В каком из видов сканеров отпечатков пальцев используется сенсор состоящий из пьезоэлементов
Подумать только, еще каких-то 5-6 лет назад сканеры отпечатков пальцев можно было встретить лишь на самых дорогих флагманских смартфонах, да и те работали крайне плохо. Вспомнить хотя бы сканер на Samsung Galaxy S5, по которому нужно было проводить пальцем, повторяя безуспешно раз за разом одно и то же движение.
А сегодня эти датчики установлены даже на самых бюджетных аппаратах и работают они просто безупречно! Правда, не всегда. И ситуация становится сложнее еще от того, что цена смартфона не прямо пропорциональна качеству, надежности и стабильности используемого сканера отпечатков пальцев.
Так в чем же дело? Чем отличаются современные сканеры и как они работают? Обо всем этом мы и поговорим дальше.
Виды современных сканеров отпечатков пальцев
Сегодня на смартфонах используется 3 основных вида сканеров: емкостные, оптические и ультразвуковые. Отличаются они способом получения картинки и каждый из них имеет свои преимущества и недостатки.
Во-первых, пользователь прикладывает каждый раз палец к сканеру по-разному. Иногда датчику удается захватить лишь небольшую часть пальца, также результат будет отличаться от силы, с которой прижимается палец к сканеру. Более того, небольшие порезы или другие травмы могут незначительно изменять общую картинку. И, тем не менее, смартфон успешно разблокируется.
Во-вторых, смартфоны не хранят фотографии ваших отпечатков и не накладывают при каждом сканировании сделанный снимок на сохраненную ранее копию.
Вместо этого в каждом отпечатке смартфон пытается найти определенные уникальные признаки или контрольные точки. Если внимательно посмотреть на сам отпечаток, то помимо знакомых нам линий (называются они папиллярным узором), можно заметить другие интересные вещи:
Как видим, на отпечатке одни линии разветвляются, другие просто прерываются, а третьи выглядят как небольшие островки. Все это можно изобразить схематически следующим образом:
Смартфон пытается найти такие особые точки (их называют минуциями) на каждом конкретном отпечатке. Минуции являются уникальными признаками и один отпечаток может содержать более 70 минуций.
Соответственно, чем выше качество сканирования и чем большее число раз пользователь сканирует один и тот же отпечаток, немного смещая палец в стороны, тем большее количество минуций получает смартфон для дальнейшего анализа. Зачастую, именно эти особые признаки, а не снимки отпечатков, и сохраняются.
Вся разница между различными типами сканеров отпечатков пальцев заключается в том, каким именно образом они получают снимок пальца для дальнейшей работы:
- Емкостный сканер использует для этого электричество
- Ультразвуковой сканер использует звук
- Оптический сканер получает изображение с помощью света
Теперь давайте немного подробнее остановимся на каждом из них.
Емкостный сканер отпечатка пальца
Такой сканер состоит из множества крошечных токопроводящих пластин, толщина которых меньше, чем линии узора отпечатков пальцев. Такие пластины образуют конденсаторы, хранящие определенный заряд.
Смартфон считывает все ячейки и определяет по напряжению, находилась ли возле каждого конкретного конденсатора канавка (пустота) или же это был выступ и кожа соприкасалась с поверхностью сканера. Так и собирается общая картина отпечатка.
Преимущества емкостных сканеров отпечатков пальцев
В принципе, это лучшие сканеры по совокупности всех характеристик. Они стоят дешево в производстве, технология уже достаточно древняя и хорошо обкатана. Такие сканеры не просто делают двухмерный (плоский) снимок, а сканируют трехмерный объект, учитывая выступы и углубления на пальце.
Обмануть такие сканеры тяжело. Стабильность работы очень высокая, палец не обязательно должен быть очень чистым и сухим.
Так что же с ними не так? Почему эти сканеры устанавливаются лишь на бюджетных Android-смартфонах?
Недостатки емкостных сканеров
Некоторые производители размещают такой сканер на боковой грани, совмещая его с кнопкой питания (Honor 20, Galaxy S10e, Sony Xperia 1). Но в основном емкостные сканеры находятся сзади. А это удобно не во всех ситуациях. К примеру, когда смартфон лежит на столе, нужно обязательно брать его в руки, чтобы добраться до датчика (или пользоваться другими методами разблокировки).
Оптический сканер отпечатка пальца
Реализовать такую технологию можно только на AMOLED-экранах, так как эти дисплеи, по сути, являются полупрозрачными, что позволяет размещать за ними всевозможные датчики, начиная от сканеров отпечатков до датчиков приближения/освещения или даже селфи-камер.
В принципе, IPS-матрицы ровно такие же полупрозрачные и под ними также можно было бы что-то разместить, если бы не потребность в подсветке. Дело в том, что каждая точечка (пиксель) AMOLED-экрана сама по себе излучает свет, когда на нее подается напряжение. А в IPS-дисплеях пиксель представляет собой, грубо говоря, цветную стекляшку, через которую должен пройти внешний свет.
И если мы разместим сканер отпечатков (камеру) за сеточкой OLED-пикселей, тогда и мы будем видеть изображение, и сканер сможет увидеть что-то через экран. А если мы разместим сканер за сеточкой IPS-пикселей, тогда сама камера загородит собой подсветку, которая размещается сзади экрана. И мы будем видеть черное пятно на рабочем дисплее. Если же разместить сканер сзади лампы, тогда сканер не будет видеть ничего, так как подсветка-то не прозрачная.
Преимущества оптических сканеров отпечатков пальцев
Основное преимущество оптического сканера заключается в том, что его можно размещать под экраном. Качество и скорость сканирования зависит как от разрешения матрицы, так и от прозрачности стекла (качества покрытия и пр.).
Недостатки оптического сканера
Тем не менее, у оптических сканеров есть свои проблемы. Все, что может помешать сделать четкий снимок, будет влиять на скорость и стабильность распознавания. Это влага, мелкая грязь и пр.
Также эти сканеры в теории легче обмануть, чем емкостные и ультразвуковые, так как они работают с плоским двухмерным изображением, как любая камера. С другой стороны, яркая подсветка позволяет не только увидеть папиллярные узоры на пальце, но и зафиксировать пульсацию крови, тем самым убедившись, что сканируется именно палец.
Эту же подсветку можно считать и недостатком оптических сканеров. Ночью яркий зеленый свет может вызывать определенный дискомфорт, так как иногда палец не полностью закрывает датчик и яркий свет режет глаза.
И последним недостатком оптических сканеров является их капризность к защитным стеклам. Толщина и материалы защитных пленок/стекол могут влиять на скорость и стабильность распознавания отпечатков.
Ультразвуковой сканер отпечатка пальцев
Ультразвуковые сканеры появились на смартфонах позже всех. Первый ультразвуковой датчик отпечатков был представлен вместе с Samsung Galaxy S10 в начале 2019 года. С тех пор, Samsung использовала его в линейках Galaxy Note10 и Galaxy S20.
Несмотря на то, что ультразвуковые сканеры пришли на смартфоны позже всех, сама технология используется очень давно в других отраслях. Сканирование отпечатка происходит при помощи ультразвука. Грубо говоря, каждый раз прикладывая палец к ультразвуковому сканеру, вы делаете его УЗИ.
32 тысячи колебаний.
Но причем здесь кварцевые часы? При том, что в основе ультразвукового сканера лежит такой же пьезоэлектрик. Подавая на него напряжение, он начинает вибрировать с огромной частотой, генерируя при этом звуковые волны. Мы их не слышим, так как частота очень высокая, но, некоторые животные вполне способны услышать работу ультразвукового сканера отпечатков пальцев.
Преимущества ультразвуковых сканеров отпечатков пальцев
Более того, ультразвук не останавливается на внешней оболочке пальца и проникает в глубь. Получается, можно ввести дополнительную защиту от всяких муляжей и сканировать только настоящий палец.
Также ультразвуковые сканеры могут размещаться где угодно, так как ультразвук легко проходит не только через стекло. И, что немаловажно, пальцы не должны быть идеально сухими или чистыми. Небольшая грязь или жидкость не являются помехой для звуковых волн.
Недостатки ультразвукового сканера
Несмотря на все перечисленные преимущества, в реальной жизни все не так гладко. Первый ультразвуковой сканер 3D Sonic от Qualcomm работает заметно медленнее, чем современные оптические аналоги. А новое поколение сканеров до сих пор не выпущено.
Кроме того, многие слышали нашумевшую историю о том, как смартфоны Galaxy S10 и Galaxy Note10 можно было легко взломать, просто положив между пальцем и экраном кусок гидрогелевой защитной пленки. После этого можно было прикладывать любой палец и ультразвуковой сканер моментально разблокировал смартфон. Это повлекло за собой серьезный скандал и некоторые банки запретили работу своих приложений на смартфонах Samsung с ультразвуковыми сканерами.
Конечно, в конце прошлого года Samsung выпустила обновление, исправляющее столь странное поведение. Но осадок остался.
В любом случае, сегодня выбор между ультразвуковым и оптическим сканером не стоит, так как ультразвуковые датчики используются только на флагманах Samsung, начиная с Galaxy S10. На всех остальных смартфонах установлены оптические сканеры отпечатков пальцев.
На работу ультразвуковых сканеров также влияют защитные стекла и некоторые пленки, рассеивающие и частично гасящие звуковую волну.
Попытки обойти любую биометрическую защиту делаются постоянно. Они же и позволяют разработчикам улучшать датчики и алгоритмы.
Любой современный сканер отпечатков пальцев достаточно надежен для того, чтобы обеспечить защиту финансовым данным. Любая платежная система на смартфонах позволяет использовать именно отпечатки пальцев. И делать выбор, исходя из соображений безопасности, не имеет никакого смысла. Емкостные, ультразвуковые и оптические сканеры справляются со своей задачей одинаково хорошо.
Если говорить о скорости и стабильности работы, то лучшим вариантом на сегодня остается емкостный сканер (на флагманских смартфонах), после которого идут современные оптические сканеры и уже затем упомянутый ультразвуковой 3D Sonic.
Apple также не будет оставаться долго в стороне от прогресса. Рано или поздно, в iPhone появится датчик отпечатка пальцев в экране. Те, кто следят за патентами компании, знают, что Apple ведет подобные разработки уже много лет.
Для идентификации личности часто используются отпечатки пальцев. Отпечаток представлен папиллярным узором – это уникальный рельефный рисунок поверхности кожи пальцев. Он формируется порами, разделенными впадинами. Метод биометрической идентификации по точности уступает только сканированию сетчатки глаза, радужной оболочки и анализу ДНК.
Основные типы сканеров отпечатков пальцев
Существует три основных группы сканеров отпечатков пальцев, в две из них входит сразу несколько способов реализации.
Оптический сканер
Методика заключается в применении света для получения изображения отпечатка пальца. Различают три разновидности сканирования:
- На просвет – в качестве сканера применяется оптоволоконная матрица с волноводами, к каждому из которых подключен фотодатчик. Последние улавливают остаточное световое излучение, проходящее через палец в точке его соприкосновения с матрицей.
- На отражение – попавший на границу сред световой поток раздваивается – одна часть излучения отражается, другая – переходит в иную среду. От угла отражения зависит процент отраженного света, при определенных углах отражается все излучение – полное внутреннее отражение. Для захвата картинки используется ПЗС-матрица или КМОП-матрица.
- Бесконтактный – палец не контактирует с поверхностью матрицы, а находится над ней. Источники света освещают его с разных сторон, а линза, через которую проходит отраженный свет, проецирует изображение на КМОП-матрицу. Она формирует узор.
Оптические датчики используются редко из-за габаритов и простоты обмана.
Полупроводниковый сканер
Принцип действия заключается в получении картинки, с помощью основных свойств полупроводников – они изменяют свои параметры в местах контакта гребней узора с поверхностью матрицы. Различают следующие полупроводниковые сканеры отпечатков пальцев:
- Давления – откликаются на повышение давления в месте касания гребней и его отсутствие напротив впадин. Такие сканеры хрупкие и непрактичные.
- Термические – основаны на изменении сопротивления в зависимости от температуры.
- Емкостные – КМОП датчики пропускают через поверхность кожи пальца миниатюрные токи. Реагируют на разницу в проводимости кожи и воздуха. Поверхность пальца – одна пластина конденсатора, матрица датчика – вторая.
Именно емкостные сканеры отпечатков пальцев наиболее распространены в смартфонах средней ценовой категории, а также флагманских моделях мобильных устройств.
Ультразвуковой сканер
Поверхность пальца сканируется звуковыми волнами частотой свыше 20 кГц. Расстояния между гребнями и впадинами определяются благодаря параметрам отраженного от них ультразвука – эха. От гребня звук идет быстрее, чем от впадины – так определяется рельефность поверхности кожи. Стоимость таких сканеров отпечатков пальцев выше других, времени на сканирование требуется несколько больше, но качество папиллярного узора максимально возможное.
Как осуществляется анализ и сравнение отпечатков пальцев?
Узор состоит из повторяющихся элементов, на основании которых осуществляется распознавание отпечатка.
Характеристики папиллярного узора
Папиллярный узор состоит из видимых и скрытых от невооруженного глаза элементов. Его составляющие – дуга (6 разновидностей), завиток (состоит из 3 потоков), петля (8 видов) видны невооруженным глазом. Для точной идентификации личности этих данных недостаточно, а потому используются минуции – локальный тип признаков. Они определяют точки изменения структуры папиллярных узоров.
Различают еще несколько локальных деталей папиллярного узора: разветвления, начала, слияния и окончания линий.
Обработка полученного изображения
Черно-белое изображение, полученное от матрицы, уменьшается, пока толщина линии не будет равной одному пикселю для простоты обработки. Последняя заключается в разбивке картинки на блоки размером 3 на 3 пикселя, где в центре находится папиллярная линия. Такие блоки помещаются в память с данными о типе признака и его параметрах.
Сравнение отпечатков
Отсканированное изображение делится на аналогичные блоки. Их анализ заключается в определении изменения положения пальца (приложен к иному месту, повернут относительно эталонного снимка). Приложение сравнивает блоки полученного и хранимого в памяти папиллярного узоров с целью поиска одинаковых в одном и том же месте. Количество совпадений сравнивается с общим количеством обнаруженных блоков. Из-за загрязнений, несовершенства программного обеспечения и самих датчиков, прикладывания пальца в разных местах порог схожести может находиться на уровне 50% совпадений, а иногда и еще ниже.
Защита данных об отпечатке пальца
Отпечатки пальцев хранятся в виде описаний типов блоков с местом их расположения в зашифрованном виде или в контейнере, защищенном операционной системой. Apple сохраняет эти данные на отдельном чипе, что повышает их безопасность, Huawei – в отдельной операционной системе, работающей на виртуальном процессоре. С целью повышения безопасности:
- не рекомендуется использовать отпечаток пальца для работы с платежными системами;
- используйте палец, отличный от указательного и большого;
- прибегайте к помощи верификации.
Идентификация личности по отпечатку пальца применяется для доступа к различным устройствам и приложениям, и она нашла действительно широкое применение в бизнесе. Из-за действительно большого разнообразия способов реализации сканеров отпечатков пальцев, и соответствующего программного обеспечения никто не может гарантировать абсолютную безопасность и безотказность распознавания отпечатка пальца. Об этом необходимо помнить.
Пожалуйста, опубликуйте ваши мнения по текущей теме материала. За комментарии, лайки, дизлайки, подписки, отклики огромное вам спасибо!
Пожалуйста, опубликуйте свои отзывы по текущей теме статьи. За комментарии, подписки, лайки, дизлайки, отклики низкий вам поклон!
Все существующие на сегодняшний день сканеры отпечатков пальцев по используемым ими физическим принципам можно выделить в три группы:
- оптические;
- кремниевые (или полупроводниковые);
- ультразвуковые.
Оптические сканеры
В основе работы оптических сканеров лежит оптический метод получения изображения. По видам используемых технологий можно выделить следующие группы оптических сканеров:
1. FTIR-сканеры – устройства, в которых используется эффект нарушенного полного внутреннего отражения (Frustrated Total Internal Reflection, FTIR).
При падении света на границу раздела двух сред световая энергия делится на две части: одна отражается от границы, другая — проникает через границу раздела во вторую среду. Доля отраженной энергии зависит от угла падения. Начиная с некоторой его величины, вся световая энергия отражается от границы раздела. Это явление называется полным внутренним отражением. Однако при контакте более плотной оптической среды (в нашем случае поверхность пальца) с менее плотной (в практической реализации, как правило, поверхность призмы) в точке полного внутреннего отражения пучок света проходит через эту границу. Таким образом, от границы отразятся только пучки света, попавшие в такие точки полного внутреннего отражения, к которым не были приложены бороздки папиллярного узора поверхности пальца. Для фиксации получившейся световой картинки поверхности пальца используется специальная камера (ПЗС или КМОП в зависимости от реализации сканера).
2. Оптоволоконные сканеры (fiber optic scanners) — представляют собой оптоволоконную матрицу, каждое из волокон которой заканчивается фотоэлементом.
Чувствительность каждого фотоэлемента позволяет фиксировать остаточный свет, проходящий через палец, в точке прикосновения рельефа пальца к поверхности сканера. Изображение отпечатка пальца формируется по данным каждого из элементов.
3. Электрооптические сканеры (electro-optical scanners) основаны на использовании специального электрооптического полимера, в состав которого входит светоизлучающий слой.
При прикладывании пальца к сканеру неоднородность электрического поля у его поверхности (разность потенциалов между бугорками и впадинами) отражается на свечении этого слоя так, что он высвечивает отпечаток пальца. Затем массив фотодиодов сканера преобразует это свечение в цифровой вид.
4. Оптические протяжные сканеры (sweep optical scanners) в целом аналогичны FTIR-устройствам.
Их особенность в том, что палец нужно не просто прикладывать к сканеру, а проводить им по узкой полоске — считывателю. При движении пальца по поверхности сканера делается серия мгновенных снимков (кадров). При этом соседние кадры снимаются с некоторым наложением, т. е. перекрывают друг друга, что позволяет значительно уменьшить размеры используемой призмы и самого сканера. Для формирования (точнее сборки) изображения отпечатка пальца во время его движения по сканирующей поверхности кадрам используется специализированное программное обеспечение.
5. Роликовые сканеры (roller-style scanners). В этих миниатюрных устройствах сканирование пальца происходит при прокатывании пальцем прозрачного тонкостенного вращающегося цилиндра (ролика).
Во время движения пальца по поверхности ролика делается серия мгновенных снимков (кадров) фрагмента папиллярного узора, соприкасающегося с поверхностью. Аналогично протяжному сканеру соседние кадры снимаются с наложением, что позволяет без искажений собрать полное изображение отпечатка пальца. При сканировании используется простейшая оптическая технология: внутри прозрачного цилиндрического ролика находятся статический источник света, линза и миниатюрная камера. Изображение освещаемого участка пальца фокусируется линзой на чувствительный элемент камеры. После полной «прокрутки» пальца, «собирается картинка» его отпечатка.
6. Бесконтактные сканеры (touchless scanners). В них не требуется непосредственного контакта пальца с поверхностью сканирующего устройства.
Палец прикладывается к отверстию в сканере, несколько источников света подсвечивают его снизу с разных сторон, в центре сканера находится линза, через которую, собранная информация проецируется на КМОП-камеру, преобразующую полученные данные в изображение отпечатка пальца.
Полупроводниковые (кремниевые) сканеры
В основе этих сканеров использование для получения изображения поверхности пальца свойств полупроводников, изменяющихся в местах контакта гребней папиллярного узора с поверхностью сканера. В настоящее время существует несколько технологий реализации полупроводниковых сканеров.
1. Емкостные сканеры (capacitive scanners) — наиболее широко распространенный тип полупроводниковых сканеров, в которых для получения изображения отпечатка пальца используется эффект изменения емкости pn-перехода полупроводникового прибора при соприкосновении гребня папиллярного узора с элементом полупроводниковой матрицы.
Существуют модификации описанного сканера, в которых каждый полупроводниковый элемент в матрице сканера выступает в роли одной пластины конденсатора, а палец — в роли другой. При приложении пальца к сенсору между каждым чувствительным элементом и выступом-впадиной папиллярного узора образуется некая емкость, величина которой определяется расстоянием между поверхностью пальца и элементом. Матрица этих емкостей преобразуется в изображение отпечатка пальца.
2. Чувствительные к давлению сканеры (pressure scanners) — в этих устройствах используются сенсоры, состоящие из матрицы пьезоэлементов.
При прикладывании пальца к сканирующей поверхности выступы папиллярного узора оказывают давление на некоторое подмножество элементов поверхности, соответственно впадины никакого давления не оказывают. Матрица полученных с пьезоэлементов напряжений преобразуется в изображение поверхности пальца.
3. Термо-сканеры (thermal scanners) — в них используются сенсоры, которые состоят из пироэлектрических элементов, позволяющих фиксировать разницу температуры и преобразовывать ее в напряжение (этот эффект также используется в инфракрасных камерах).
При прикладывании пальца к сенсору по температуре прикасающихся к пироэлектрическим элементам выступов папиллярного узора и температуре воздуха, находящегося во впадинах, строится температурная карта поверхности пальца и преобразуется в цифровое изображение.
Данные типы сканеров являются самыми распространенными. Во всех приведенных полупроводниковых сканерах используются матрица чувствительных микроэлементов (тип которых определяется способом реализации) и преобразователь их сигналов в цифровую форму. Таким образом, обобщенно схему работы приведенных полупроводниковых сканеров можно продемонстрировать следующим образом:
4. Радиочастотные сканеры (RF-Field scanners) — в таких сканерах используется матрица элементов, каждый из которых работает как маленькая антенна.
Сенсор генерирует слабый радиосигнал и направляет его на сканируемую поверхность пальца. Каждый из чувствительных элементов принимает отраженный от папиллярного узора сигнал. Величина наведенной в каждой микроантенне электро-движущая сила (ЭДС) зависит от наличия или отсутствия в близи нее гребня папиллярного узора. Полученная таким образом матрица напряжений преобразуется в цифровое изображение отпечатка пальца.
5. Протяжные термо-сканеры (thermal sweep scanners) — разновидность термо-сканеров, в которых для сканирования (так же как и в оптических протяжных сканерах), необходимо провести пальцем по поверхности сканера, а не просто приложить его.
6. Емкостные протяжные сканеры (capacitive sweep scanners) - используют аналогичный способ покадровой сборки изображения отпечатка пальца, но каждый кадр изображения получается с помощью емкостного полупроводникового сенсора.
7. Радиочастотные протяжные сканеры (RF-Field sweep scanners) - аналогичны емкостным, но используют радиочастотную технологию.
Ультразвуковые сканеры
Ультразвуковое сканирование — это сканирование поверхности пальца ультразвуковыми волнами и измерение расстояния между источником волн и впадинами и выступами на поверхности пальца по отраженному от них эху. Качество получаемого таким способом изображения в 10 раз лучше, чем полученного любым другим, представленным на биометрическом рынке методом. Кроме этого, стоит отметить, что данный способ практически полностью защищен от муляжей, поскольку позволяет кроме отпечатка пальца получать и некоторые дополнительные характеристики о его состоянии (например, пульс внутри пальца).
Примеры использования сканеров отпечатков пальцев
Основное применение технологии распознавания по отпечаткам пальцев – защита от несанкционированного доступа. Чаще используются в охранных системах и системах учета рабочего времени сотрудников.
Для контроля доступа, сканеры отпечатков пальцев встраивают в ноутбуки, мобильные телефоны, внешние накопители, флэш-карты и т.д. и т.п.
На сегодняшний день цифровые технологии проникли практически во все сферы нашей жизни: мы в пару кликов совершаем покупки в интернете, кладем и снимаем наличные на банковскую карту, делаем различные операции с виртуальными счетами, а также храним свои фотографии и прочие данные в облачных хранилищах. При всей глобализации цифровых технологий вопрос касаемо защиты персональных данных по-прежнему остается актуальным.
Ни для кого не секрет, что современные продвинутые злоумышленники уже не пользуются ломом и отмычками, а виртуозно используют те же самые цифровые технологии и ПО для своих корыстных целей. Смартфоны по-прежнему остаются уязвимыми, поскольку с его помощью пользователь часто авторизуется в различных онлайн-сервисах. И, если еще вчера защита данных на смартфоне происходила посредством графического ключа или паролей, то в последние годы многие производители начали внедрять разные виды биометрической защиты, которые основаны на уникальности строения определенных частей тела человека. В частности, мы говорим об отпечатках пальцев, геометрии лица, сетчатке глаза, идентификация голоса. Биометрическая аутентификация – это довольно надежный и удобный способ защиты. А главное, такой «пароль» не забудешь, не подсмотришь, к тому же он всегда так сказать под рукой. Сегодня мы поговорим о дактилоскопическом сканере в смартфоне или, иными словами, сканере отпечатков пальцев. Интересно узнать, что из себя представляет это устройство, каких видов бывает сканер, а также как он работает.
Следует отметить, что процесс идентификации с помощью отпечатков пальцев стоит в одном ряду с самыми надежными способами, с помощью которых можно подтвердить личность пользователя. По точности аутентификации сканирование отпечатков пальцев уступает только методу, а рамках которого осуществляется сканирование сетчатки глаза, а также анализу ДНК. Отпечатки человеческих пальцев представлены папиллярными узорами на коже, которые у каждого человека уникальные, причем появляются они внутриутробно, на двенадцатой неделе синхронно с нервной системой. Интересно, что на папиллярные узоры могут повлиять различные факторы, например, это касается генетического кода ребёнка и прочего. Другими словами, папиллярными узорами являются выступы и борозды на коже, которые формируют уникальный и неповторимый рисунок. Даже незначительная травма или повреждение покровов кожи не могут «стереть» отпечаток, поскольку он со временем восстановится, если конечно в результате травмы не снесло пол пальца.
Как работает сканер отпечатка пальцев в современном смартфоне
В сканерах отпечатков пальцев имеются две основные функции. При помощи первой из них сканер считывает изображение отпечатка, в то время как вторая функция проверяет совпадение отпечатка с существующими в базе данных. Практически во всех современных смартфонах применяются оптические сканеры. Принцип их работы схож с цифровыми фотоаппаратами. Снимок делается с помощью микросхемы, куда входят светочувствительные фотодиоды, а также автономный источник освещения в виде матрицы светодиодов, с помощью которой узоры на пальце подсвечиваются.
Когда свет попадает на считываемый папиллярный рисунок, с помощью фотодиодов появляется электрический заряд, в результате чего отдельно взятый пиксель запечатлевается на будущем снимке. С помощью пикселей различной интенсивности на сканере образуется снимок отпечатка пальца. Кроме того, перед тем как сверить отпечаток с базой данных, сканер осуществляет проверку качества снимка.
После получения снимка отпечатка его анализирует специальное программное обеспечение с помощью сложных алгоритмов. К слову, происходит анализ трёх типов узоров отпечатка: дугового, петлевого и завиткового. После того, как ПО определило тип узора, происходит идентификация окончаний линий узоров (разрывы или раздвоения, которые называются минуциями), ведь именно они являются неповторимыми и с их помощью можно осуществить идентификацию владельца устройства. Дальше идет довольно сложный анализ, в рамках которого сканер анализирует положение минуций по отношению друг к другу, с разбитием отпечатка на микроблоки. Примечательно, что в процессе сопоставления сканер не анализирует отдельно взятую линию узора. Сканер определяет совпадение в отдельных блоках и по ним определяет сходство.
Каких типов бывают дактилоскопические сканеры
Оптические сканеры бывают двух основных видов. Что касается первого из них, то он снимает нужную область пальца при посредстве его прикосновения непосредственно к сканеру. Такой тип применяется в «яблочных» смартфонах, начиная с iPhone 5s. В отношении второго типа отметим, что в этом случае пользователь проводит пальцем по оптическому сканеру. В результате получается серия снимков, которые программным обеспечением объединяются в один. Этот тип какое-то время использовала в своих продуктах компания Samsung, однако, со временем она перешла на первый тип, поскольку он более удобен, хотя и более дорогостоящий. Основной недостаток оптического дактилоскопического сканера является уязвимость к царапинам и загрязнению. Также его можно «обвести вокруг пальца» при помощи слепка фаланги пальца.
Стоит также отметить о полупроводниковом типе сканера отпечатка пальца, который в смартфонах не применяется по целому ряду причин. Его невозможно обмануть с помощью слепка пальца. Еще одним типом дактилоскопических сканеров является ультразвуковой сканер. Он отличается большой перспективой развития, а действует он по принципу медицинского УЗИ. Обмануть его практически нереально, так как он способен проникнуть в эпидермальный слой кожи, которые уникален.
Следует отметить, что сканеры могут быть размещены в разных частях смартфона. Многие производители устанавливают сканер отпечатков пальцев на тыльной панели, недавно пошла мода на боковую грань, а компания HMD подготавливает свой новый флагман с интегрированным сканером в дисплей.
Читайте также: