Кинематика 3d принтера какая лучше
Качество печати 3D-принтера и принцип его работы зависят от нескольких факторов. Один из важных показателей – кинематика. В этой статье рассмотрены ее основные виды и их особенности.
Что такое кинематика 3D-принтеров?
Каждый 3D-принтер имеет свою кинематическую схему работы. Модели оснащены платформой и экструдером. Эти детали двигаются в определенном направлении относительно друг друга. Кинематика в таком устройстве означает схему, по которой передвигаются экструдер и платформа.
Виды и типы
Видов кинематики 3D-принтеров насчитывают пять. От их особенностей зависит принцип функционирования устройства и способ обработки заготовки.
Картезианские 3D-принтеры
Самые распространенные – 3D-принтеры с картезианской кинематикой. Они основаны на декартовой системе координат, работают осях X, Y и Z. По ним задаются координаты, по которым печатающая головка меняет положение относительно платформы. У печатающей головки есть ограничения относительно движения по трем осям.
- Экструдер направляется в высоту, когда платформа двигается по горизонтальным осям X или Y.
- Платформа движется вверх по оси Z, экструдер в этот момент может передвигаться по горизонтальным направлениям.
- Платформа перемещается по одной из осей в высоту, экструдер поднимается по другой оси.
- Платформа статична и не двигается, экструдер передвигается по всем трем осям.
- Экcтрудер проходит по координатам в высоту, а платформа осуществляет движение по осям X и Y.
Самыми распространенными вариантами во время функционирования являются первый и второй.
Картезианская кинематика отличается рядом преимуществ.
- Это простая схема движения, она подходит для любительской печати. На ее основе работают многие бюджетные модели.
- Принтер может выпускаться в любых габаритных параметрах, при необходимости он модернизируется.
- Расходные материалы представлены в свободном доступе. Пользователям предлагают большое количество материалов и расцветок.
- Принтеры могут поставляться в разобранном виде. Такая особенность позволяет новичкам в мире 3D-печати разобраться в принципе работы механизма.
- Устройства, работающие на основе картезианской системы, подходят для массового выпуска деталей. Они предназначены для создания заготовок разных размеров.
Из недостатков принтеров, построенных по принципу трех систем координат, выделяют два фактора:
- модели громоздкие, после сборки они занимают много места на рабочем столе;
- невысокая скорость печати.
Принтеры на основе картезианской кинематики подходят для любительской печати. Они помогают новичкам разобраться в процессе работы и научиться создавать модели.
Пример печати на устройстве с картезианской кинематикой.
Разновидности картезианской кинематики CoreXY и H-Bot
В CoreXY есть два подающих ремня, а в H-Bot установлен только один, но длинный – это основное отличие двух разновидностей. Общая черта в этих устройствах на основе картезианской кинематики заключается в том, что платформа движется только по оси Z. Горизонтальные оси X и Y перемещаются при помощи пары двигателей, закрепленных на раме.
За движение по горизонтальным осям отвечают два двигателя, по вертикальным – один. Такая кинематика распространена не только в любительских принтерах, но и профессиональных.
3D-принтеры, работающие на основе CoreXY и H-Bot, обходятся дороже, чем обычные модели на картезианской кинематике. Для производства их корпусов используют металлический сплав или композитные материалы. Рельсовые направляющие раскрывают потенциал качественной печати. Такая кинематика позволяет достигать хорошей детализации при быстрой печати.
з преимуществ CoreXY и H-Bot выделяют:
- высокую скорость печати;
- качественную детализацию моделей;
- профессиональный класс использования.
Но не обошлось без недостатков:
- H-Bot не реализуют на стальных валах;
- нужно постоянно следить за натяжением ремня, чтобы не возник люфт;
- высокая стоимость приборов;
- ремни могут быстро изнашиваться, если в процессе работы будут тереться о соседние предметы, этот фактор нужно учитывать во время эксплуатации;
- шкивы, по которым двигаются ремни, должны быть расположены строго перпендикулярно друг другу.
Принтеры, работающие на картезианской кинематике, получили широкое распространение в разных производственных сферах. Они отличаются высокой детализацией печати, прочным металлическим корпусом, качественными комплектующими.
Справка! Картезианская кинематика позволяет создавать детализованные объекты с высокой скоростью.
Дельта-принтеры
Принтеры, работающие на кинематике типа «Дельта», отличаются от своих конкурентов по ряду особенностей. Стол остается неподвижным, а для перемещения печатающей головки используются сразу три установленных оси. В таких устройствах нет деления на ось X, Y и Z. Чтобы переместить каретку вбок, нужно опустить одну ось, а оставшиеся приподнять.
Справка! В сфере производства 3D-принтеров кинематика «Дельта» пока не нашла широкого распространения. Это перспективное направление, которое пока развивают разработчики.
Уже существующие дельта-принтеры отличаются следующими преимуществами.
- Небольшие габариты. Устройства не занимают много места на рабочем столе, они высокие, но не широкие.
- Высокая скорость печати. Модели могут обрабатывать 300–400 мм/с.
- Новый подход к изготовлению заготовок. Оборудование печатает не по такой технологии, как картезианское. За процессом обработки модели интересно наблюдать.
У дельт есть и несколько минусов.
Точность печати остается высокой.
На дельтах можно выстраивать качественные вертикальные модели даже с большими габаритами. На корпусе нет выступающих деталей, что позволяет самостоятельно увеличить его жесткость.
Полярные
Полярная кинематическая схема представлена только у одной фирмы – Polar. Суть такой технологии заключается в том, что в ней нет позиционирования по осям X, Y и Z. Положение экструдера задается показателем угла и радиуса. Платформа у полярных 3D-принтеров отличается круглой формой, она движется только по горизонтальной оси и только вращается по кругу. Экструдер перемещается вверх и вниз.
Из преимуществ 3D-принтеров на полярной кинематике выделяют:
- возможность создавать крупные объекты;
- высокую энергоэффективность;
- экономию материалов;
- небольшие габариты.
Но есть и недостатки:
- низкая точность печати, над которой начали работы представители фирмы Polar;
- платформа в процессе работы не прогревается;
- ограничения относительно работы с материалами – нельзя обрабатывать пластик ABS.
Полярные принтеры уступают по точности печати картезианским и дельтовым. Такие модели производитель рекомендует использовать в образовательных целях, для профессиональной печати они пока не подходят.
Пример печати показывает, что точности добиться не удается. Все черты смазаны, фигурке не хватает резкости и четкости.
C роботизированными манипуляторами
Принтеры с роботизированными манипуляторами – это конструкция с механически программируемым манипулятором-захватом экструдером. Это многофункциональный робот: он может проводить сварочные работы, покраску, фрезерование и т. д.
Экструдер может перемещаться в разных направлениях: послойно, по сложным траекториям в трех измерениях, под разными углами. Благодаря такому набору функций удается создавать сложные конструкции.
Из основных преимуществ выделяют:
- универсальность: прибор может осуществлять несколько видов задач при замене экструдера;
- подходят для выполнения промышленных задач: можно печатать крупные объекты практически без ограничений по габаритам.
Но есть и недостатки:
- невысокая точность: такое оборудование уступает картезианской кинематике;
- крупные размеры: устройства занимают много места на рабочей поверхности.
Для профессиональной 3D-печати такие модели не подойдут. Их можно рассматривать как объект для хобби или инструмент для него. В промышленных целях такие приборы работают только в случае, когда высокая точность выполнения деталей неважна.
SCARA
SCARA (Selective Compliance Articulated Robot Arm) – это кинематика, которая основана на вращении платформы по горизонтали. Движение достигается за счет сочленения рычажного механизма.
Такие приборы обладают высокой точностью и повторяемостью, при работе издают минимум шума и вибраций. SCARA по детализации обработки превзошли и картезианские модели: разница еще и в том, что первые работают ощутимо быстрее.
Из преимуществ такой кинематики:
- точность печати;
- высокая скорость обработки заготовки;
- небольшие габариты и масса.
Но есть и недостатки:
- ограничения по жесткости в зоне осей X и Y;
- высокая стоимость;
- не самая широкая сфера использования.
Приборы на основе кинематики SCARA – это устройства, которые совмещают в себе функции принтера с трехмерной технологией и манипулятора. Действия устройства программируются через программное обеспечение или установленное мобильное приложение.
Выбор кинематики 3D-принтеров зависит от требований к технике и сфере использования.
Существует множество технологий печати для 3D-принтеров: цифровая светодиодная проекция (DLP), лазерная стереолитография (SLA), селективное лазерное спекание (SLS), тепловое спекание (SHS) и т.д. В этой статье мы рассказываем о самых популярных на данный момент 3D-принтерах FFF.
FFF-принтеры (Fused Filament Fabrication, «производство методом наплавления нитей»), также известны как принтеры FDM (от Fused Deposition Modelling, «моделирование методом наплавления»). Представляют собой устройства для создания трехмерных объектов, как понятно из названия, путем послойного нанесения на рабочую поверхность расплавленного термопластика. FFF-принтеры используются как для коммерческой, так и для домашней печати моделей.
Виды кинематики 3D-принтеров
Каждый 3D-принтер имеет собственную кинематическую схему, согласно которой приводятся в движение механические части устройства: платформы и экструдеры. Ниже мы рассмотрим четыре типа FDM 3D-принтера: картезианский, дельта, полярный и роботизированный манипулятор.
Картезианские 3D-принтеры
На рынке 3D-принтеров FFF / FDM самыми распространенными являются приборы с картезианской кинематикой. Основанная на декартовой системе координат, эта технология работает на основе трех осей – X, Y, Z. По одной или нескольким из них осуществляется движение механических частей прибора, т.е., заданные по осям координаты реализуют схему перемещения и положения печатающей головки относительно платформы.
Количество вариантов перемещения печатной головы и платформы ограничено:
-
Платформа передвигается по одной из горизонтальных осей — X или Y, экструдер движется по другой и в высоту.
Вторая схема является самой распространенной — когда платформа для печати перемещается по оси Z (вверх и вниз), а экструдер работает в двух измерениях, по плоскостям XY.
Преимущества картезианской схемы
Из всех видов кинематических схем FDM 3D-принтеров, картезианские показывают практически идеальную стабильность результатов. Расходные материалы для FDM имеют низкую стоимость и поставляются в широчайшем ассортименте цветов и материалов. Часто картезианские 3D-принтеры применяются в коммерческих целях – для печати на заказ и на продажу бытовых объектов, сувенирной продукции и украшений.
Картезианские 3D-принтеры уже давно и прочно обосновались в жизни любителей и профессионалов 3D-печати. Поэтому в сети множество тематических сообществ с исчерпывающей информацией об устройстве принтеров, работе с ними и создании моделей, от простых до сложных.
Модели, построенные на декартовой системе координат, можно разделять на составные части для печати, что позволяет создавать 3D-печатные объекты любого размера, не ограниченные объемом принтера. Многие 3D-принтеры поставляются в виде набора для сборки. Для новичков и тех, кто не хочет разбираться в устройстве принтера, производители поставляют готовые устройства. С ними печатать модели можно практически после распаковки.
Разновидности картезианской кинематики CoreXY и H-Bot
Данные кинематические схемы часто встречаются в коммерческих сферах. Отличаются оригинальными методами позиционирования экструдера. В обоих кинематиках платформа передвигается вверх-вниз.
CoreXY имеет два закрепленных на раме двигателя, которые приводят в движение два ремня для перемещения каретки экструдера по осям XY.
Кинематика H-Bot для 3D-принтера основана на похожей механике, но с другим ременным приводом. В данном случае ремень один и натянут по форме, напоминающей обведенную по контуру букву H (аш), за что схема и получила название аш-бот.
При работе обоих двигателей в одну сторону, каретка движется по оси X, в разные стороны — по оси Y. Когда один из двигателей остается неподвижным, каретка перемещается по диагонали.
Designer X PRO
- Материал для 3D печати: PLA, ABS, PLA Flexible, PVA, PC, Hips, Nylon, Laywood, FilaFlex, Filamentarno (диаметр нити 1.75мм);
- Область печати: 200 х 200 х 210 мм;
- Материал корпуса: Алюминий (композит);
- Направляющие: XY: рельсовые (сталь), Z: цилиндрические (сталь)
- Толщина слоя: от 0,05 до 0,25 мм (регулируется настройками ПО принтера);
- Точность позиционирования: XY: 11 микрон; Z: 1.25 микрон;
- Наличие подогреваемой платформы: Да;
- Платформа печати: Алюминий - стекло;
- Количество печатающих головок: 2;
- Автоматическая калибровка стола: Да;
- Плата управления: на базе ядра ARM CORTEX M4 32-битного процессора STM;
- Интерфейсы: USB, Ethernet, USB Flash (в комплекте);
- Совместимость с программным обеспечением: Windows XP, Windows 7, Windows 8;
- Скорость печати: до 30 см3/час;
- Цена, руб.: 299 000 (стоимость может изменяться, текущую уточняйте при заказе).
Устройство для печати моделей высокого качества, сравнимых с промышленными изделиями. Обладает функцией двухматериальной печати. ПО полностью контролирует процесс, что минимизирует ошибки и увеличивает производительность 3D-принтера.
Дельта-принтеры
Дельта-принтеры и внешне, и по способу реализации механики отличаются от картезианских. Главное отличие заключается в способе передвижения экструдера относительно рабочего стола.
DELTA механика для 3Д-принтера визуально представляет собой закрепленный на трех точках экструдер, соединенный в единую конструкцию с неподвижной платформой для печати.
Достоинства и недостатки дельта-ботов
Кинематика Delta, по сравнению с картезианскими моделями, имеет более высокую скорость печати, но меньшую точность на краях модели. Причина в том, что для движения экструдера задействованы все три точки крепления, их двигатели работают одновременно, что приводит к накоплению ошибок в позиционировании координат.
- Малогабаритность. Конструкция высокая, но в длину и ширину не занимает много места.
- Отсутствие выступающих деталей. Можно самостоятельно увеличить жесткость рамы и закрыть корпус.
- Возможность построить высокие вертикальные модели.
- Высокая ценовая категория.
- Сложны для самостоятельной сборки. Новичкам будет сложно собрать конструкцию достаточно точно, поэтому рекомендуется использовать готовые решения, поставляемые в собранном виде.
- Специфика работы с полярными координатами: менее распространенное ПО и более дорогая электроника, т.к. выше требования к вычислительной мощности начинки.
3D принтер Tevo Little monster
- Совместимость с операционными системами: Windows, Linux, Mac;
- Электропитание: 220 В;
- Размеры, мм: 600x600x1200;
- Вес, кг: 28;
- Количество экструдеров: 1;
- Рабочая камера, мм: 340x340x500;
- Температура экструдера: 200°C;
- Толщина слоя: от 50 мкм;
- Интерфейсы: SD, USB;
- Скорость печати: 300 мм/с;
- Цена, руб.: 91 992 (стоимость по предзаказу, может изменяться, текущую уточняйте при заказе).
Используется для коммерческой деятельности, в дизайне, рекламе и образовательных целях, а также применяется в качестве домашнего 3D-принтера. Отличается высокой скоростью печати и малыми габаритами. Работает со множеством материалов: PLA, ABS, Flexible PLA, HIPS, WOOD, PVA, Nylon.
Полярные 3D-принтеры
Достаточно новая, но интересная кинематическая полярная схема представлена на рынке одноименной компанией Polar. Как следует из названия, в печати используется полярная система координат — вместо привычных XYZ, позиционирование экструдера задается радиусом и углом.
Платформа таких 3D-принтеров имеет круглую форму, вращается по кругу и двигается целиком по одной горизонтальной оси, при этом экструдер движется только вверх и вниз. Представьте себе виниловый проигрыватель – печатающая головка принтера работает по принципу иглы звукоснимателя, движущейся по пластинке. С той лишь разницей, что тут “пластинка” не только вращается, а “игла” наоборот ограничена в перемещениях.
Плюсы и минусы полярной механики
Полярные 3D-принтеры позволяют создавать крупные объекты, при этом экономя средства за счет высокой энергоэффективности. Они пока имеют низкую точность, но в долгосрочной перспективе, возможно, производитель сможет решить эту проблему.
Polar 3D
- Габаритные размеры, мм: 200х310х350;
- Вес, кг: 4,6;
- Толщина слоя: от 50 мкм;
- Толщина нити: 1,75 мм;
- Используемый материал: PLA;
- Интерфейсы: порт Ethernet и два порта USB;
- Цена, $: 799 (ориентировочная рыночная стоимость).
Подогрев печатной платформы отсутствует, что затрудняет использование ABS. Имеет скромные габариты, хорошую производительность, но низкую точность, по сравнению с дельта-принтерами и моделями с декартовой системой координат. Производитель рекомендует приобретать модель для образовательных целей.
3D-принтеры с роботизированными манипуляторами
Представляют собой конструкцию с механическим программируемым манипулятором-захватом заменяемым экструдером. Если речь о крупных промышленных экземплярах (а бывают и более компактные), то, помимо функций манипулятора и 3D-принтера, такой робот может производить сварочные работы, фрезерование, покраску и другие операции.
Хотя механика 3Д-печати с робо-рукой в основном применяется в промышленности, существуют модели для индивидуального использования, с широким набором функций.
Роборука Dobot Magician Educational
- Электропитание: 12 В, 60 Вт;
- Размеры, мм: 340х300х400;
- Вес, кг: 3,4;
- Погрешность: до 0,2 мм;
- Программное обеспечение: Dobot Studio.
- Цена, руб.: 198 000 (стоимость может изменяться, текущую уточняйте при заказе).
Обладает множеством функций: может рисовать, писать, захватывать и перемещать предметы, выполнять лазерную гравировку и т.д.
SCARA
SCARA (Selective Compliance Articulated Robot Arm) — кинематика основанная на перемещении рабочего блока в горизонтальной плоскости за счет вращения в сочленениях рычажного механизма.
Построенные на данной схеме устройства отличаются очень высокой точностью и повторяемостью, намного выше чем у традиционных роботов-манипуляторов, низким уровнем шума и вибрации, компактностью. Если говорить о картезианских и SCARA-роботах сравнимых размеров и массы, то скара как правило не только точнее, но и быстрее.
В то же время, такие устройства дороги, имеют ограничения жесткости по осям XY, меньшую область работы и свободу движений.
Dobot M1 роборука
- Совместимость с операционными системами: Windows, Mac, Linux.
- Интерфейсы: USB, Bluetooth, Wi-Fi.
- Привод: пневматический.
- Количество осей: 4.
- Высота: 52,7 см.
- Вес: 3,4 кг.
- Длина руки-манипулятора: 40 см.
- Грузоподъемность: до 1,5 кг с точностью до 0,02 мм.
- Система управления: DOBOT BLOCKY.
- Цена, руб.: 580 000 (стоимость может изменяться, текущую уточняйте при заказе).
Компактный настольный робот, совмещает в себе функции 3D-принтера и манипулятора. Действия программируются через установленное на компьютере ПО или мобильное приложение. Имеет сменные головки для печати, гравировки, пайки и сборки.
Анализ роботизированных кинематических схем
Преимущества 3D-принтеров с роботизированным манипулятором очевидны – такой принтер не ограничен объемом рабочей камеры, которой у него нет – при той же области печати, само устройство занимает намного меньше места.
Экструдер может перемещаться не только послойно, как в настольных принтерах, но и по сложным траекториям в трех измерениях, и под разными углами, что облегчает процесс создания сложных конструкций. Несомненный плюс также то, что обычно это универсальные конструкции, при замене экструдера на другие блоки выполняющие множество задач.
По точности печати манипуляторы не составят конкуренции картезианским 3D-принтерам, но, благодаря своей универсальности и крупным размерам, промышленные роботы активно используются в 3D-печати в промышленных условиях, где почти незаменимы.
Миниатюрные настольные роботы хороши в первую очередь как наглядное пособие, а также объект хобби или инструмент для него.
Заключение
Выбирая устройство перед покупкой, прежде всего определитесь с целью — зачем вам нужен 3D-принтер? Коммерция, работа или развлечение? Универсальность FFF / FDM 3D-принтеров в том, что они подходят для разных применений.
Не важно, хотите ли вы изучить 3D-печать и приобрести новое хобби, воплотить в жизнь творческие фантазии или открыть бизнес — для реализации каждой из этих целей найдется подходящий аппарат, надо лишь выбрать.
Поможем с выбором 3D-принтера для любых задач, обращайтесь в Top 3D Shop.
Существует множество технологий печати для 3D-принтеров: цифровая светодиодная проекция (DLP), лазерная стереолитография (SLA), селективное лазерное спекание (SLS), тепловое спекание (SHS) и т.д. В этой статье мы рассказываем об особенностях FFF технологии, о принтерах, которые ее используют, и о кк сильных и слабых сторонах.
Введение
FFF-принтеры (Fused Filament Fabrication, «производство методом наплавления нитей»), также известны как принтеры FDM (от Fused Deposition Modelling, «моделирование методом наплавления»). Представляют собой устройства для создания трехмерных объектов, как понятно из названия, путем послойного нанесения на рабочую поверхность расплавленного термопластика. FFF-принтеры используются как для коммерческой, так и для домашней печати моделей.
Виды кинематики 3D-принтеров
Каждый 3D-принтер имеет собственную кинематическую схему, согласно которой приводятся в движение механические части устройства: платформы и экструдеры. Ниже мы рассмотрим четыре типа FDM 3D-принтера: картезианский, дельта, полярный и роботизированный манипулятор.
На рынке 3D-принтеров FFF / FDM самыми распространенными являются приборы с картезианской кинематикой. Основанная на декартовой системе координат, эта технология работает на основе трех осей – X, Y, Z. По одной или нескольким из них осуществляется движение механических частей прибора, т.е., заданные по осям координаты реализуют схему перемещения и положения печатающей головки относительно платформы.
Количество вариантов перемещения печатной головы и платформы ограничено:
Платформа передвигается по одной из горизонтальных осей — X или Y, экструдер движется по другой и в высоту.
Платформа перемещается по высоте, по оси Z, а экструдер передвигается по двум плоскостям, вперед-назад и влево-вправо.
Платформа движется по одной из осей и в высоту, экструдер - по другой оси.
Платформа неподвижна, экструдер передвигается по всем трем осям.
Платформа движется по осям XY, экструдер перемещается по высоте.
Вторая схема является самой распространенной — когда платформа для печати перемещается по оси Z (вверх и вниз), а экструдер работает в двух измерениях, по плоскостям XY.
Преимущества картезианской схемы
Из всех видов кинематических схем FDM 3D-принтеров, картезианские показывают практически идеальную стабильность результатов. Расходные материалы для FDM имеют низкую стоимость и поставляются в широчайшем ассортименте цветов и материалов. Часто картезианские 3D-принтеры применяются в коммерческих целях – для печати на заказ и на продажу бытовых объектов, сувенирной продукции и украшений.
Картезианские 3D-принтеры уже давно и прочно обосновались в жизни любителей и профессионалов 3D-печати. Поэтому в сети множество тематических сообществ с исчерпывающей информацией об устройстве принтеров, работе с ними и создании моделей, от простых до сложных.
Модели, построенные на декартовой системе координат, можно разделять на составные части для печати, что позволяет создавать 3D-печатные объекты любого размера, не ограниченные объемом принтера. Многие 3D-принтеры поставляются в виде набора для сборки. Для новичков и тех, кто не хочет разбираться в устройстве принтера, производители поставляют готовые устройства. С ними печатать модели можно практически после распаковки.
Разновидности картезианской кинематики CoreXY и H-Bot
Данные кинематические схемы часто встречаются в коммерческих сферах. Отличаются оригинальными методами позиционирования экструдера. В обоих кинематиках платформа передвигается вверх-вниз.
CoreXY имеет два закрепленных на раме двигателя, которые приводят в движение два ремня для перемещения каретки экструдера по осям XY.
Кинематика H-Bot для 3D-принтера основана на похожей механике, но с другим ременным приводом. В данном случае ремень один и натянут по форме, напоминающей обведенную по контуру букву H (аш), за что схема и получила название аш-бот.
При работе обоих двигателей в одну сторону, каретка движется по оси X, в разные стороны — по оси Y. Когда один из двигателей остается неподвижным, каретка перемещается по диагонали.
Одним из примеров таких 3D-принтеров, может служить Designer X PRO. Эта модель отличается высокой скоростью, так как благодаря наличию функции JetSwitch, печать 2мя материалами стала еще быстрее (до 5 секунд в обычном режиме и 250 мс в черновом режиме). А заново спроектированная печатающая головка с точностью до 1 мкм, рамная конструкция, точная механика и аппаратная платформа нового поколения позволит вам напечатать модели высокого качества, сравнимые с промышленными изделиями. Обладает функцией двухматериальной печати. ПО полностью контролирует процесс, что минимизирует ошибки и увеличивает производительность 3D-принтера.
Дельта-принтеры
Дельта-принтеры и внешне, и по способу реализации механики отличаются от картезианских. Главное отличие заключается в способе передвижения экструдера относительно рабочего стола.
DELTA механика для 3Д-принтера визуально представляет собой закрепленный на трех точках экструдер, соединенный в единую конструкцию с неподвижной платформой для печати.
Достоинства и недостатки дельта-ботов
Кинематика Delta, по сравнению с картезианскими моделями, имеет более высокую скорость печати, но меньшую точность на краях модели. Причина в том, что для движения экструдера задействованы все три точки крепления, их двигатели работают одновременно, что приводит к накоплению ошибок в позиционировании координат.
Другие преимущества:
Малогабаритность. Конструкция высокая, но в длину и ширину не занимает много места.
Отсутствие выступающих деталей. Можно самостоятельно увеличить жесткость рамы и закрыть корпус.
Возможность построить высокие вертикальные модели.
Высокая ценовая категория.
Сложны для самостоятельной сборки. Новичкам будет сложно собрать конструкцию достаточно точно, поэтому рекомендуется использовать готовые решения, поставляемые в собранном виде.
Специфика работы с полярными координатами: менее распространенное ПО и более дорогая электроника, т.к. выше требования к вычислительной мощности начинки.
Одним из примеров такого 3D-принтера может служить Tevo Little monster. Он преимущественно используется для коммерческой деятельности, в дизайне, рекламе и образовательных целях, а также применяется в качестве домашнего 3D-принтера. Отличается высокой скоростью печати и малыми габаритами. Работает со множеством материалов: PLA, ABS, Flexible PLA, HIPS, WOOD, PVA, Nylon.
Полярные 3D-принтеры
Достаточно новая, но интересная кинематическая полярная схема представлена на рынке одноименной компанией Polar. Как следует из названия, в печати используется полярная система координат — вместо привычных XYZ, позиционирование экструдера задается радиусом и углом.
Платформа таких 3D-принтеров имеет круглую форму, вращается по кругу и двигается целиком по одной горизонтальной оси, при этом экструдер движется только вверх и вниз. Представьте себе виниловый проигрыватель – печатающая головка принтера работает по принципу иглы звукоснимателя, движущейся по пластинке. С той лишь разницей, что тут “пластинка” не только вращается, а “игла” наоборот ограничена в перемещениях.
Плюсы и минусы полярной механики
Полярные 3D-принтеры позволяют создавать крупные объекты, при этом экономя средства за счет высокой энергоэффективности. Они пока имеют низкую точность, но в долгосрочной перспективе, возможно, производитель сможет решить эту проблему.
К таким 3D-принтерам относится модель Polar 3D. В данном 3D-принтере подогрев печатной платформы отсутствует, что затрудняет использование ABS. Имеет скромные габариты, хорошую производительность, но низкую точность, по сравнению с дельта-принтерами и моделями с декартовой системой координат. Производитель рекомендует приобретать модель для образовательных целей.
3D-принтеры с роботизированными манипуляторами
Представляют собой конструкцию с механическим программируемым манипулятором-захватом заменяемым экструдером. Если речь о крупных промышленных экземплярах (а бывают и более компактные), то, помимо функций манипулятора и 3D-принтера, такой робот может производить сварочные работы, фрезерование, покраску и другие операции.
Хотя механика 3Д-печати с робо-рукой в основном применяется в промышленности, существуют модели для индивидуального использования, с широким набором функций.
Роборука Dobot Magician Educational обладает множеством функций.Может рисовать, писать, захватывать и перемещать предметы, выполнять лазерную гравировку и т.д.
SCARA
SCARA (Selective Compliance Articulated Robot Arm) — кинематика основанная на перемещении рабочего блока в горизонтальной плоскости за счет вращения в сочленениях рычажного механизма.
Построенные на данной схеме устройства отличаются очень высокой точностью и повторяемостью, намного выше чем у традиционных роботов-манипуляторов, низким уровнем шума и вибрации, компактностью. Если говорить о картезианских и SCARA-роботах сравнимых размеров и массы, то скара как правило не только точнее, но и быстрее.
В то же время, такие устройства дороги, имеют ограничения жесткости по осям XY, меньшую область работы и свободу движений.
Примером такой кинематики может быть роборука Dobot M1. Это компактный настольный робот, совмещает в себе функции 3D-принтера и манипулятора. Действия программируются через установленное на компьютере ПО или мобильное приложение. Имеет сменные головки для печати, гравировки, пайки и сборки.
Анализ роботизированных кинематических схем
Преимущества 3D-принтеров с роботизированным манипулятором очевидны – такой принтер не ограничен объемом рабочей камеры, которой у него нет – при той же области печати, само устройство занимает намного меньше места.
Экструдер может перемещаться не только послойно, как в настольных принтерах, но и по сложным траекториям в трех измерениях, и под разными углами, что облегчает процесс создания сложных конструкций. Несомненный плюс также то, что обычно это универсальные конструкции, при замене экструдера на другие блоки выполняющие множество задач.
По точности печати манипуляторы не составят конкуренции картезианским 3D-принтерам, но, благодаря своей универсальности и крупным размерам, промышленные роботы активно используются в 3D-печати в промышленных условиях, где почти незаменимы.
Миниатюрные настольные роботы хороши в первую очередь как наглядное пособие, а также объект хобби или инструмент для него.
Заключение
Выбирая устройство перед покупкой, прежде всего, определитесь с целью — зачем вам нужен 3D-принтер? Коммерция, работа или развлечение? Универсальность FFF / FDM 3D-принтеров в том, что они подходят для разных применений. Не важно, хотите ли вы изучить 3D-печать и приобрести новое хобби, воплотить в жизнь творческие фантазии или открыть бизнес — для реализации каждой из этих целей найдется подходящий аппарат, надо лишь выбрать.
Сегодня я решил поделиться своими мыслями насчет выбора кинематики для принтера. Честно говоря, в интернете нет однозначного мнения о том, какая все-таки схема движения экструдера по осям является наиболее удачной. Попробуем разобраться.
Самая распространенная в интернете система принадлежит классическому Prusa Mendel:
В классификации самих репраповцев такая схема движения называется XZ Head Y Bed. Это означает, что экструдер движется по оси X (влево-вправо) и Z (вверх-вниз), а стол бегает по оси Y (вперед-назад). И все тут вроде бы хорошо и достаточно просто, но! Несмотря на видимую простоту конструкции, ее практически нереально настроить на идеальную геометрию. Здесь слишком много гаек, которые надо одновременно крутить, чтобы выставить перпендикулярность / диагональность. Даже, если получается настроить правильную печать в основании детали, то ближе к вершине все равно модель "уплывает" куда-то не туда. Калибровка такого принтера подобна шаманству. Кроме всего прочего, точность принтера напрямую зависит от жесткости резьбовых шпилек, из которых он состоит процентов на 70. Я применял обычные шпильки М8 из строительного магазина - а они гнутся практически без усилий. Так что ждать от такого принтера печати запредельного качества не стоит.
Но! Если заменить все эти хлипкие шпильки на цельные элементы, то результат будет гораздо лучше.
Такой вариант реализации называется Prusa Air. Есть еще Prusa i3 (наверное, по-аналогии с компом автора, в котором трудится Intel Core i3) и еще целая куча вариантов. В том числе и комбинированные, в которых используются и цельные элементы и все те же резьбовые шпильки. Например такой:
Собрать (а самое главное - настроить) такой принтер гораздо проще. Да и качество печати будет уже на уровне промышленных образцов. Необязательно делать боковины и прочие элементы из акрила при помощи лазерной резки, либо фрезерования. Можно обойтись фанерой (или МДФ):
Поводом для написания данной статьи послужила статья “Я хотел купить недорогой 3D-принтер, но посмотрел YouTube и расхотел”, в конце которой автор просит ответить на несколько вопросов. Попробую ответить с точки зрения своего семилетнего опыта 3D-моделера и 3D-печатника. Для начала небольшие предостережения.
В данной статье не будет советов: “Покупайте принтер производителя Х - он хороший, а производителя Y - не берите ни в коем случае”, только общие рекомендации.
Классификация принтеров неформальная, принятая в отечественном сегменте печатников.
Все написанное основано на личном опыте автора и является его личным мнением.
Если данные предостережения вас не пугают - добро пожаловать под кат.
Для начала представлюсь: меня зовут Максим и первый принтер я купил в далеком 2013 году. Это был китайский клон Makerbot 2 с веселым названием "Migce Cuble".
Фотография из личного архива
В рунете информации по 3D-печати почти не было, только одна тема на “Робофоруме” и несколько разрозненных статей про то, какая это крутая штука - 3D печать, так что для освоения приходилось много гуглить на английском, придумывать свои костыли и глубоко вникать в физику и технологию работы принтера. Надо отдать должное, в англоязычном сегменте тогда шло активное освоение данной технологии и попадались интересные статьи типа “Подбор типа насечек подающей шестерни экструдера под конкретный тип пластика” или “Определение оптимальной температуры печати с помощью тензодатчика, установленного на экструдере”. С тех пор прошло 7 лет. Я успел освоить моделирование, собрать принтер с нуля, немного побыть модератором “3D Today”, поработать фриласером в области моделирования и печати, организовать кружок прототипирования для детей и вывести его на российский уровень. Из последних достижений: поволонтерствовал координатором по снабжению пластика в проекте “Мейкеры проти ковид”. Многое поменялось за это время, в том числе и принтеры в моем домашнем зоопарке. Одно осталось неизменным - вопрос: “Что мне купить в качестве первого принтера?”.
В настоящее время в домашних условиях в основном используются два типа принтеров: печатающих по технологии FDM (FFF) - послойного наплавления пластика, подающегося в виде прутка и SLA (LCD) - печать фотоотверждающим полимером. Технология FDM более распространена, из-за более низкой стоимости оборудования и расходников, но за последние годы цены на LCD принтеры и смолы для печати значительно снизились и фотополимерная печать по себестоимости и уровню вхождения почти сравнялась с FDM печатью.
SLA и FDM
Честно скажу, SLA-печатью я почти не занимался и LCD-принтера до сих пор нет в моем домашнем зоопарке (но скоро может появиться), поэтому речь пойдет в основном о FDM принтерах. Их можно разделить на 3 основных категории по типу механики:
Дрыгостолы - принтеры со столом, подвижным по горизонтали. Пожалуй самая распространенная модель принтера. Отличается низкой себестоимостью комплектующих, простотой сборки и настройки, за что любима китайцами и печатниками. К недостаткам относится сложность создания закрытого корпуса и печати тонких высоких деталей, которые начинает шатать по мере увеличения высоты, особенно если деталь печатается из гибкого пластика типа TPU.
Типичные дрыгостолы
Кубики - принтеры в которых стол ездит по вертикали. Себестоимость таких принтеров выше, также как и требования к прямоте рук при сборке и настройке. Но правильно сконструированный кубик обеспечивает более высокую скорость печати при сохранении ее качества. При этом конструкцию принтера очень легко сделать закрытой, что позволяет печатать инженерными пластиками типа ABS и Nylon. Этот тип конструкции часто применяется в принтерах полупромышленного и промышленного класса. Некоторые производители умудряются запихать дрыгостол в корпус кубика, но особых плюсов для печатников это не приносит.
Типичные кубики
Дельты - принтеры с, так называемой, дельта-кинематикой, когда печатающая головка, с помощью системы тяг крепится к кареткам, перемещающимся по вертикальным направляющим. Себестоимость механики таких принтеров сравнима с себестоимостью дрыгостолов. Могут печатать на очень высоких скоростях. Но очень требовательны к правильности выдерживания размеров, прямоте рук при сборке и настройке, и скорости работы “мозгов” из-за сложных математических расчетов траектории перемещения головки.
Категорически не рекомендуются в качестве первого принтера, хотя повсеместное применение датчика уровня стола несколько снижает требования к прямоте рук при настройке и работе.
Типичные дельты
По доступности на рынке тоже можно выделить 3 основных категории:
Китайцы (дешевые китайские принтеры) - почти всегда конструкторы, даже если приходят в собранном состоянии.
К плюсам можно отнести низкую стоимость, широкую распространенность и унифицированность, что позволяет докупать вышедшие из строя детали в ближайшей радиобулошной или на известных китайских сайтах. Популярные модели собирают вокруг относительно большое количество пользователей, которое активно делится наработками в области самостоятельного ремонта и доработки данного типа принтеров. Самые ходовые модели, скорее всего будут печатать прямо “из коробки”, но потребуют доработок при более-менее долговременной эксплуатации.
К минусам относятся качество комплектующих/сборки и необходимость доработки данных принтеров для получения приемлемого качества/скорости печати. Рекомендуется брать модели, уже сформировавшие вокруг себя большое сообщество. Это означает, что большинство недостатков уже выявлено и существуют типовые недорогие методы их решения.
КИТы (наборы для сборки в основном отечественного производства) - гуглятся по словам “ZAV”, “UlTi”, “Ультумбочка” и т.д. Обычно представляют собой набор для сборки фанерного кубика. В последнее время появляются варианты с металлическими корпусами. Поставляются в разных вариантах - начиная от комплекта для сборки корпуса с напечатанными деталями, заканчивая полностью готовыми собранными изделиями.
К плюсам можно отнести достаточно хорошую инженерную проработку, возможность самому подобрать комплектующие для механической и электронной частей и сделать принтер полностью под свои требования. При хороших комплектующих обеспечивают быструю, стабильную и качественную печать. По цене выходят несколько дороже китайских принтеров, но дешевле полупрофессиональных принтеров отечественных или европейских/американских производителей.
К минусам можно отнести приличные затраты времени на сборку и ожидание комплектующих, если вы решите сэкономить и самостоятельно заказать эти комплектующие у разных продавцов и собрать из них принтер. При сборке требуют прямых рук.
Заводские принтеры (полупрофессиональные принтеры отечественных или американских/европейских производителей). Моделей очень много, конструкции самые разные.
Плюсом данного класса принтеров является печать с приемлемым качеством “из коробки”. В довесок вы получаете надежность в эксплуатации и гарантийную поддержку от производителя.
Основной минус - цена. Часто непонятно от каких факторов зависит. Можно купить высококачественный принтер относительно занедорого, а можно задорого взять что-то непонятное. Второй минус - наличие специфических решений, несовместимых с популярными решениями на рынке: это могут быть сопла со своим шагом резьбы, особые вентиляторы, электроника, ремни и даже слайсеры. Некоторые требовательны к качеству пластика, встречаются модели, работающие только на чипированных катушках.
Теперь, когда мы определились с классификацией принтеров можно приступать к процедуре выбора принтера для себя, любимого. Если вы загорелись покупкой 3D-принтера - сначала определитесь для чего вы его собираетесь брать, от этого зависит тип и комплектация принтера. Разберем несколько типовых ситуаций:
Хочу что-нибудь для себя и семьи делать - если не планируете печать изделий из инженерных пластиков, выдерживающих приличные нагрузки и температуры - хватит китайского дрыгостола или кубика. При наличии бюджета и желании разобраться как работает принтер до начала, а не во время печати можно посмотреть в сторону отечественных наборов для сборки - с ними можно получить лучшее качество и безболезненно перейти на инженерные пластики.
Ничего не умею делать руками, но надо. Поэтому хочу принтер, который за меня все делать будет - в этом случае лучше смотреть на полупрофессиональные принтеры. Если бюджета не хватает - можно посмотреть бывшие в употреблении или заказать сборку отечественного набора - обычно производители предлагают такую услугу через посредников. При заказе сборки - смотрите на наличие опыта и положительных отзывов, бывают нюансы.
Хочу на продажу печатать - ферма из однотипных принтеров, в зависимости от бюджета. Если нет бюджета, но есть ресурсы на регулярную настройку/ремонт - можно даже из китайских дрыгостолов. Дополнительно - принтер с большой областью печати, принтер с закрытым корпусом и нагреваемыми столом для печати инженерными пластиками, SLA/LCD-принтер для печати изделий с высокой степенью детализации.
По работе или дома возникает необходимость разработки и печати корпусов и деталей. Если планируются только прототипы небольшого размера - LCD-принтер, если функциональные изделия - закрытый кубик с возможностью печати инженерными пластиками.
Дети подрастают, а это технология будущего, хочу, чтобы освоили - посмотрите, какие принтеры используются на соревнованиях по прототипированию в вашем регионе. Возьмите такой-же. Можно бывший в употреблении.
Хочу фигурки для настолок делать, мелочи красивые для дома - LCD-принтер.
Хочу разобраться, что за технология и как это вообще работает - набор для сборки отечественного производителя. Пока собирать будете - как раз разберетесь.
Денег вообще нет, но печатать хочется, буду сам с нуля собирать - получится лучше и дешевле китайцев. Как не странно нет. Стоимость комплектующих с али выйдет дороже принтера с али. Конечно если есть станочный парк, умение им пользоваться, набор железа, валов и электроники валяющийся в углу мастерской, то может выгореть. Есть варианты построения принтеров из досок и мебельных направляющих, но качество печати у них, мягко говоря, хромает. Например, постройка принтера, изображенного ниже, обошлась его автору по его словам в 80-90 долларов.
Если хотите полностью с нуля собрать свой принтер, то лучше отнеситесь к этому, как к отдельному хобби и смиритесь, что получится не сильно дешево. Ну или посмотрите в сторону бывших в употреблении принтеров.
Вообще не знаю зачем мне принтер, но попробовать хочется - китаец или отечественный набор для сборки. Можно бывшие в употреблении. Если не зайдет - всегда можно перепродать.
С типом принтера определились - на что смотреть в первую очередь при покупке?
Во первых - на жесткость конструкции - именно от нее зависят точность и скорость печати. Именно в направлении усиления жесткости будут направлены ваши первые доработки китайского принтера, так-как материал “сталь пластилин 3 (с)” для китайцев считается непозволительной роскошью. В случае покупки отечественных КИТов ситуация чуть получше.
Во вторых - если принтер будет стоять в квартире - “бесшумные” драйвера для шаговых двигателей. 3D-печать процесс не быстрый и наличие постоянной достаточно громкой жужжалки под ухом надоедает.
В третьих - наличие подогреваемого стола и простота доработки до корпуса закрытого типа. Со временем придет желание (необходимость) печатать ABS, а на открытом дрыгостоле это сделать проблематично.
В четвертых - наличие хорошей системы обдува пластика тоже немаловажно.
В пятых - при выборе принтеров с механикой CoreXY, H-Bot или Delta сильно желательно наличие 32-битной платы управления, или столкнетесь с замираниями (фризами) на высоких скоростях печати.
В шестых, седьмых, и т.д - в конструкциях принтеров много нюансов. Если что-то непонятно - не стесняйтесь спросить у сообщества.
Со временем его возможностей перестанет хватать - тогда можно перейти на более серьезные САПР. На мой взгляд печатник должен владеть двумя типами редакторов - твердотельником для моделирования технических изделий (САПР) и полигональником (Blender и т.д.) - для моделирования художественных, но многие печатники считают это избыточным и осваивают, только один.
На этом пожалуй закруглюсь - статья и так вышла достаточно объемной, если есть вопросы - с удовольствием отвечу на них в комментариях или в отдельной статье. Сразу говорю - на вопросы типа: “что лучше: летающий медведь 5 или ендер 3” отвечать не буду - на эту тему уже сломано немало копий на профильных ресурсах, смысла повторяться не вижу.
Читайте также: