Как называют устройство для печати объемных тел принтер сканер графопостроитель плоттер 3d принтер
В 2011 году принтер, который заправили биогелем, напечатал человеческую почку прямо во время конференции TED. Два года назад Adidas анонсировала новую модель кроссовок, которые печатают на 3D-принтере за 20 минут. А недавно компания Илона Маска SpaceX успешно провела испытания двигателей космического корабля, которые тоже напечатали на 3D-принтере.
В современном мире 3D-печать — это не удивительная технология будущего, а хорошо изученная реальность. Ее применяют в архитектуре, строительстве, медицине, дизайне, производстве одежды и обуви и других сферах. По запросу «3D-принтер» поисковики выдают сотни чертежей и прототипов разной сложности — от мыльницы и настольной лампы до автомобильного двигателя и даже жилого дома.
Любой может купить принтер и напечатать чехол для смартфона, но дальше 3д печати по чертежу идут не все. В этой статье расскажем, когда появилась 3D-печать, как можно применять технологию и какие у нее перспективы.
Как появился трехмерный принтер
Не будем слишком утомлять вас датами и кратко перескажем историю 3D-печати.
Предвестник трехмерной печати. В начале 80-х доктор Хидео Кодама разработал систему быстрого прототипирования с помощью фотополимера — жидкого вещества на основе акрила. Технология печати была похожа на современную: принтер печатал объект по модели, послойно.
Первый 3D-принтинг. Изготовление физических предметов с помощью цифровых данных продемонстрировал Чарльз Халл. В 1984 году, когда компьютеры еще не сильно отличались от калькуляторов, а до выхода Windows-95 было десять лет, он изобрел стереолитографию - предшественницу 3D-печати. Работала технология так: под воздействием ультрафиолетового лазера материал застывал и превращался в пластиковое изделие. Форму печатали по цифровым объектам, и это стало бумом среди разработчиков — теперь можно было создавать прототипы с меньшими издержками.
Первый 3D-принтер. Источник: habr
Первый производитель 3D-принтеров. Через два года Чарльз Халл запатентовал технологию и открыл компанию по производству принтеров 3D Systems. Она выпустила первый аппарат для промышленной 3D-печати и до сих пор лидирует на рынке. Правда, тогда принтер называли иначе — аппаратом для стереолитографии.
Популярность 3D-печати и новые технологии. В конце 80-х 3D Systems запустила серийное производство стереолитографических принтеров. Но к тому времени появились и другие технологии печати: лазерное спекание и моделирование методом наплавления. В первом случае лазером обрабатывался порошок, а не жидкость. А по методу наплавления работает большинство современных 3D-принтеров. Термин «3D-печать» вошел в обиход, появились первые домашние принтеры.
Революция в 3D-печати. В начале нулевых рынок раскололся на два направления: дорогие сложные системы и те, что доступны каждому для печати дома. Технологию начали применять в специфических областях: впервые на 3D-принтере напечатали мочевой пузырь, который успешно имплантировали.
Печать тестового образца почки. Источник: BBC
В 2005 году появился первый цветной 3D-принтер с высоким качеством печати, который создавал комплекты деталей для себя и «коллег».
Как устроен 3D-принтер
В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина.
Вот из каких деталей состоит 3D-принтер, не считая корпуса:
- экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей;
- рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
- линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
- фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
- рама — соединяет все элементы принтера.
Схема 3D-принтера. Источник: Lostprinters
Все это управляется компьютером.
Как создают изделия
За создание трехмерного изделия отвечает аддитивный процесс 3д-печати — это когда при изготовлении предмета слои материала накладываются друг на друга, снизу вверх, пока не получится копия формы в чертеже. Так печатают изделия из пластика. А фотополимерная печать работает по технологии стереолитографии (SLA): под воздействием лазерного излучателя фотополимеры затвердевают. Кроме пластика и фотополимерных смол, современные 3D-принтеры работают с металлоглиной и металлическим порошком.
Печать состоит из непрерывных циклов, которые повторяются один за другим — на один слой материала наносится следующий, и печатающая головка двигается, пока на рабочей поверхности не окажется готовый предмет. Отходы печати принтер сам удаляет с рабочего стола.
Как работает 3D-чертеж
Принтер печатает изделие по 3D-чертежу: его создают на компьютере в специальной программе, затем сохраняют в формате STL. Этот файл выводят в программу резки для принтера — она помогает задать модели физические свойства изделия, например плотность. Далее программа преобразует модель в инструкцию для экструдера и выгружает ее на принтер, который начинает печатать изделие.
3D-чертеж легко сделать в домашних условиях — почитайте инструкцию на habr.
Как запрограммировать 3D-принтер
Краткая инструкция по настройке принтера:
- Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
- Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать.
- Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
- Наблюдать за печатью.
Можно ли применять напечатанные изделия
Зависит от качества материала, принтера и конечного изделия. Часто домашние принтеры неточно передают форму и цвет предмета. Изделия из пластика нужно дополнительно обработать: иногда они печатаются с заусенцами и дефектами и почти всегда с ребристой поверхностью.
Изделие после и до обработки. Источник: 3D-Today
Для обработки поверхности есть несколько способов — не все подходят для домашнего применения:
- механическая обработка — шлифовка вручную, срезание заусенцев;
- химическая — погружение в ацетон, пескоструйная обработка, нанесение спецраствора кисточкой.
Что можно напечатать на 3D-принтере
В интернете полно подборок с инструкциями для печати 3D-изделий. 3D-Today публикует фотографии работ владельцев принтеров, от мелких запчастей до скульптур. На «Хабре» уже три года назад постили список «50 крутых вещей для печати на 3D-принтере». Make3D написали о более масштабных проектах — печати автомобилей, оружия, солнечных батарей и протезов.
Есть ряд перспективных областей, в которых уже применяют 3D-печать.
Изготовление моделей по собственным эскизам. Константин Иванов, создатель сервиса 3DPrintus, в интервью «Афише» рассказал, что 3D-печать приведет к расцвету customizable things: любой сможет собрать и распечатать нужное изделие онлайн. Например, сделать модель робота и заказать его печать на промышленном принтере, создать и распечатать свой дизайн обручальных колец или обуви. Примеры таких проектов — Thinker Thing и Jweel.
Быстрое прототипирование. Самая популярная область, в которой используют трехмерную печать. На 3D-принтерах делают тестовые модели протезов, прототипы лечебных корсетов, барельефов, олимпийского снаряжения.
Прототипы детских протезов, 3D-печать. Источник: 3D-Pulse
Сложная геометрия. 3D-принтер легко справляется с изготовлением моделей любой формы. Несколько примеров:
— в австралийском университете исследовали возможности 3D-принтера и напечатали табурет в форме отпечатка пальца;
— шеф-повар из Дании победил в конкурсе высокой кухни: он напечатал на 3D-принтере миниатюрные блюда сложной формы из морепродуктов и свекольного пюре;
Одно из победивших блюд шеф-повара. Источник: 3D-Pulse
— в немецком институте разработали систему для ускоренной 3D-печати — за 18 минут принтер изготавливает сложное геометрическое изделие высотой в 30 см. Обычно у принтеров уходит час на печать карманных фигурок.
Технологии 3D-печати
Кратко об основных методах 3D-принтинга.
Стереолитография (SLA). В стереолитографическом принтере лазер облучает фотополимеры, и формирует каждый слой по 3D-чертежу. После облучения материал затвердевает. Прочность изделия зависит от типа полимера — термопластика, смол, резины.
Цветную печать стереолитография не поддерживает. Из других недостатков — медленная работа, огромный размер стереолитографических установок, а еще нельзя сочетать несколько материалов в одном цикле.
Эта технология — одна из самых дорогих, но гарантирует точность печати. Принтер наносит слои толщиной 15 микрон — это в несколько раз тоньше человеческого волоса. Поэтому с помощью стереолитографии делают стоматологические протезы и украшения.
Промышленные стереолитографические установки могут печатать огромные изделия, в несколько метров. Поэтому их успешно применяют в производстве самолетов, судов, в оборонной промышленности, медицине и машиностроении.
Селективное лазерное спекание (SLS). Самый распространенный метод спекания порошковых материалов. Другие технологии — прямое лазерное спекание и выборочная лазерная плавка.
Метод изобрел Карл Декарт в конце восьмидесятых: его принтер печатал методом послойного вычерчивания (спекания). Мощный лазер нагревает небольшие частицы материала и двигается по контурам 3D-чертежа, пока изделие не будет готово. Технологию используют для изготовления не цельных изделий, а деталей. После спекания детали помещают в печь, где материал выгорает. SLS использует пластик, керамику, металл, полимеры, стекловолокно в виде порошка.
На атлете — кроссовки New Balance, которые изготовили с помощью лазерного спекания. Источник: 3D-Today
Технологию SLS используют для прототипов и сложных геометрических деталей. Для печати в домашних условиях SLS не подходит из-за огромных размеров принтера.
Послойная заливка полимера (FDM), или моделирование методом послойного наплавления. Этот способ 3d-печати изобретен американцем Скоттом Крампом. Работает FDM так: материал выводится в экструдер в виде нити, там он нагревается и подается на рабочий стол микрокаплями. Экструдер перемещается по рабочей поверхности в соответствии с 3D-моделью, материал охлаждается и застывает в изделие.
Преимущества — высокая гибкость изделий и устойчивость к температурам. Для такой печати используют разные виды термопластика. FDM — самая недорогая среди 3D-технологий печати, поэтому принтеры популярны в домашнем использовании: для изготовления игрушек, сувениров, украшений. Но в основном моделирование послойным наплавлением используют в прототипировании и промышленном производстве — принтеры довольно быстро печатают мелкосерийные партии изделий. Предметы из огнеупорных пластиков изготовляют для космической отрасли.
Струйная 3D-печать. Один из первых методов трехмерной печати — в 1993 году его изобрели американские студенты, когда усовершенствовали обычный бумажный принтер, и вскоре технологию приобрела та самая компания 3D Systems.
Работает струйная печать так: на тонкий слой материала наносится связующее вещество по контурам чертежа. Печатная головка наносит материал по границам модели, и частицы каждого нового слоя склеиваются между собой. Этот цикл повторяется, пока изделие не будет готово. Это один из видов порошковой печати: раньше струйные 3D-принтеры печатали на гипсе, сейчас используют пластики, песчаные смеси и металлические порошки. Чтобы сделать изделие крепче, после печати его могут пропитывать воском или обжигать.
Предметы, которые напечатали по этой технологии, обычно долговечные, но не очень прочные. Поэтому с помощью струйной печати делают сувениры, украшения или прототипы. Такой принтер можно использовать дома.
Еще струйную технологию используют в биопечати — наносят живые клетки друг на друга послойно и таким образом строят органические ткани.
Где применяют 3D-печать
В основном в профессиональных сферах.
Строительство. На 3D-принтерах печатают стены из специальной цементной смеси и даже дома в несколько этажей. Например, Андрей Руденко еще в 2014 году напечатал на строительном принтере замок 3 × 5 метров. Такие 3D-принтеры могут построить двухэтажный дом за 20 часов.
Медицина. О печати органов мы уже упоминали, а еще 3D-принтеры активно используют в протезировании и стоматологии. Впечатляющие примеры — с помощью 3D-печати врачам удалось разделить сиамских близнецов, а кошке без четырех лап поставили протезы, которые напечатали на принтере.
Подробнее о 3D-принтинге в медицине можно узнать в статье издания 3D-Pulse.
Космос. С помощью трехмерной печати делают оборудование для ракет, космических станций. Еще технологию используют в космической биопечати и даже в работе луноходов. Например, российская компания 3D Bioprinting Solutions отправит в космос живые бактерии и клетки, которые вырастят на 3D-принтере. Создатель Amazon Джефф Безос презентовал прототип лунного модуля с напечатанным двигателем, а космический стартап Relativity Space строит фабрику 3D-печати ракет.
Авиация. 3D-детали печатают не только для космических аппаратов, но и для самолетов. Инженеры из лаборатории ВВС США изготавливают на 3D-принтере авиакомпоненты — например, элемент обшивки фюзеляжа — примерно за пять часов.
Архитектура и промышленный дизайн. На трехмерных принтерах печатают макеты домов, микрорайонов и поселков, включая инфраструктуру: дороги, деревья, магазины, освещение, транспорт. В качестве материала обычно используют недорогой гипсовый композит.
Одно из необычных решений — дизайн бетонных баррикад от американского дизайнера Джо Дюсе. После терактов с грузовыми автомобилями, которые врезались в толпу людей, он предложил макет прочных и функциональных заграждений в виде конструктора, которые можно напечатать на 3D-принтере.
Изготовить прототип помогла компания UrbaStyle, которая печатает бетонные формы на строительных 3D-принтерах
Образование. С помощью 3D-печати производят наглядные пособия для детских садов, школ и вузов. В некоторых московских школах с 2016 года есть трехмерные принтеры: на уроках химии дети разглядывают 3D-модели молекул и проводят реакции в напечатанных пробирках, на физике изучают электрическую цепь на 3D-прототипе токопроводящего стенда, а еще сами печатают себе ручки на уроках ИЗО.
Узнать больше о 3D-технологиях в школах можно на сайте «Ассоциации 3D-образования».
А еще 3D-печать помогает в быту, производстве одежды, украшений, картографии, изготовлении игрушек и дизайне упаковок.
Принтер (Printer, от англ. print — печать) — это внешнее периферийное устройство компьютера, предназначенное для вывода текстовой или графической информации, хранящейся в компьютере, на твёрдый физический носитель, обычно бумагу, малыми тиражами (от единиц до сотен) без создания печатной формы.
Этим принтеры отличаются от полиграфического оборудования и ризографов, которое за счёт печатной формы быстрее и дешевле на крупных тиражах (сотни и более экземпляров).
Принтер — это высокотехнологичное устройство печати, созданное в первую очередь для работы с компьютером. Принтер предназначен для преобразования информации, хранящейся в вычислительном устройстве, из цифровой формы в аналоговый вид для доступного понимания этой информации пользователем и последующего долговременного её хранения.
Получили также распространение и другие устройства печати, такие, как многофункциональные устройства (МФУ), в которых в одном приборе объединены функции принтера, сканера, копировального аппарата и телефакса. Такое объединение рационально с технической и экономической стороны, а также удобно в работе.
Специализированной разновидностью принтера является плоттер.
Классификация
1. По возможности печати графической информации принтеры делятся на:
- алфавитно-цифровые, иначе символьные или знаковые (с возможностью печати ограниченного набора символов);
- графические.
2. По конструктивному устройству и принципу формирования изображения принтеры делятся на:
— принтеры ударного типа:
- литерные (типовые) принтеры;
- матричные (игольчатые) принтеры;
— принтеры безударного типа:
- струйные принтеры;
- лазерные принтеры (разновидность светодиодные принтеры);
- термопринтеры;
- твёрдочернильные принтеры;
- сублимационные принтеры;
- 3D-принтеры;
3. По количеству выдаваемых цветов:
- черно-белые (одноцветные, monochrome)
- цветные (многоцветные, color).
На цветных принтерах в качестве основы цветовой модели используются цвета CMYK:
Kobalt (вариант blaK) — чёрный (английское название соответствует названию тяжелого металла (кобальта), входящего в состав черных красителей)
Кроме базовых цветов CMYK, цветной принтер может быть снабжен лайтами (Light Cyan и Light Magenta), повышающими видимое разрешение, при низкой заливке и цветовой охват изображения. Кроме этого, иногда используют оранжевый и зелёный цвета (Orange и Green), немного расширяющие цветовые поля печати. Принтеры, предназначенные для печати по цветным материалам, дополнительно снабжены белым цветом.
Принтеры, имеющие расширенные возможности цветового охвата для высокачественной цветной печати фотографий и других изображений, также называют фотопринтерами.
4. По типу интерфейса подключения, то есть по соединению с источником данных (откуда принтер может получать данные для печати):
— проводные принтеры (по проводным каналам):
- через SCSI-интерфейс
- через последовательный порт (COM)
- через параллельный порт (LPT)
- по шине Universal Serial Bus (USB)
- через локальную сеть (LAN, NET)
- с помощью двух портов, при этом один из портов управляет приводом ЧПУ, через другой порт идут данные на печатающие головки
— беспроводные принтеры (по беспроводной связи):
- через ИК-порт (IRDA)
- по Bluetooth
- по Wi-Fi (в том числе с помощью AirPrint)
ИК-соединение возможно только с устройством, находящимся только в прямой видимости до 1—2 метров, в то время как использующие радиоволны интерфейсы Bluetooth и Wi-Fi могут функционировать с преградами уже на расстоянии до 10 метров и до 100 метров соответственно.
Некоторые принтеры (в основном струйные фотопринтеры) располагают возможностью автономной (то есть без посредства компьютера) печати, обладая устройством чтения flash-карт или портом сопряжения с цифровым фотоаппаратом, что позволяет осуществлять печать фотографий напрямую с карты памяти или фотоаппаратов. Принтеры, поддерживающие технологию AirPrint, дают возможность распечатывать документы и фотографии с непосредственно мобильных устройств на базе iOS без использования кабеля (соединение осуществляется по Wi-Fi). AirPrint доступна для iPad, а также для iPhone и iPod Touch не ниже третьего поколения.
Сетевой принтер — принтер, позволяющий принимать задания на печать (см. Очередь печати) от нескольких компьютеров, подключенных к локальной сети. Существует программно-настраиваемый сетевой принтер (то есть это любой подключенный принтер со специальной сетевой настройкой в компьютере) и аппаратно-поддерживаемый (это принтер с IP-адресом, имеющий встроенный сетевой адаптер и подключаемый напрямую в локальную сеть без обязательного подключения к компьютеру). Программное обеспечение сетевых принтеров поддерживает один или несколько специальных протоколов передачи данных, таких, как IPP. Такое решение является наиболее универсальным, так как обеспечивает возможным вывод на печать из различных операционных систем, чего нельзя сказать о Bluetooth- и USB-принтерах.
Матричные принтеры
Красящая лента.
Красящая лента матричного принтера предназначена для хранения запасов красителя и доставки красителя к печатающей головке.
Красящая лента матричного принтера в процессе печати медленно перематывается, доставляя свежий краситель к печатающей головке, причем ленты бывают двух типов — замкнутые в кольцо (перематывается только в одном направлении) и ленты ограниченной длины, снабженные механизмом реверсивной перемотки. На некоторых матричных принтерах, при разрушении механизма реверсивной перемотки, закончившуюся ленту можно перематывать вручную.
Со временем красящая лента изнашивается механически — печатающая головка буквально разрезает красящую ленту вдоль, надвое. В некоторых случаях можно продлить срок службы красящей ленты, перевернув её другой стороной. Если лента ещё не изношена, а изображение существенно побледнело, можно пропитать ленту свежими чернилами, и цвет восстановится. При крайне редком использовании матричного принтера красящая лента страдает в большей степени от банального высыхания красителя, чем от механического износа. Отпечатанные изображения бледнеют. Подсохшую красящую ленту достаточно пропитать маслом для смазки бытовых швейных машин, и цвет восстанавливается.
- Качество печати. Очень низкое, сравнимое с качеством пишущей машинки. Впрочем, возможна графика.
- Цветопередача. Существовали цветные матричные принтеры с четырёхцветной лентой, они могли печатать семью фиксированными цветами. Жёлтая часть ленты очень быстро загрязнялась, и цветопередача дополнительно портилась. Тем не менее, в 1980-е годы это был единственный способ настольной печати в цвете.
- Скорость печати. Для обычных 9- и 24-игольных принтеров в текстовом режиме — десятки секунд на страницу, в графическом — несколько минут. Высокоскоростные принтеры в несколько раз быстрее. Возможна печать через копирку и на самокопирующихся бланках. Там, где нужно оперативно печатать один экземпляр (например, в кассах), у матричных принтеров всё ещё нет равных — пока лазерный нагреется, матричный выдаст распечатку.
- Стоимость отпечатка. Крайне низка (расходный материал — красящая лента). Отлично печатают на бумаге крайне плохого качества, что ещё снижает стоимость. Возможны нестандартные форматы бумаги, это важно для бланков строгой отчётности, которые делают из качественной бумаги (например, железнодорожный билет АСУ «Экспресс», 2011 год).
- Печать на нетрадиционных материалах. Некоторые модели принтеров (с прямым трактом) позволяют печатать, например, на паспортах.
- Устойчивость отпечатка к внешним воздействиям. Очень хороша; отпечатки стойки к воде и трению. Следы от иголок дополнительно усложняют подделку документов. Со временем отпечатки выцветают, но не критично и даже спустя десятилетия остаются читаемыми.
- Возможная длина отпечатка. Не ограничена. Возможны ограничения спулера печати (как, например, в Windows — печать идёт только страницами). Подача бумаги бывает ручная (поштучная) и рулонная.
- Экологичность. Низкое энергопотребление, небольшой объём и простота утилизации расходных материалов, невысокие требования к бумаге. Громкий шум.
- Простота обслуживания. Работает в самых спартанских условиях. Прежде, чем закончиться, картридж предупреждает об этом неконтрастными отпечатками. В самом крайнем случае можно печатать через копировальную бумагу вместо картриджа. При подаче с рулона — бумага практически не заминается.
- Основное применение в настоящее время. Печать документов. Матричный принтер можно найти в банках, билетных кассах, различных бюро, лабораториях, медицинских учреждениях, в составе кассовых аппаратов.
Графопострои́тель (от греч. γράφω ), пло́ттер — устройство для автоматического вычерчивания с большой точностью рисунков, схем, сложных чертежей, карт и другой графической информации на бумаге размером до A0 или кальке.
Графопостроители рисуют изображения с помощью пера (пишущего блока).
Связь с компьютером графопостроители, как правило, осуществляют через последовательный, параллельный, SCSI-интерфейс и Ethernet (в последнем случае подключение к конкретному компьютеру не требуется, плоттер имеет собственный IP-адрес и, будучи включенным, доступен всем машинам в локальной сети). Некоторые модели графопостроителей оснащаются встроенным буфером (1 Мбайт и более).
Первые плоттеры (например, Calcomp 565 из 1959) работали на принципе передвижения бумаги с помощью ролика, обеспечивая тем самым координату X, а Y обеспечивалась движением пера. Другой подход (воплощённый в Computervision’s Interact I, первая CAD-система) представлял собой модернизированный пантограф, управляемый вычислительной машиной и имеющий шариковое перо в качестве рисующего элемента. Недостаток этого метода заключался в том, что требовалось пространство, соответствующее расчерчиваемой области. Но достоинством этого метода, вытекающим из его недостатка, является легко повышаемая точность позиционирования пера и соответственно точность самого рисунка, наносимого на бумагу. Позже это устройство было дополнено специальным кассетным держателем, который мог компоноваться перьями разной толщины и цвета.
Hewlett Packard и Tektronix в конце 1970-х представили планшетные плоттеры со стандартным размером с рабочий стол. В 1980-х была выпущена меньшая по размерам и более лёгкая модель HP 7470, использующая инновационную технологию «зернистого колеса» для перемещения бумаги. Эти небольшие плоттеры бытового назначения стали популярны в деловых приложениях. Но из-за их низкой производительности они были практически бесполезны для печати общего назначения. С широким распространением струйных и лазерных принтеров с высокой разрешающей способностью, удешевлением компьютерной памяти и скоростью обработки растровых цветных изображений, графопостроители с пером практически исчезли из обихода.
Типы графопостроителей
- рулонные и планшетные
- перьевые, струйные и электростатические
- векторные и растровые
Назначение графопостроителей — высококачественное документирование чертёжно-графической информации.
Графопостроители можно классифицировать следующим образом:
- по способу формирования чертежа — с произвольным сканированием и растровые;
- по способу перемещения носителя — планшетные, барабанные и смешанные (фрикционные, с абразивной головкой).
- по используемому инструменту (типу чертёжной головки) — перьевые, фотопостроители, со скрайбирующей головкой, с фрезерной головкой.
Также плоттерами называют широкоформатные принтеры и каттеры. Это не совсем корректно, однако де-факто уже является стандартом.
Планшетные графопостроители
В планшетных графопостроителях носитель неподвижно закреплён на плоском столе. Закрепление либо электростатическое, либо вакуумное, либо механическое за счёт притягивания прижимающих бумагу пластинок, к (электро)магнитам, вмонтированным в поверхность стола. Специальной бумаги не требуется. Головка перемещается по двум перпендикулярным направлениям. Размер носителя ограничен размером планшета.
В некоторых устройствах небольших размеров головка закреплена неподвижно, а перемещается стол с закреплённым на нём носителем, как это сделано во фрезерных станках с числовым программным управлением.
Графопостроители с перемещающимся носителем
Имеются три разновидности графопостроителей с перемещающимся носителем:
- барабанные графопостроители, в которых носитель фиксированного размера укреплён на вращающемся барабане;
- фрикционные графопостроители, в которых носитель перемещается с помощью фрикционных роликов. Эти графопостроители (при равных размерах чертежа) много меньших габаритов, чем барабанные. Одна из новых разновидностей фрикционного графопостроителя, появившаяся благодаря технологическим достижениям в металлообработке — графопостроитель с т. н. абразивной головкой, в которых валики привода бумаги — стальные со специальной насечкой, не забивающейся волокнами бумаги;
- рулонные графопостроители, которые подобны фрикционным, но используют специальный носитель с краевой перфорацией.
Вне зависимости от способа перемещения носителя, система привода графопостроителей с произвольным сканированием использует либо шаговые двигатели, поворачивающиеся на фиксированный угол при подаче одного импульса, либо исполнительную систему с обратной связью, содержащую двигатели привода и датчики положения. Перемещения с шаговыми двигателями обычно выполняются на 1 шаг по одному из 8 направлений.
Поэтому требуется аппроксимация вычерчиваемой кривой штрихами основных направлений. Повышение точности аппроксимации достигается как уменьшением шага, так и путём увеличения числа направлений перемещения за счёт использования дополнительных пар моторов или за счёт изменения передаточного числа.
Электростатические графопостроители
Электростатические графопостроители работают на безударном электрографическом растровом принципе. Специальная диэлектрическая бумага перемещается под электростатической головкой, содержащей иголки с плотностью 40—100 на 1 см. К иголкам прикладывается отрицательное напряжение, в результате чего диэлектрическая бумага заряжается, и на ней создаётся скрытое изображение. Затем бумага проходит через бокс, в котором над ней распыляется положительно заряженный тонер. Заряженные области притягивают частицы тонера. В цветных системах этот процесс повторяется для каждого из основных субтрактивных цветов — голубого, пурпурного и жёлтого, а также чёрного.
Электростатические графопостроители быстрее перьевых графопостроителей, но медленнее лазерных печатающих устройств. Их скорость составляет от 500 до 1000 линий, наносимых на бумагу в 1 мин. Они работают с разрешением 200—400 точек на дюйм. Электростатические графопостроители необходимы, если требуется высококачественный цветной вывод для CAD-системы. Такой графопостроитель в 10—20 раз быстрее перьевого. Среди лидеров на рынке этих устройств фирмы Versatec, Calcomp и Benson. Эти графопостроители весьма дороги, их цена составляет от 30 до 150 тысяч долларов.
На фоне развития технологий совершенствуется сфера полиграфии. Если еще пару десятилетий назад обычный принтер был верхом совершенства множительной техники, то сейчас представители типографий предпочитают заменить его более экономичной и эффективной аппаратурой. К примеру, купить плоттер: оборудование, которое расширяет сферу полиграфических услуг.
Плоттер – усовершенствованный аналог принтера, предназначенный для построения изображений на подложках больших размеров и обработки готовых изделий.
В отличие от принтера плоттер или графопостроитель изготавливает широкоформатные изделия. Плоттеры предназначены для выпуска баннеров, географических карт, чертежей, масштабных проектов, открыток в 3D формате. Плоттер оснащен рядом дополнительных функций: устройство не только печатает полиграфическую продукцию, но и придает ей необходимую форму, разрезает готовые изделия согласно проектам.
На этом возможности графопостроителя не заканчиваются. В качестве подложки оборудование использует не только бумагу, но и ткань, пластик, плотный картон.
За счет многофункциональности плоттеры имеют внушительные размеры. Их невозможно отнести к офисному или домашнему техническому оснащению, устройства устанавливают в компаниях, занимающихся изготовлением рекламной продукции, широкоформатных информационных и учебных изданий.
Принцип работы плоттера
Первые модели плоттеров работали относительно двух плоскостей или координат X и Y. Бумага передвигалась по координату Х, а рисующее перо по координату Y.
Разновидности устройств
Графопостроители разделяются по категориям. В зависимости от возможности печатать цветом или создавать монохромные изображения. Классификация возможна также в зависимости от устройства оборудования и принципа работы. Более широкое разделение возможно по разным категориям: тип подложек, расходных материалов, наличие лазерных или струйных механизмов в конструкции, других особых характеристик.
Виды плоттеров, принцип их работы, плюсы и минусы.
Струйные
Оборудование функционирует на основе устройства, распыляющего мельчайшие части чернил на поверхность запечатываемого материала через сопла. Достоинства струйных аппаратов:
- относительно невысокая цена при возможности печати цветных изображений;
- в современных моделях встроены специальные чипы, рассчитывающие расход чернил;
- отмечают качество технических систем плоттера, особенно системы подачи чернил.
Из недостатков выделяют получение недостаточно стойких отпечатков на влажных поверхностях. Необходимо уделять особое внимание качеству подложек.
Твердочернильные
Этот вид плоттеров оснащен неподвижной печатающей головкой и вращающимся барабаном. Перед каждым циклом печати барабан очищается от чернил при помощи специальной смазки, которая подается на него автоматически. Большая разница между значениями температур барабана и головки позволяет чернилам затвердевать. Затем в ход вступает ролик, который переносит твердые чернила на носитель. Под воздействием той же разницы температур изображение быстро переносится, кроме этого:
- сохраняется качество отпечатков при относительно малых затратах;
- возможна высокая скорость печати – до 80 цветных отпечатков в формате A4 за одну минуту;
- подходит для печати глянцевых фотографий, которые не теряют вид и четкость.
Полиграфисты рекомендуют в обязательном порядке ознакомиться с инструкцией по работе твердочернильного аппарата. Если не следовать правилам и нарушать температурные режимы, чернила засохнут.
Лазерные
В лазерных моделях для печати и дальнейшего раскроя запечатанной заготовки используется электрографический луч. Точность лазерной технологии не подвергается сомнениям, аппарат работает на основе создания фотографического эффекта, который образуется в светочувствительных полупроводниковых слоях.
Лазерный луч создает изображение, которое притягивает тонер, а затем переносит его на подложку. Последняя нагревается, а частицы краски образуют рисунок или надпись. Технология пользуется популярностью, так как обеспечивает:
- качество печати на бумаге любого качества;
- несложное обслуживание и ремонтопригодность;
- простую настройку и управление без специальных навыков.
Лазерные графопостроители не терпят тряски и иных внешних воздействий при работе, должны быть установлены на идеально гладкую поверхность.
Сольвентные
Этот вид плоттеров пришел на смену и иногда используется наравне с аппаратами, работающими по водорастворимой технологии. Вместо воды, которая смачивает печатающую головку, используются сольвенты: специальные растворы. В их составе легкие углеводороды, которые выделяют из нефти и угля. Технология проявила себя с хорошей стороны:
- позволяет получать водостойкие оттиски;
- им не страшны ультрафиолетовые лучи и холод;
- это относительно недорогое оборудование.
Рекомендуется помнить, что сольвенты: это химические растворители, при взаимодействии с которыми нужно соблюдать осторожность.
Сублимационные
Работа аппарата построена на технике сублимации, которая подразумевает получение насыщенных оттенков под действием высокой температуры. Поры материала подложки раскрываются сильнее, в них проникает больше чернил, они лучше закрепляются, кроме этого:
- при невысоком разрешении 300 dpi цвета выглядят реалистично;
- появляется возможность четкого разделения цветов и их оттенков при многокрасочной печати;
- плоттер печатает на разных носителях, в том числе ткани и стекле.
Ограничение на использование подложек все же есть. К примеру, подойдет синтетика, но натуральный материал не пропечатается.
Режущие
Это скорее не разновидность плоттера, а дополнительная функция, которую аппарат выполняет. Готовую продукцию необходимо разрезать на этапе постпечатной подготовки. Ранее для этих целей требовалось дополнительное оборудование, сейчас лишние затраты на его приобретение исключены.
За счет режущих инструментов, которые управляются компьютерами, можно получить рельефные изображения нужных размеров. К примеру, изготовить эксклюзивные поздравительные адреса или открытки, рекламный баннер нестандартной формы и многое другое.
УФ-плоттер (UV-плоттер)
Графопостроитель работает на основе воздействия ультрафиолетового луча на краски, которые используются в процессе печати изделий в широком формате. UV или УФ-луч образовывает на поверхности подложки прочную пленку, которая сохраняет изображение, делает его стойким перед внешними воздействиями. Эта технология используется более 15 лет и отличается:
- производительностью процессов;
- хорошим качеством оттисков;
- разнообразием печатных подложек: кроме бумаги и пластика можно печатать на дереве и керамике.
Из недостатков отмечают повышенное потребление электроэнергии и необходимость содержать УФ-красители при определенных климатических условиях.
Латексный текстильный
Технология относится к новинкам рынка полиграфических услуг. Основное отличие этого вида оборудования в использовании специальных латексных чернил. Красители совершенно безвредны и не выделяют неприятный запах.
Плоттер постепенно находит применение в интерьерной печати, а именно: в перенесении изображений на обои, постельное белье, шторы, другие предметы интерьера.
Текстильные плоттеры технически совершенствуются и в скором времени окончательно займут свою нишу.
Сведем в таблицу преимущества и недостатки печатного оборудования в широком формате
Невысокая стоимость получения цветных отпечатков
Во избежание выцветания отпечатков нужна бумага со специальным покрытием
Повышенная скорость печати, подходит для глянцевых фото
Внимательное отношение к хранению и использованию чернил
Высокое качество продукции, простое обслуживание
Внимание к установке плоттера на ровный пол
Меры безопасности при работе с сольвентами
Реалистичные цвета, их четкое разграничение
Невозможна печать на натуральных тканях
Качество печати, разнообразие подложек
Повышенное внимание к качеству чернил
Подходит для новой интерьерной печати
Довольно редкое оборудование
Достоинства и недостатки полиграфического оборудования
Преимущества плоттеров показало время:
- возможность изготавливать широкоформатную продукцию в высоком качестве;
- экономичность работы при малых энергетических затратах;
- широкое разнообразие подложек: от картона до листовой стали и фанеры;
- точность и скорость работы, редкие поломки: также атрибуты графопостроителя;
- функциональность, последние модели способны выполнять множество операций, в том числе через встроенные интернет сети;
- возможность сохранять шаблоны бесконечное количество раз, отчего качество продукции не ухудшается;
Из недостатков обычно выделяют только один: пока это еще громоздкие аппараты. Но со временем купить плоттер можно будет в более компактном исполнении, технологии не стоят на месте.
За последние несколько лет 3D технологии стали инновационным решением для получения объемных изображений. Использование 3D устройств открывает новые возможности в области научных исследований, медицине, архитектуре, тяжелой, текстильной, пищевой и ювелирной промышленности. Нужно помнить, что решение приобрести определенный 3D принтер или сканер должно соотноситься с потребностями, материальными возможностями и конкретной областью применения.Чтобы найти подходящий вариант, существуют классификации 3D принтеров и сканеров, отвечающие разным запросам и использующие разные принципы работы.
Для начала рассмотрим виды 3D принтеров.
LENS(LASER ENGINEERED NET SHAPING)
Эта технология 3D моделирования применяется в тяжелой промышленности для создания металлических крупногабаритных объектов. Частицы порошка спекаются лазером в нужную форму.
+ порошки можно смешивать для получения различных сплавов
SL (Stereolithography)
Материалом такому принтеру служит специальное вещество, изменяющее свои свойства подвоздействием света (фотополимер). Объект формируется из фотополимерного вещества под воздействием ультра-фиолетовых лучей. Пользуются SL для получения предметов сложной формы. Применяется этот принтер как в промышленности, так и в быту.
+ постобработка не нужна
3DP
Струйная трехмерная печать, использующая порошок и клей в виде порошка. Так, частицы слоёв склеиваются между собой. Чтобы сделать объект цветным, в клей добавляют краску. При помощи 3DP можно создавать макеты, подарки, сувениры, сладости (при использовании пищевого клея), а ещё в медицине для печати органических тканей.
Плюсы и минусы:
+ легкость в использовании
+ можно применять разные материалы в виде порошка (в том числе бронза, резина, стекло, дерево и др)
- требуется дополнительная постобработка
FDM или FFF
Материал, которым печатает FDM принтер напоминает катушки нитей или прутиков из термопластика. Из дозатора выдавливается термопластик, на основе которого создается трехмерный объект. Термопластик заменяют на тесто для создания кулинарных объектов или на медицинский гель для печати органов.
Плюсы и минусы
+ низкая затратность в обслуживании
+разнообразие материалов +быстрота печати
- относительно низкая точность
Polyjet
При помощи маленьких дозаторов фотополимер наносят на поверхность и полимезируют под воздействием ультра-фиолетового излучения. Применяется как в промышленности, медицине, образовании, так и в бытовых целях.
Плюсы и минусы:
+ возможность использования разных материалов
+ небольшая толщина слоя
+ быстрая печатать благодаря использованию жидкого материала
+ можно соединять нескольких материалов в одном объекте
LOM (laminated object manufacturing)
Тонкие ламинированные листы разрезаются лазером и под прессом соединяются. В итоге получается, что трехмерный объект состоит из слоев, которые прочно склеены между собой. На этом принтере можно создавать 3d модели из бумаги, пластика и даже алюминия (фольги). Из-за низкой точности LOM чаще всего применяют для создания прототипов.
Плюсы и минусы:
+ можно с легкостью удалить испорченные слои и сделать их заново
+ низкая себестоимость
- требуется постобработка
- низкая точность
LS (Laser sintering)
Металлический порошок спекается при помощи лазера. LS принтер применяется для моделирования мелких деталей, а также промышленных и медицинских прототипов.
Плюсы и минусы:
+ эффективный расход материалов
+ доступность материалов
+ требуется опора для прототипов
- взрывоопасность порошков
- детали долго остывают
Технология лазерного спекания эффективно используется в промышленности для изготовления мелких партий деталей или каких-либо сложных составляющих устройств, которые не выгодно заказывать большими партиями. Как правило, LS используется для создания промышленных и медицинских прототипов.
Если функцией любого 3D принтера является воспроизведение реального объекта на основе 3D модели, то 3D сканер играет противоположную роль - устройство анализирует реальный объект и строит, на основе полученной информации, 3D модель. Классификация 3D сканеров менее обширная: бывают контактные и бесконтактные сканеры. Бесконтактные, в свою очередь, делятся еще два вида – лазерные и оптические.
Контактные сканеры
Контактные сканеры по сути исследуют требуемый объект «на ощупь». Плюсы и
+ независимость от световых условий
+ возможность сканирования призматической части объекта
- медленный процесс анализа
- ограничение в сканировании подвижных объектов
Бесконтактные сканеры
Лазерные сканеры.
Лазеры в таких сканерах работают по принципу триангуляции, вычисляя информацию об объекте при помощи облака точек.
Оптические сканеры.
Чаще всего оптические сканеры имеют в своей конструкции две видео камеры в связке с кинопроектором. Применяется для реверс-инжинеринга, сканирования ювелирных украшений, часто применяется в медицине
Читайте также: