Зачем нам нужны большие промышленные 3d принтеры
Технология 3D печати прошла долгий путь с момента своего появления еще в 80-х годах: от создания простых прототипов до изготовления сложных конечных деталей.
Хотя 3D-печать не полностью заменит традиционные технологии производства, она доказала свои сильные стороны и уже революционизирует многие промышленные отрасли.
В этой статье мы обсудим 10 преимуществ 3D-печати в 2021 году и приведем несколько реальных примеров того, как эта технология используются каждый день, учит мыслить по-новому и думать о расширении горизонтов инноваций и творчества.
Именно данный факт значительно повлиял на развитие 3D печати.
Сегодня любой пользователь может подобрать принтер именно под свои задачи и возможности благодаря большому выбору размеров, технологий и уровня цен.
Также существует множество проектов с открытым исходным кодом, чтобы каждый мог собрать свой собственный 3D принтер.
Независимо от того, купили ли вы принтер или собрали его сами, все они очень просты в использовании, что еще больше повышает их доступность.
Есть и другая сторона: стоимость. Еще в начале 90-х годов 3D-принтер стоил около 300 000 долларов (около 600 000 долларов по сегодняшним цифрам).
В наши дни, в зависимости от вашего варианта использования, стоят от пары сотен до нескольких тысяч долларов.
Такое большое разнообразие персональных принтеров и стабилизация цен в последние годы показывают, насколько доступной стала 3D-печать.
Мы уже давно прошли век корпораций и крупных фабрик, владеющих всеми производственными ресурсами. Возможность купить 3D принтер позволяет нам с вами производить свои собственные изделия в любом количестве и в любом месте.
Например, компания Bits & Parts позволяет любому человеку с FDM-принтером почти полностью напечатать стул. Модели Maker Puzzle Chair можно скачать бесплатно на их сайте. Модель состоит из нескольких небольших деталей, которые можно напечатать на домашнем 3D принтере.
Многие утверждают, что 3D печать эффективна настолько, насколько эффективны материалы, которые там применяются.
Для домашнего пользователя существует большое разнообразие пластика: от чистых филаментов до уникальных композитных материалов.
Поставщиков материалов также большое количество, начиная от небольших местных производителей и заканчивая крупными компаниями, такими как eSun.
PLA, ABS, SBS — расходники, которые знакомы всем печатникам. PETG, нейлон, поликарбонат — скорее экзотика. Но это далеко не самые серьезные материалы.
Например, термостойкий пластик для 3d печати почти не уступает по прочности металлам, но гораздо меньше весит и стоит. Из него делают детали инженерных конструкций, самолетов, автомобилей, кораблей и космических ракет. Там, где нужно «убрать» вес, но сохранить рабочие качества элементов, этот материал незаменим.
Также на рынке множество декоративных филаментов, которые имеют уникальные внешние текстурные, цветовые или прозрачные свойства.
Чтобы разобраться во всем многообразии пластика потребуется не один день. В агрегаторе расходных материалов Araneo собрано более 60 видов пластика с описанием свойств и области применения.
Все удобно расположено в алфавитном порядке. Чтобы найти пластик с нужными вам свойствами - воспользуйтесь умным поиском. Просто выберите нужные параметры и получите список подходящих вариантов.
Возможность собрать 3D принтер самому имело огромное значение для развития и улучшения 3D печати.
Вся доступность как в производстве, так и в оборудовании была бы просто невозможна без практики проектирования с открытым исходным кодом.
Термин "открытый исходный код” заимствован из разработки программного обеспечения в тех случаях, когда код открыт для просмотра, использования и, самое главное, улучшения. Это позволяет наладить сотрудничество между пользователями со всего мира с различным опытом и талантами.
Компании E3D, Prusa Research и Lulzbot делятся своими чертежами.
Это также распространяется на 3D-модели. Такие платформы, как Thingiverse, Cults и MyMiniFactory, содержат на своих страницах тысячи бесплатных STL-моделей для скачивания.
И последнее, но не менее важное: создание множества неофициальных каналов поддержки и образовательных онлайн-ресурсов, которые помогли многим решить не одну проблему с печатью.
Есть причина, по которой 3D-печать когда-то называлась “быстрым прототипированием”. И все потому, что между идеей и ее реализацией проходит довольно мало времени.
Быстрая итерация снижает затраты, связанные с производством прототипов, и сокращает процесс разработки, позволяя продукту выйти на рынок быстрее.
Автомобильная промышленность уже довольно давно использует это преимущество 3D-печати. Например, команда инженеров Ford использовала 3D-печать для прототипирования деталей для нового Shelby GT500. Инженер по производительности Мэтт Титус утверждает, что эта технология “повышает эффективность конструкций, она резко сокращает время, необходимое для разработки GT500, и связанные с этим затраты.”
Одним из основных преимуществ 3D-печати является возможность создавать формы, которые было бы невозможно изготовить с использованием традиционных технологий производства.
Когда инженерам Airbus потребовалось снизить расходы топлива для лайнеров, они решили снизить вес самолетов, облегчив внутренние перегородки. Генеративный алгоритм предложил вариант конструкции перегородки, который выглядел как набор случайных осей. Однако такая конструкция соответствовала всем требованиям: снижала вес отдельных модулей самолёта до 45%, сохраняя прочность всей системы.
Персонализация - одна из главных преимуществ 3D печати.
Некоторые продукты, которым необходима персонализация, уже начали использовать 3D-печать. Например, Invisalign производит более 320 000 прозрачных элайнеров каждый день благодаря аддитивным технологиям.
Несмотря на то, что крупномасштабные проекты с тысячами 3D-напечатнных деталей обходятся недешево, это всё же получается значительно выгоднее других технологий. Многие производители применяют 3D-печать для небольших тиражей или для создания прототипов.
Пластик можно также использовать для литья, однако отливка малых партий может потребовать установки слишком дорогостоящего оборудования. Но и в этом случае производители могут изготавливать литые 3D-детали в несколько раз дешевле, чем при использовании алюминия.
В XXI веке всё больше внимания уделяется вопросам экологии, поэтому 3D-печать получает всё больше поддержки в лице сторонников «зеленого» движения. Поскольку при 3D-печати остается значительно меньше отходов, чем при традиционной обработке, эта технология позволяет более бережно относиться к окружающей среде, одновременно сокращая расходы.
3D печать всё прочнее входит в нашу жизнь, превращаясь из узконаправленной и дорогой услуги в незаменимого помощника для профессионалов различных сфер деятельности. Доступность 3D печати позволяет проводить смелые эксперименты, ее возможности безграничны, и будущее для аддитивных технологий выглядит ярче, чем когда-либо.
Маркетологи наперебой расписывают достоинства 3D-принтеров, работающих по FDM-технологии. Однако действительно ли счастливый покупатель становится обладателем «волшебной коробочки», способной воспроизвести любую пластиковую деталь, или это все-таки инструмент DIY, как гравер или прибор для выжигания, и будет полезен не всем?
FDM или Fused deposition modeling (а также FFF или Fused Filament Fabrication) — метод аддитивного «выращивания» объектов, на основе которого построены почти все современные «бытовые» 3D-принтеры. Методика подразумевает послойное «выращивание» объекта из расплавленного пластика, подающегося в виде прутка.
Идея изначально была запатентована, но срок действия патента истек и после этого на рынок хлынули недорогие 3D-принтеры самых разных производителей — от именитых американцев до безымянных китайцев — на любой вкус и кошелек. Кто-то выбирает по бренду — однако если у вас есть познания в электронике и желание решать возникающие проблемы самостоятельно (без технической поддержки производителя), можно сэкономить, приобретя кит-комплект или вообще собрав принтер с нуля по одной из сотен опубликованных моделей.
Бочка меда
Технология FDM действительно впечатляет. Сегодня речь идет уже не просто о средстве для быстрого прототипирования для дизайнеров и архитекторов. По сути, имея трехмерную модель объекта, мы можем воспроизвести его в домашних условиях, при необходимости изменив масштаб или немного доработав его в редакторе. К примеру, можно скачать модель крепления для телефона в автомобиль и масштабировать ее под собственное устройство. Или же с нуля нарисовать любую бытовую деталь — от абажура на лампу до дверной ручки, не говоря уже о всяких мелочах вроде самодельных креплений к GoPro, элементов детских конструкторов и т.п.
Конечно, 3D-печать не может заменить конвейер с массовым производством — скорость послойного формирования деталей из пластика невысока, поэтому один «типовой» принтер может обслужить в лучшем случае только запросы своего хозяина. Но задачи обскакать существующие технологии производства и не стоит. 3D-печать правит там, где нужна максимальная кастомизация и серийное изготовление было бы категорически нерентабельным. Поэтому она очень полюбилась поклонникам DIY в самых разных сферах и т.п. По-сути 3D-принтер — это и есть инструмент DIY.
Бытовая 3D-печать сейчас испытывает взрывной рост. Технология FDM — довольно простая, а сообщество энтузиастов уже разработало несколько типовых конструкций подобных принтеров, отличающихся методами подачи прутка и кинематикой. На базе этих типовых конструкций создаются как фирменные принтеры, так и десятки, если не сотни самоделок, отдельные детали или даже полные кит-комплекты к которым можно купить на Ebay или AliExpress.
Дегтя… тоже бочка?
Казалось бы, технология обкатывается, дешевеет, при этом на нее уже существует нешуточный спрос. Не это ли залог скорого грандиозного успеха на массовом рынке (как это уже происходило с мобильными телефонами, цифровыми фотоаппаратами, а немногим ранее — и компьютерами)? Не пора ли покупать?
Как нам кажется, торопиться не стоит. Технология FDM довольно капризна, и пока ей далеко до того, чтобы стать эдаким «цифровым фотоаппаратом» или «стиральной машиной» в руках несведущего пользователя. Почти на каждом углу здесь приходится применять инженерную мысль. Справедливости ради стоит отметить, что если с инженерной мыслью у вас все в порядке, то возможности 3D-печати действительно огромны. Но лучше заранее знать, на что вы «подписываетесь».
Обработка стола и модели
Послойное нанесение чего-либо требует специальной подготовки моделей и поверхности, на которой осуществляется печать, плюс нужна будет постобработка деталей.
Принтер поставляется со стеклом или столиком из металла — не любой материал прилипнет на них без дополнительных ухищрений (и не любой потом отлипнет без нарушения геометрии модели). PLA-пластиком можно печатать на столе без подогрева, используя покрытие из синего скотча — особо прочного малярного скотча от 3M, который теперь предприимчивыми пользователями был переквалифицирован в «скотч для 3D-печати». Подавляющему же большинству термопластиков нужен как минимум подогрев стола, а иногда и дополнительные клеевые покрытия (лак, клей, пиво, сироп из ацетона и т.п. — протестированных пользователями вариантов существует масса). Поиск подходящего именно этому принтеру (и пластику) покрытия — путь экспериментов и ошибок. Придется испортить не одну модель, прежде чем найдется тот самый оптимальный вариант.
Но печатью первого слоя проблемы не ограничиваются. Нить из расплавленного пластика не может висеть в воздухе, соответственно, на сильно выступающих частях (например, деталях с обратным уклоном) необходимы поддержки, которые по окончании печати потребуется срезать, как-то обрабатывая место среза, чтобы не было острых краев. Надо отметить, что и самая обыкновенная вертикальная стенка после 3D-принтера не будет идеально гладкой (будут заметны как минимум границы слоев, а может и другие дефекты). Так что постобработка потребуется почти всем деталям, для которых важны качества поверхности.
Не все пластики хорошо поддаются постобработке. Тем, кто печатает много и разными материалами, дома придется завести целый набор растворителей, ручной инструмент и т.п. (как и тем, кто активно развлекается DIY). Кстати, при этом часть пластиков еще и токсична при печати — так что нужны закрытые корпуса, вытяжки и т.п.
Особенности расходников
Характеристики результата сильно зависят от расходных материалов
Проблемы с качеством могут определяться не только заводским браком, но и вполне «штатными» особенностями используемого материала: например, некоторые типы пластика гигроскопичны (впитывают воду из окружающей среды). Если не хранить такой пластик в плотно закрытых пакетах с силикагелем, пруток становится хрупким, может ломаться при подаче, издавать при печати странные звуки, плохо ложиться на модель и т.п.
В целом даже если качество материала на высоте (нет очевидных проблем), для печати определенным пластиком подходит не любая модель. Одни материалы хрупкие и не позволяют печатать тонкие стенки, другие — наоборот, хорошо расслаиваются в объеме.
Каждый пластик имеет свою оптимальную температуру печати. При ее превышении ухудшается детализация и появляются поверхностные дефекты. В обратной ситуации плохо спекаются слои. Точно так же существуют оптимальные толщина слоя, параметры ретракта (обратного движения нити) и прочие подобные параметры.
Многие огрехи печати можно «скомпенсировать», уменьшив скорость. Но правильно говорят, что главная проблема — не напечатать объект, а сделать это за разумное время. Поэтому для объектов больше спичечного коробка придется разбираться с оптимальными настройками для каждого пластика.
Сложностей добавляет то, что детальные настройки не подскажут «коллеги» на форуме — оптимальные параметры во многом определяются самим принтером: насколько хорошо у него откалиброван сенсор температуры; используется ли удаленная подача нити и т.п. Плюс конечные цифры могут отличаться у одного и того же пластика разных производителей, а также у катушек разных цветов от одного производителя.
«Фокусы» принтера
Капризничать умеет и сам принтер. У каждой из существующих на рынке конструкций есть свои недостатки. Где-то моторы, которые должны быть идеально синхронизированы, работают немного не так; где-то — колеблется стол во время печати на высокой скорости; где-то слишком большой вклад дает вес печатающей головки. Точно так же есть и «больные места», которые вылезут вне зависимости от того, самосборный ли это принтер, китовый или купленный в виде «черного ящика от производителя». В первых двух случаях вероятность получить глюки несколько выше, но и фирменное происхождение не избавляет устройства от «типовых» болезней.
В среднестатистическом 3D-принтере довольно много движущихся частей, а механика имеет свой ресурс работы. В одних устройствах снашиваются пластиковые шестерни, в других постепенно перекусывается фитингом тефлоновая трубка и т.п. Рано или поздно такие небольшие огрехи начинают сказываться на результате печати. Увы, но универсального FAQ, помогающего по итоговому результату выловить проблему, нет. Тут как в старых автомобилях — надо искать коллег по несчастью, штудировать форумы и надеяться, что с этой проблемой уже кто-то сталкивался. Или — как вариант — выяснить, какой из узлов виноват в проблеме, и полностью его перетрясти. Но это уже в большей степени напоминает постройку собственного принтера с нуля.
Программные ошибки
До того, как десятки метров прутка превратятся в жизнеспособный объект, модель должна пройти процедуру слайсинга — нарезки на слои с учетом технических характеристик принтера — размера сопла, толщины слоя и т.п. Слайсер может «наломать дров», если изначальная модель не замкнута (бывает так, что на простейшей модели получаются дыры — в самом прямом смысле). Для «лечения» моделей существуют онлайн сервисы и инструменты в специализированном ПО, но не всегда они справляются с поставленной задачей. При этом они и сами вполне могут «потерять» какие-то детали.
Откровенно говоря, слайсер может ошибиться, даже если модель совершенно нормальная, а виной тому — округление. Если шаг резьбы вала по какой-то оси не пропорционален толщине слоя, при слайсинге будет накапливаться погрешность округления, которая на модели проявляется в форме рифленой поверхности.
Если же говорить более глобально, основная проблема потребительской 3D-печати в существующем варианте — отсутствие обратной связи при выращивании модели: принтер просто не видит, что именно он печатает. Существуют датчики температуры, застревания нити и другие инструменты, но внешний вид модели не оценивается никак. Единственная обратная связь идет через пользователя, по-своему трактующего происходящее.
В итоге 3D-принтер сегодня — это не совсем бытовая техника. Его нельзя сравнить с обычным принтером и тем более какой-нибудь стиральной машиной. Представляете, если б для удачной стирки одежды вам необходимо было в ходе экспериментов подбирать частоту вращения барабана машины, меняя ее через прошивку? Да, для некоторых это действительно было интересно, но вряд ли для большинства.
3D-принтер ближе всего к электроинструменту. Это отличное средство создания объектов, но им надо уметь пользоваться. К сожалению, на данный момент эта мысль не совсем ясно читается в рекламе некоторых 3D-принтеров — в результате появляется вполне заметная доля разочаровавшихся покупателей, ожидавших чудес из научной фантастики, а получивших неиспользуемую подставку под барахло дома.
Будущее
На мой взгляд, в будущем у технологии 3D-печати все же есть шанс стать по-настоящему бытовой. Во-первых, FDM стремительно развивается: совершенствуются прошивки, добавляются новые датчики и т.п. Одновременно с этим в геометрической прогрессии растут объемы русскоязычной документации, вполне доступной для понимания неспециалистами.
Во-вторых, на потребительский рынок в прошлом-позапрошлом годах начали выходить принтеры, работающие по другой технологии — методу лазерного спекания (SLS), благо патентные ограничения на SLS закончились в 2014 году. Однако пока стоимость устройств превышает 5 тыс. долларов США. Так что пока, говоря о потребительской 3D-печати, мы все же подразумеваем FDM со всеми сопутствующими проблемами.
Аддитивные технологии постепенно меняют промышленный уклад. Изделия, которые можно изготовить с помощью 3D-печати, становятся функциональнее и крупнее. Растет количество таких деталей в составе сложной техники. Все больше предприятий дополняют свое производство аддитивным оборудованием. 3D-принтеры позволяют экономить средства и время на изготовление деталей, они более экологичны, чем традиционные станки. На примере 3D-печати металлом, которая активно применяется на предприятиях Ростеха, рассказываем о преимуществах промышленных принтеров и принципе их работы.
Аддитивное производство на основе металла (от лат. addere «добавлять») – одна из наиболее быстро развивающихся технологий в обрабатывающей промышленности. Это способ создания деталей методом поэтапного добавления материала на основу, также называемый промышленной 3D-печатью. В отличие от традиционного производства (например, токарного или фрезеровочного), где от заготовки отсекается все лишнее, в аддитивном производстве объект, наоборот, постепенно создается из нужного материала, как бы выращивается. Основные сферы применения трехмерной печати металлом – прототипирование, авиакосмическая промышленность, машиностроение, изготовление инструментов, медицинских имплантов и т.д.
Основные преимущества 3D-печати металлом – возможность создания объектов сложных форм, снижение веса деталей без снижения прочности, более короткий срок производства, экономичность и экологичность метода. Действительно, 3D-принтеры работают с минимумом отходов, а специальные технологии очистки позволяют вторично использовать остатки исходных материалов.
Трехмерная печать металлом позволяет создавать сложные цельные конструкции. Это дает возможность исключить многие технологические операции, такие как сварка, сборка. 3D-печать позволяет объединить в одном узле 30-40 элементов без потери функциональности и создавать такие детали, которые получить на обычных станках просто невозможно.
Как работает 3D-принтер
3D-печать металлом – общее определение для ряда технологий. В целом так можно назвать любую технологию, когда металлический объект создается слой за слоем с помощью процессов спекания, плавления или сварки. Распространенным видом 3D-печати металлом является селективное лазерное сплавление (SLM, Selective laser melting), когда металлический порошок сплавляется с помощью мощного лазера. Рассмотрим работу промышленного принтера на примере этой технологии.
При использовании любого вида печати до начала работы с 3D-принтером по металлу нам нужна трехмерная модель изготавливаемой детали. Она создается с помощью программ САПР – систем автоматизированного проектирования. Затем цифровая модель переводится в стереолитографический формат STL и загружается в специальное программное обеспечение, которое делит модель на очень тонкие, толщиной от 20 до 100 мкм, горизонтальные слои, определяет необходимые опоры и проводит другие подготовительные работы.
Далее мы переходим непосредственно к самому принтеру. Камера устройства сначала заполняется инертным газом (например аргоном), чтобы минимизировать окисление металлического порошка, а затем нагревается до оптимальной температуры.
Тонкий слой металлического порошка распределяется по платформе построения, и лазер высокой мощности проходит с заданной скоростью поперечное сечение компонента, сплавляя металлические частицы вместе и создавая слой. Когда процесс сплавления завершен, платформа перемещается вниз на толщину одного слоя, а устройство распределяет еще один тонкий слой металлического порошка. Процесс повторяется до тех пор, пока деталь не будет построена полностью.
Детали, как правило, прикрепляются к платформе сборки через опорные конструкции − поддержки. Поддержка необходима для уменьшения деформации, которая может возникнуть из-за высоких температур обработки, а также отводит излишки тепла. В 3D-печати металлом поддержка изготавливается из того же материала, что и деталь, и обычно представляет собой ажурную конструкцию, которая удаляется после создания детали.
После завершения печати камера охлаждается до комнатной температуры, излишки порошка удаляются вручную. Затем деталь вместе с платформой извлекается из камеры, подвергается термообработке и механическим способом отделяется от платформы. После этого проводятся все необходимые действия по финишной обработке детали.
О Центре аддитивных технологий Ростеха
3D-печать металлом и другие виды аддитивного производства активно развиваются на предприятиях Госкорпорации. Интеграцией этих процессов в рамках Ростеха занимается Центр аддитивных технологий (ЦАТ), созданный на базе холдинговых корпораций авиационного комплекса. Акционерами организации выступают холдинги ОДК, «Технодинамика», КРЭТ и «Вертолеты России».
Центр работает уже более трех лет и сегодня является крупнейшим в России предприятием, специализирующимся на промышленной 3D-печати полного цикла. Здесь создаются детали для самых масштабных проектов отечественной авиации, таких как двигатели ПД-14, ПД-35, ВК-650В, ВК-1600В, вертолет «Ансат» и др.
Двигатель-демонстратор ВК-1600В на МАКС-2021. Фото: Виктор Молодцов
На недавно прошедшем в подмосковном Жуковском Международном авиакосмическом салоне МАКС-2021 было представлено сразу несколько разработок, использующих созданные в Центре детали. Одной из премьер салона стал двигатель-демонстратор ВК-1600В для вертолета Ка-62, около 10% деталей которого были напечатаны на 3D-принтере. А в двигателе-демонстраторе ВК-650В для вертолета Ка-226Т доля напечатанных в ЦАТ деталей составит уже около 15%. Также на МАКСе были продемонстрированы вертолеты Ми-8/17 и Ми-171А3, заготовки для деталей которых создавались силами Центра. В результате оптимизации удалось добиться сокращения до 30% массы деталей и на 50% уменьшить расчетное время финишной механической обработки в сравнении с традиционными методами.
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Статья относится к принтерам:
Как вы знаете, на 3D принтере можно напечатать практически все - от свистка до целого дома. Возможности 3D печати, как нам это говорит интернет и сообщество ученых, безграничны. Но так ли это?
Мы встречали большое количество людей, которые так и не поняли, даже после покупки, зачем им 3D принтер. То есть, получается, возможности безграничны только для тех, кто точно знает, что он хочет от 3D печати?
Слишком много риторических вопросов, коллеги.
Слишком много неясностей в головах у будущих обладателей 3D принтеров.
Недавно, одни исследователи наша компания самостоятельно провела интересный опрос среди своих пользователей. “Интересность” опроса заключается не в вопросе “Что вы печатаете” (это самое очевидное, что вы скорее всего подумали), а в вопросе “Зачем?”. Ведь именно вопрос “Зачем?” нужно задать себе при покупке принтера.
На наш сугубо субъективный взгляд, когда у клиента есть точное понимание, какую проблему он решает 3D печатью, тогда и не будет разочарования от того, что в итоге ему она не подошла.
Да, возможно будут замечания именно к принтеру, работающему по этой технологии, но к самой технологии вопросов должно быть крайне мало.
Ну или это просто какая-то дичь несостыковка ожидаемой информации с действительной в результате неверно изученного вопроса. Who knows.
Контакты по желанию (или для бонуса)
Опрос полностью анонимный, а результатами мы поделимся со всем сообществом через неделю.
Мы дадим каждому 100000 руб скажем каждому спасибо в виде скидки 10 000 рублей на покупку 3D принтера Hercules Strong, если в будущем вы захотите его купить. Действовать будет у любого нашего партнера.
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Читайте также: