно на этой плате располагается основная распиновка и два микропроцессора, отвечающие за функционирование монитора.
Первый микропроцессор это восьми битный микроконтроллер. Он отвечает за ряд простых, но очень нужных функций:
- работа кнопочной панели,
- включение и выключение монитора,
- функционирование подсветки.
Для того чтобы настройки монитора не сбивались, к этому микроконтроллеру прилагается схема памяти.
Назначение второго микропроцессора куда обширней. Ведь он отвечает за обработку аналогового сигнала и подготовку его вывода на ЖК-панель.
Таким образом, плату управления можно назвать мозгом дисплея. Потому что всё управление ЖК дисплеем проходит именно в цифровом виде. Сигнал, проходящий с видеокарты, попадает сюда, после чего мы и получаем изображение.
Блок питания
Стоит отметить, что некоторые неисправности ЖК мониторов возникают именно из-за проблем с блоком питания. Потому как из-за сильных скачков напряжения транзисторы перегорают.
Корпус
Всё, что было перечислено выше, упаковано в корпус монитора. В плане характеристик корпуса всё зависит от фантазий разработчиков. Будь то форма или материал, из которого он изготовлен.
Интересной частью корпуса является панель управления монитором. В этой роли выступают как обычные механические кнопки, так и интерактивные иконки на самом экране. А также каждый монитор снабжён всей необходимой распиновкой. А некоторые даже разъёмами для аудиосистемы.
Характеристики ЖК мониторов
Мониторы компьютерные жидкокристаллические имеют ряд присущих им технических характеристик. И по этому выбрать себе подходящий монитор не так просто. Каждый вид дисплея имеет свои плюсы и минусы. Однако выявить явного фаворита практически невозможно.
Тип ЖК матрицы
Преимущества и недостатки ЖК мониторов во многом зависят от типа матрицы. И при выборе нового дисплея к своему компу, стоит учесть то, чем вы занимаетесь. Потому что каждая матрица в той или иной мере отличается по качеству изображения.
- TN матрица. Это наиболее распространённый и самый старый из представленных типов матриц. Экраны с такой матрицей отличаются самой низкой ценой среди конкурентов. А также быстрым временем отклика. Однако страдают малыми углами обзора и плохими показателями цветопередачи и контрастности.
- IPS матрица. Такие дисплеи подойдут тем, кто работает с фото и видео. А также просто любителям посмотреть фильмы или сериалы. Так как IPS матрицы обеспечивают приемлемую цветопередачу и углы обзора. А минусом можно считать высокую цену и повышенное время отклика экрана. . Это нечто среднее между IPS и TN технологиями. Такие экраны обладают отличной контрастностью и неплохим временем отклика. Однако углы обзора заметно ниже, чем у IPS. Так что, эти мониторы хорошо подойдут геймерам.
Отдельно стоит отметить новую прогрессивную технологию LTPS. Она обеспечивает невероятно быстрое время отклика, которое выше показателей IPS в два раза.
Разрешение монитора
Показатель разрешения монитора зависит от соотношения точек с физическими габаритами экрана. И чем больше разрешение экрана, тем больше деталей он отображает.
Яркость
Этот параметр зависит как от типа подсветки, так и от типа самой матрицы. А самыми яркими считаются мониторы со светодиодной подсветкой и IPS матрицами.
Контрастность
Эта характеристика отвечает за баланс чёрного и белого цвета в изображении. И чем выше контрастность, тем глубже отображаются оттенки цветов. Например, хорошей контрастностью отличаются мониторы с MVA матрицей.
Угол обзора
От угла обзора зависит то, с какого положения монитора изображение будет оставаться чётким. Ведь при низких углах обзора цвета начинают отображаться некорректно (затемняются). И тогда приходится смотреть на монитор только под прямым углом. Такого недостатка практически лишены IPS матрицы.
Время реакции пикселя
От этого показателя зависит плавность движения изображения. И при низких его значениях динамическое изображение отображается некорректно. Что проявляется в появлении шлейфов, полос и артефактов. Да, конечно при просмотре обычного видео это не так заметно. А вот при игре в динамичные видеоигры такой недостаток быстро заявит о себе.
Количество отображаемых цветов
Помимо цветных мониторов, и по сей день, продолжает жить монохромный ЖК-дисплей. Такие экраны отображают только один цвет разных оттенков. А используются они, например, в бортовых компьютерах станков, бытовых агрегатов и автомобилей.
Что касается обычных LCD мониторов, то в любом из них используется система RGB Color. Red – красный, Green – зелёный, Blue – синий. При этом, многообразие и качество цветовой гаммы зависит от типа матрицы. А самая качественная цветопередача у IPS матриц.
Бывает, что цветные мониторы отображают не те цвета. Например, встречается такое явление, как инверсия ЖК дисплея. При инверсии цвета начинают отображаться некорректно, а то и вовсе меняются местами.
Интерфейс монитора
Эта характеристика напрямую зависит от модели и производителя. Так, помимо стандартных элементов настройки и управления питанием, мониторы снабжаются дополнительным интерфейсом аудиосистемы. А также управления подсветкой монитора и многим другим.
Послесловие
LCD дисплеи прошли сложный путь и продолжают развиваться по сей день. И на рынке появляются всё новые конкуренты. Например, плазма и amoled технологии. Однако до сих пор LCD мониторы занимают почётное первое место. И, хотя, технические характеристики таких дисплеев ещё не совершенны. Тем не менее, каждый найдёт себе LCD по вкусу.
Читайте также: