Из чего состоит сканер
Впервые технология сканирования появилась в 1857 году благодаря флорентийскому аббату Джованни Казелли. Он создал устройство пантелеграф, которое передавало изображения по проводам. При приеме оно наносилось на барабан с помощью токопроводящих чернил, затем считывалась иглой. Через пять лет был запатентован фотоэлектрический принцип сканирования. В дальнейшем прибор, работающий по данной технологии, начали называть телефакс. Современные сканирующие устройства претерпели существенные изменения, они стали на порядок эффективнее и производительнее.
Сканер условно может быть:
- Промышленного назначения.
- Бытового назначения.
Промышленные применяются на различных производствах. К ним предъявляются высокие требования по скорости работы, качеству сканирования, надежности и иным рабочим параметрам, ведь они предназначены для постоянного функционирования. Домашние используются редко, вследствие чего они дешевле и менее производительны. Тем не менее, в последнее время выпускаются устройства для дома, которые по скорости сканирования не уступают промышленным.
По области применения сканирующие устройства могут быть:
- Планшетный вариант. Является самым популярным в бытовом применении. В данном случае сканируемый объект размещается на стеклянном планшете. Фотоэлектрическая каретка с оптическими элементами перемещается по планшету, считываемая картинка в результате преобразуется в цифровой код. Планшетные модели, как правило, стоят недорого, они легки и удобны в работе.
- Пленочный вариант. Это специализированное устройство, которое используется лишь для сканирования объектов прозрачного вида, к примеру, диапозитивов, негативов или слайдов. Устройства подобного вида часто применяются студийными сотрудниками или профессиональными фотографами. В быту подобные приборы используются редко, так как люди предпочитают пользоваться услугами фотостудий.
- Барабанный вариант. В нем сканируемое изображение устанавливается на вращающийся барабан. Цифровое изображение снимается лучом при вращении барабана. Такие устройства обеспечивают весьма высокое качество картинки. Однако у них высокая стоимость и большие габариты, вследствие чего их применяют лишь крупные компании. В основном их используют в полиграфии.
- Протяжные. Такие устройства используются для несброшюрованных документов. Их часто именуют документными, ведь они дают возможность провести автоматизацию сканирования значительных объемов офисной документации. Здесь работает принцип автоматической подачи листов. Система обеспечивает протягивание сканируемых материалов через фотосчитывающую систему, поэтому их часто называют поточными. Однако такие устройства не способны отсканировать скрепленные листы.
Планшетно-протяжные являются комбинацией протяжных и планшетных устройств.
- Паспортные. Данные устройства приспособлены под сканирование водительских удостоверений, паспортов и иных документов, удостоверяющих личность. Они выделяются компактностью и хорошей скоростью сканирования.
- Планетарные. Обеспечивают бесконтактное сканирование журналов и документов. Указанные устройства часто применяются для оцифровки оригиналов, которые требуют деликатного подхода, к примеру, исторических документов, которых не пожалело время.
- Сетевые. Их подключают непосредственно в сетевой инфраструктуре без применения ПК. Благодаря этому каждый сотрудник компании может сканировать документы, отправляя их по электронной почте или сохраняя в сетевой папке.
- Ручные. Эти устройства также делятся по принципу действия;
- 3d сканер. Это особый вид сканирующих устройств. Он анализирует объект и на базе полученных данных создает 3D-модель. Подобные устройства также делятся на контактные и бесконтактные.
Устройство
Книжный сканер имеет следующие основные элементы:
- Сканирующая головка, она находится на небольшой высоте над изображением. В большинстве случаев она выполнена в виде сканирующей линейки и выполняет сканирование, проходя от одного конца книги или журнала до другого.
- Ряд моделей имеют книжную колыбель, которая требуется для обеспечения выравнивания высоты книжной поверхности. С целью разглаживания и снижения искажений может применяться прижимное стекло. Для книг могут применяться V-образные колыбели.
- Головки часто содержат матрицы, которые схожи с матрицами цифровиков. У этих агрегатов сканирование осуществляется за период раскрытия затвора, что позволяет ускорить процесс. Матрица трансформирует световое отражение изображения в аналоговые электрические сигналы (АЭС).
- (АЭС) сигналы проходят через аналого-цифровой преобразователь. Он переводит аналоговый сигнал в цифровую форму.
- Процессор согласует взаимодействие всех узлов устройства, в том числе формирует данные о картинке для последующей отправки в ПК.
- Контроллер интерфейса контролирует обмен данными и командами между ПК и сканером.
- Лампа устанавливается на сканирующей каретке.
- Шаговый двигатель и блок управления приводят в движение каретку и сканирующую головку на ней.
Принцип действия
Аналоговый сигнал направляется на преобразователь, где преобразуется в цифровой код. Далее в действие вступает контроллер, который через кабель передает код на персональный компьютер. На ПК полученное изображение можно отредактировать и использовать по назначению.
Сканер - это устройство, которое используется для создания точной цифровой копией изображение фото, текст, написанный на бумаге, или даже объект. Это цифровые изображения могут быть сохранены в файл на вашем компьютере и может использоваться, чтобы изменить/улучшить изображения или применять его в Интернете. Наиболее часто используемый планшетный сканер, в котором вы копируете объект на оконном стекле. Сканированное изображение передаётся на ваш компьютер. Изображение и текст получаются именно через процесс оптического распознавания символов [OCR].
Исторический сканеры берет свое начало от устройств ввода телефотографий, которые в основном используются в типографии. Данный сканер состоит из вращающегося барабана, который вращается с максимальной скоростью 240 оборотов в минуту. Используемые сигналы был аналогового характера и передавались через телефонные линии к рецептору. Рецептор распознает сигнал синхронно и пропорционально, после чего печатает выходной сигнал на специальной бумаге.Типы сканеров
1. Барабанные Сканеры
Барабанный сканер был первый в мире сканер. Это было сделано в 1957 году в США Национальное Бюро стандартов. Первый снимок был черно-белый с разрешением 176 пикселей.
Этот сканер используется в основном в издательской индустрии. В данной технологии, используются для сканирования так называемые фотоэлектронные умножители (PMT).
Как видно из названия, барабанный сканер состоит из барабана (цилиндра) на вершине которого установлен сканируемый документ. Этот цилиндр вращается с очень высокой скоростью и, следовательно, объект, расположенный на нем доставит копию изображения с помощью высокоточной оптики. Хотя прецизионная оптика передает свет, отраженный от поверхности изображения, они будут восприняты датчик в PMT. Оно будет получено с помощью фильтра в PMT и реплики. Современные барабанные сканеры также могут распознавать цветные изображения с помощью трех отдельных цветных фильтров. Каждый цветной фильтр отвечает за свой составной цвет [RGB]. Отраженный свет разделяется на три цвета и фильтруется.Размер изображения зависит от конструкции барабана производителя.
Этот сканер находит свое применение в издательской сфере из-за его способности улавливать мельчайшие детали из пленки. Он также имеет преимущество в своей способности контролировать самостоятельно пробную площадь и диафрагму. Эта функция помогает в очистке зерна с негативных пленок, а также цвета пленки во время сканирования. Таким образом, они также могут в производить сканирование с высоким разрешением, градации цвета и структуры изображения. Так разрешение может быть увеличено до 12 000 точек на дюйм, и они особенно полезны, когда отсканированное изображение необходимо увеличивать.
После изобретения планшетных сканеров, производство барабанных сканеров было ограничено. Планшетный сканер также обладает теми же функциями, но по более низкой себестоимости. До сих пор барабанные сканеры применяются в местах, где необходима печать высокого качества, книги и журналы и многие другие области публикаций.
2. Планшетные сканеры
Планшетный сканер на сегодняшний день является наиболее часто используемой машиной для сканирования. Они также называются настольными сканерами. Подробное описание планшетных сканеров будут приведены ниже. Они используют прибор с так называемой зарядовой связью (CCD) для сканирования объекта.
3. Ручные сканеры
Эти устройства нашли свою популярность в начале 90-х годов. Ручные сканеры используются для сканирования документов путем перетаскивания сканера по поверхности документа. Они доступны как документ-сканеры, а также 3-D сканеры. Это сканирование будет эффективным, только с устойчивым руки, иначе изображение может выглядеть искаженным. Они имеют датчики для определения коэффициента искажений и показатель будет указан в оповещении если движение сканеру слишком быстрое.
У них также есть кнопка Пуск, которая запускает процесс сканирования. Они синхронизируются с компьютером, а также имеют автоматическое оптическое разрешение. Сканеры также имеют светодиоды, которые подсвечивают изображения для сканирования. Для качественного изображения могут быть использованы специальные справочные маркеры, доступные в устройстве, которое помогают компенсировать искажения.
Хотя получается плохое качество изображения, но зато происходит быстрое сканирование текстов этим устройством.
4. Плёночные сканеры
Этот прибор изготовлен специально для сканирования позитивных и негативных фотографических изображений. Фотография вставляется в носитель. Он будет перемещается шаговым двигателем и процесс сканирования производится с помощью CCD-датчиков. Выходные данные передаются в компьютер.
Работа планшетного сканера
Главное отличие старых и современных сканеров в типе датчика изображения. В старых сканерах использовался фотоэлектронный умножитель [PMT]. Для современных сканеров используется прибор с зарядовой связью [CCD]. CCD-матрица используется для захвата света от сканера, а затем преобразует его в пропорциональные электроны. Развитых зарядов будет больше, если больше интенсивность света, который попадает на датчик.
Любой планшетный сканер будет иметь следующие устройства:
Прибор с зарядовой связью (CCD) массив
Стеклянная пластина (окно)
Хотя конфигурация указанных выше компонентов различается в зависимости от конструкции производителя, но основными конструкции похожи.
Сканер состоит из плоской прозрачной стеклянной пластины, под которой закреплены CCD-датчики, лампы, линзы, фильтры и зеркала. Документ должен быть размещен на стеклянной пластине. Там также есть крышка, чтобы закрыть сканер. Эта крышка может быть белого или черного цвета. Этот цвет помогает в обеспечении единообразия в фоновом режиме. Эту равномерность обеспечивает сканеру программное обеспечение для определения размера сканируемого документа. Например, если сканировать страницу из книги, Вы не сможете использовать крышку.
Лампа улучшает текст при сканировании. Большинстве сканеров используются флуоресцентные лампы с холодным катодом (CCFL).
Шаговый двигатель под сканером отвечает за перемещение сканирующей головки от одного конца до другого. Движение медленное и управляется ремнём. Сканирующая головка состоит из зеркала, объектива, CCD-датчиков, а также фильтра. Сканирующая головка перемещается параллельно стеклянной пластины и тоже в постоянном движении. Поскольку отклонение может произойти в ходе движения, а стабилизатор будет обязан его скомпенсировать. Сканирующая головка перемещается от одного конца машины к другому. Когда она достигает другого конца сканированного документа процесс завершается. Для некоторых сканеров, используется двухстороннее сканирование, в которых сканирующая головка должна вернуться к своей первоначальной позиции, чтобы обеспечить полное сканирование.
Когда сканирующая головка перемещается под стеклом, свет от лампы бьет в документе и отражается с помощью зеркал под углом один к другому. По конструкции устройства могут быть установлены 2 зеркала, или 3 зеркала. Зеркала будут ориентированы таким образом, что отраженный образ будет искажать меньшую поверхность. В конце концов, изображение достигает объектив, которые пропускает его через фильтр и вызывает образ, чтобы быть сосредоточены на CCD-датчики. CCD-датчики преобразуют свет в электрические сигналы, которые весьма интенсивные.
Электрические сигналы будут преобразованы в формат изображения на компьютере. Этот прием может также отличаться в зависимости от различия в объективах и конструкций фильтра. Метод под названием три сканирования используется способ, в котором каждое движение сканирующей головки от одного края к другому копирует каждый составной цвет и передаёт его между объективу и CCD-датчиками. После трех сканирований составных цветов, сканер с помощью программного обеспечения собирает три отфильтрованного изображения в одно цветное изображение.
Существует также способ однопроходного сканирования, в котором изображение, захватываемое объективом, будет разделено на три части. Эти предметы будут проходить сквозь любые цвета составных фильтров. Затем будут использованы CCD-датчики. Таким образом одноцветного изображения будут объединены в сканере.
В ряде новых сканеров, контактный датчик изображения [CIS], заменил датчик CCD. Хотя этот метод не так дорог, как CCD-сканер, качество изображения и разрешение значительно ниже.
Параметры сканера
Разрешение изображения является одним из основных параметров сканера. Каждый сканер варьируется в зависимости от его разрешения и, следовательно стоимости. Характеристика может быть выражена в пикселях на дюйм (PPI), а также в виде образцов на дюйм (SPI). Но, вместо того чтобы определить правильное оптическое разрешение сканера производители в основном публикуют интерполированное разрешение сканера. Последний планшетный сканер имеет интерполированное разрешение 5400 PPI и почти 12 000 точек на дюйм, как у барабанного сканера.
Интерполированное разрешение фактически означает увеличение разрешения изображения с помощью программы сканирования. Это делается путем добавления дополнительных точек между ними те, что на самом деле есть в этой матрице. Эти дополнительные пиксели могут быть добавлены только как среднее из соседних пикселей. Предположим, сканер имеет разрешение 300 x 300 точек на дюйм (DPI) и интерполированное разрешение заявленного производителем 600×300 точек на дюйм. Таким образом, дополнительный пиксель добавляется в каждой строке CCD-датчика с помощью программного обеспечения. Данная характеристика так же увеличивает размер файла. Этот размер может быть уменьшен за счет технологии сжатия с потерями, таким форматом, как JPEG. Благодаря этому методу качество картинки будет незначительно ухудшаться. Обычно этот метод проводится для быстрой загрузки изображения в Интернет, а также для печати изображения на всю страницу.
Сканер имеет не менее оригинальное разрешение около 300×300 точек на дюйм (DPI). При этом разрешение возрастает с увеличением количества CCD-датчиков, а также с точностью шагового двигателя.
По мере увеличения яркости лампы сканера наряду с использованием высококачественной оптики также увеличивается резкость изображения. Диапазон плотности - еще один параметр, через который мелкие тени и детали, а так же яркость также может быть воспроизведена путем сканирования. Чем выше плотность, тем чётче детали.
Другой используемый параметр - это глубина цвета. В цветном сканировании, глубина цвета определяет количество цветов, которые могут быть воспроизведены с помощью сканера. Хотя 24 бита/пиксель для сканера достаточно, но есть сканеры с 30 битами, 36 битами и они вполне доступены.
Способы подключения сканера для к компьютеру
Изображение, которое было успешно отсканированно должно быть переведено на наш домашний компьютер для обработки или хранения.
1. Физическое соединение между сканером и компьютером.
Подключение: Параллельное соединение
Это один из древнейших способ и самый медленный способ. Хотя этот Тип соединения является большим экономическим и имел скорость передачи данных до 70 Кбит/с.
Подключение: Интерфейс малых компьютерных систем [интерфейсом SCSI]
Этот метод может быть целесообразным только с помощью карты интерфейса SCSI. Раньше сканеры используются с выделенной плате SCSI. Хотя скорость передачи данных достаточно высока, намного экономичнее и легче соединений, таких как FireWire и USB пришел на его место.
Подключение: Универсальная последовательная шина USB
Подключение USB является последней и наиболее экономичный способ передачи данных. Она имеет скорость до 60 Мбит/с и может быть легко подключен к сканеру.
Подключение: FireWire
Это самый быстрый из всех вышеприведенных методов. Он был введен в последней высокопроизводительных сканеров и идеально подходит для сканирования изображений с высоким разрешением. Он может передавать данные на максимальной скорости до 800 Мбит/с.
2. Передача информации от сканера к компьютеру
Передача информации от сканера к компьютеру через прикладное программное обеспечение является основным решением. Для этого используются программные интерфейсы [API]. По стандартам API компьютер может передавать данные с любого сканера, даже не зная деталей сканера. Наиболее часто используемое программное обеспечение для передачи изображений из сканера в Adobe Photoshop. Photoshop поддерживает стандарт TWAIN. Если сканер поддерживает тот же стандарт, то возможна передача информации. API используется в большинстве сканеров, а также используется в другом Low-End оборудовании. TWAIN - это просто как водитель, который помогает в общении со всеми другими сканерами с помощью общего языка.
Обработанные данные
После попадания в компьютер, фактический объем объекта будет, как несжатое составное изображение. Это изображение может позже отредактировано в Photoshop или других графических программах, чтобы преобразовать его в формат JPEG и сжать с потерями или без потерь сжатого в формат PNG. Если это текстовое изображение, то оно будет преобразовано в .txt файл с помощью программного обеспечения оптического распознавания символов (OCR ). Текст будет точным, в зависимости от четкости ее изображения.
Автоматический метод чистки сканера
Пленки, используемые при проверке могут быть подвержены пыли и царапинам. Современные сканеры имеют встроенную процесс очистки, так называемой инфракрасной очистки. В этом методе инфракрасный луч будет использоваться для сканирования пленки. Когда луч попадает на местами с пылью и царапинами, луч будет отсекаться. Таким образом, определяется правильное положение, размер и форму пыли, которое будет рассчитываться и будет удалено. Большинство современных компаний, таких как Nikon, Microtek и Epson называют эту технику: Digital ICE, в то время как Canon называет эту технику: Film Automatic - Автоматическое ретуширование и улучшение системы [FARE].
Применения сканера
Приложения варьируются в зависимости от типа используемого сканера. Планшетные сканеры в основном применяются для сканирования документов. Но, для больших форматов документов будет использоваться механический сканер .
Существуют ручные сканеры, которые используются для сканирования объекта в зависимости от движения нашей руки [сканер не двигаться сам по себе]. Этот сканер помогает в 3-D сканирование материалов и применяется в промышленных образцах, испытаниях и измерениях устройств, игровых приложениях и так далее. 3-D сканирование также может быть сделано с помощью планетарных сканеров. Существуют также процессы, которые протекают в производстве сочетание 3-D сканеры с цифровыми камерами, так что реалистичные фотографии с истинным цветом может быть получено в 3-D режиме.
Новый концепт, под названием репрографические камеры, проложил свой путь для сканеров в виде цифровых камер. Этот тип сканера имеет много преимуществ, как легкая оцифровки широкоформатных документов, высокая скорость обработки и транспортировки и так далее. Они также производят изображения с высоким разрешением с функцией защиты от сотрясений. Исследования еще продолжаются, чтобы устранить основные недостатки, такие как тени и отражения помех, искажение изображения и низкую контрастностью.
Сканеры также нашли применение в области био-медицинских исследований. Сканеры высокого разрешения с разрешением около 1 мкм/пиксель используются для обнаружения ДНК. Здесь также используются для обнаружения приборы с зарядовой связью (CCD).
Сканер – это устройство переноса информации с физического носителя в файл электронного формата на компьютере (скан документа). Конечным результатом работы сканера является полученный файл, который можно открыть на компьютере или другом электронном устройстве (телефоне, планшете).
Сканеры бывают разных видов, отличаются внешне, стоимостью и даже принципом действия.
Для чего нужен сканер
Сканирующая техника может использоваться для разных задач. Все зависит от области применения и конкретного типа сканера. Так, сканеры OR-кодов предназначены для считывания данных только с них. А вот планшетная техника может оцифровывать информацию с разных по типу носителей – листов бумаги, книг, пластика.
Часто применяются именно для сканирования документов (паспортов, свидетельств о рождении, справок, ИНН и других). Нередко устройства используются и в учебе для получения цифровых копий рефератов, методичек и т. д.
Как работает сканер
Принцип работы сканера практически идентичен для каждого вида и заключается в двух основных этапах:
- считывания носителя и получение данных с него;
- обработка полученной информации и создание готового изображения в цифровом виде, отправляемого на ПК.
Более подробно принцип описан на примере планшетного прибора:
-
на рабочую поверхность (прозрачное стекло) необходимой к сканированию стороной вниз кладется лист бумаги или другой материал;
Готовый скан получается не за один шаг, а в множество проходов. За шаг сканируется лишь маленькая полоса информации. Затем, все полосы компонуются в одну, так отсканированный документ становится цельным.
Устройство сканера
Основным элементом, обеспечивающим весь процесс сканирования, является матрица, которая по типу делится на CCD и CIS.
-
CDD матрица состоит из каретки, фоточувствительных элементов и лампочки, которая подсвечивает копируемый носитель. Отраженный свет попадает на линзы. Цветность достигается за счет разделения светового потока на составляющие цветового спектра и поступления на фотоэлементы. Сканеры с матрицами такого типа работают быстро, на выходе дают высококачественное изображение. Из-за конструктивных особенностей нет необходимости сильно прижимать крышку устройства, чтобы придавить носитель. Из недостатков выделяют наличие внешнего блока питания и необходимость частой замены лампочки.
Виды сканеров
Планшетный. Является самым распространенным и привычным для обычного пользователя. Часто применяется дома и в офисах. Пользоваться очень легко. Достаточно подключиться к компу, установить драйвера и отсканировать нужные документы. Планшетный называется потому, что лист кладется на ровную поверхность – стекло сканера. Сверху рабочая область закрывается крышкой.
Сканируются многие виды носителей, от обычной листовой бумаги, до толстых книг. В последнем случае, из-за сильного надавливания крышки на книгу, повреждается переплет.
В серии «планшетные» входят также сканеры для паспортов, которыми можно обрабатывать документы небольших форматов – паспортов, чеков, визиток, удостоверений, и других носителей А5, А6.
Устройства могут быть как отдельными, так и входить в состав МФУ (многофункциональных устройств, 3 в 1) – принтер, сканер и копир в одном корпусе.
Протяжный. Внешне похож на обычный принтер, присутствует вход и выход для листа, который захватывается и протягивается через внутренние составляющие. Может сканировать с обеих сторон листа одновременно, что и является преимуществом над обычным планшетным видом. Сканирует только отдельные листы и стоимость техники больше в сравнении с обычным планшетным.
Ручной сканер. Портативное устройство, которое надо перемещать в процессе сканирования. Лист укладывается на ровную поверхность, устройство прислоняется к бумаге и постепенно с одной скоростью аппарат перемещается рукой по всему носителю.
Зарядка и передача файлов на компьютер производится через USB-шнур. Объем хранимых файлов внутри такого вида сканера зависит от количества памяти. При необходимости объем можно расширить картой памяти.
Единственное достоинство заключается в мобильности и относительной дешевизне. Можно взять с собой и когда понадобится сделать скан-копию. К недостаткам относятся качество и необходимость в некой четкости в работе с техникой- надо приловчиться ровно и плавно передвигать прибор.
К ручным также относятся:
- OR-сканеры;
- для сканирования штрих-кодов;
- сканеры переводчики.
Функция распознавания OR-кодов есть во многих современных телефонах по умолчанию или после установки специального приложения для поставленной задачи.
Сканер фотопленок. Предназначен для сканирования пленок, слайдов. Не может считывать непрозрачные материалы.
Планетарный сканер. Нужен для оцифровки старинных или уже ветхих книг, рукописей. Принцип сканирования не предполагает физического контакта со сканирующим предметом.
Поточный сканер (скоростной). Профессиональная техника, применяется в больших офисах и на предприятиях, где необходимо сканировать много и быстро. Есть функция автоматической подачи документов и вместительный лоток. За одну минуту позволят отсканировать до двух сотен листов. Возможна поддержка увеличенных форматов, например, А3.
Барабанные сканеры. Нашли применение в полиграфической индустрии. Сканируемый носитель крепится на внешней или внутренней стороне вала. Характеризуется высочайшим качеством оцифровки благодаря большому разрешению.
Чем отличается от принтера и копира
Основное отличие от каждого вида устройств заключается в конечном результате от работы техники.
- Принтер переносит информацию с электронного носителя на реальный – бумажный или другой (текстиль, пластик, пленка – зависит от вида принтера). Читайте про принцип работы принтера.
- Сканер, наоборот, переносит с физического материала в электронный документ.
- Копир (ксерокс). По технологии работы чем-то похож на сканер. На первом этапе происходит считывание носителя. Дальше происходит перенос на бумагу через встроенное печатающее устройство. Простыми словами, ксерокс делает точную копию исходного документа.
Копир является независимым устройством, которое может работать без подключения сторонних девайсов. Управление техникой выполняется через панель на корпусе. Для работы достаточно, чтобы ксерокс был исправным, и наличие бумаги в лотке.
Сканер всегда требует сопряжения с компьютером – физическое или беспроводное соединение, установка и, при необходимости, настройка программного обеспечения.
Принтер же может работать как автономно, так и только через компьютер. Возможности прямо зависят от модели и цены принтера. Во многих современных моделях можно печатать с флешки или подключать телефон к принтеру через разные программы, обходясь при этом без ПК.
Как сделать сканирование
- Сделайте подключение и добавление сканера в Windows. Независимо от того, какой тип устройства у вас, все действия будут одинаковыми. Сначала соедините USB-кабелем сканер с компом. Подключите через кабель аппарат в сеть 220В. Нажмите на кнопку включения, которая практически всегда находится рядом кнопками управления на корпусе. Windows может сразу обнаружить, распознать периферийное устройство и сама инсталлировать «дрова». Если установка сама не пошла, тогда надо сделать установку с диска, который шел в комплекте, или скачать с официального сайта производителя. О готовности техники к выполнению своей функции будет говорить наличие значка оборудования в окне «Устройства и принтеры» и отсутствие возле него каки-либо предупреждающих иконок. Нажмите комбинацию клавиш «Windows+R» и выполните команду «control printers». Убедитесь, что сканер находится в доступном оборудовании.
- Далее можно попробовать отсканировать что-либо. Поднимите крышку, положите лист на стекло вниз то стороной, которая нуждается в сканировании.
- Правой кнопкой мышки кликните на значок и выберите «Начать сканирование».
- Откроется мастер работы со сканером, внешний вид, меню и количество настроек которого может отличаться в зависимости от производителя и модели.
- При необходимости. Можете выставить любые доступные параметры на свое усмотрение. После, нажмите «Сканировать» и дождитесь завершения создания скан-копии.
- Назовите файл и сохраните в удобное место на компьютере.
Есть и другие варианты, как сканировать документы с принтера на компьютер. Можно использовать стороннее программное обеспечение или встроенные средства операционной системы Windows. Например, графический редактор Paint тоже позволяет отсканировать в несколько кликов мыши.
Сканер — устройство ввода, назначение которого оцифровка информации, хранящейся на нецифровом носители, с её последующей передачей в память ПК в виде графики.
Основные характеристики сканера
Основными параметрами, на которые стоит опираться при выборе данного периферийного устройства, являются: тип сканера, тип установленного датчика, разрешение, оптическая плотность, глубина цвета, скорость сканирования и поддерживаемый формат нецифрового носителя (А4, А3).
Тип сканера
По типу, сканеры подразделяются на планшетные, протяжные и слайд-сканеры.
Планшетный тип сканера наиболее распространен. Конструктивно сканер состоит из стеклянной основы (планшета) и считывающего механизма под ней. В процессе сканирования документ или книга неподвижны, а информация снимается за счет перемещения линии считывающих фотоэлементов вдоль оригинала.
Сканер имеющий протяжный тип , осуществляет сканирование лишь отдельных листов бумаги, которые проходят через считывающую светочувствительную линию. К сожалению, такой подход не позволяет оцифровывать объемные носители информации.
Слайд-сканер. Данный тип сканера используется для сканирования материалов имеющих прозрачную или полупрозрачную основу. К таким нецифровым носителям, например, можно отнести фотопленку или рентгеновский снимок.
Тип датчика
Contact Image Sensor, CIS — представляет собой линию фотоэлементов, которая перемещается вдоль сканируемого материала, и строка за строкой передает информацию с носителя в виде электроимпульсов. Для подсветки оригинала используются светодиоды, расположенные вблизи фотоэлементов. Недостатком данного типа датчиков является малая глубина резкости.
Charge-Coupled Device, CCD – не что иное, как интегральная микросхема, обладающая линией фоточувствительных элементов. При построении картинки, используется оптическая конструкция -включающая в себя зеркало и объектив. Для подсветки сканируемого материала применяется люминесцентная подсветка. Плюсом CCD-сканеров является хорошая глубина резкости и цветопередача. К минусам, можно отнести большую толщину и вес датчика, а также стоимость в сравнении с CIS.
Разрешение
Разрешение сканера зависит от количества фоточувствительных элементов линейки на один дюйм по оси X и минимальным интервалом хода шагового двигателя, также на дюйм, по оси Y. Разрешение – основной параметр при выборе сканера, подавляющее большинство моделей имеет минимальное разрешение 600 х 1200 точек на дюйм (dpi). Почему минимальное? Существует понятие улучшенного разрешения , когда готовое изображение формируется по принципу интерполяции. Для того чтобы получить картинку превышающую разрешение оригинала, пространство между соседними точками заполняется по принципу градации яркости и цвета исходя из данных полученных оптическим способом о цвете и яркости оригинальных точек.
Оптическая плотность
Способность сканера отличить сканируемый материал от «полной темноты», своего рода, параметр «слепоты» считывающих светочувствительных датчиков. Чем выше чувствительность, тем лучше результат при сканировании темных малоконтрастных исходников.
Глубина цвета
Влияет на цветопередачу при сканировании исходных материалов. Различают два вида цветопередачи:
- внутренняя – количество цветов, различаемых системой сканера;
- внешняя – количество цветов, которые сканер отправляет на ПК.
В основном используется 24-битная цветопередача, что вполне достаточно для задач офиса или дома. Но, если работать с графикой, необходим сканер с большей разрядностью.
Скорость сканирования
Чем выше этот показатель, тем лучше. Но, нужно помнить, что скорость также зависит от выбранного разрешения и площади сканируемого материала.
Формат сканирования
Максимальный формат оригинала, который может отсканировать устройство. Сканеры, поддерживающие формат A4, получили большее распространение.
Содержание
Сканеры
Сканер - устройство для ввода графической растровой информации в ЭВМ. Список приложений сканера почти бесконечен, на сегодняшний день сложились и производятся следующие разновидности этих устройств:
- высококачественные барабанные сканеры, которые способны обрабатывать как прозрачные, так и непрозрачные изображения - от 35-мм пленок до материалов размером 16 футов на 20 дюймов с высоким (свыше 10 000 тнд) разрешением;
- планшетные настольные сканеры универсального назначения;
- компактные сканеры документов, предназначенные исключительно для оптического считывания и распознавания документов;
- специальные фотосканеры, которые работают, перемещая фотографию по неподвижному источнику света;
- сканеры слайдов или негативов, работающие с прозрачными изображениями;
- ручные сканеры для использования на небольшом пространстве стола.
- а - планшетный (flatbed) сканер Epson Perfection 3490;
- б - сканер документов (pass-through scanner) Kodak i30;
- в - сканер кинофильмов (35 mm film scanner) Nikon Coolscan 5000 ED;
- г - ручной сканер Mustek.
Устройство и функционирование сканеров
Сканер - устройство, конвертирующее видимое изображение в поток бинарных сигналов, иными словами - осуществляющее преобразование оптических аналоговых данных в электрические цифровые.
Изображение помещается перед кареткой, которая состоит из источника освещения и массива датчиков.
Свет от трубки поступает на датчики, которые считывают оптические данные (например, ПЗС), затем проходит призмы, линзы и Другие оптические компоненты. Подобно очкам или лупам, эти элементы могут весьма различаться по качеству. Высококачественный сканер использует точную стеклянную, просветленную оптику со светофильтрами исправления цвета. В более дешевых моделях применяются пластмассовые компоненты, чтобы уменьшить затраты.
Интенсивность света, отраженного или прошедшего сквозь изображение и собранного датчиком, преобразуется в напряжение, пропорциональное световой интенсивности.
Датчики сканеров
Датчик изображения обычно реализуется по одной из трех технологий:
- фотоэлектронный умножитель (ФЭУ или photomultiplier tube - РМТ) - технология, унаследованная от барабанных сканеров прошлого;
- прибор с зарядовой связью (ПЗС или charge-coupled device - CCD) - датчик, типичный для настольных сканеров;
- контактный сенсор изображения (contact image sensor - CIS) - более новая технология, которая интегрирует функции и позволяет создавать сканеры более компактных размеров.
Технология фотоэлектронных умножителей
ФЭУ - технология датчиков высокопроизводительных цветных барабанных сканеров, которые используются обычно для подготовки матриц цветной полиграфии. Дорогостоящие и тяжелые в обслуживании, они были основными устройствами ввода изображений в ЭВМ до появления настольных сканеров.
Оригинал изображения здесь тщательно закрепляется на цилиндрическом барабане, который начинает вращаться с высокой скоростью. Каретка с датчиками и осветителями начинает перемещаться вдоль изображения. Управлять разрешением или размером изображения можно, подбирая скорость движения каретки, оптическую силу линз и радиус барабана.
ФЭУ-сканеры имеют два источника освещения, один для сканирования в отраженном свете, другой - для прозрачных оригиналов. Свет подсветки расщепляется на три луча, которые проходят через светофильтры (красный, зеленый и синий), а затем попадают на трубку фотоумножителя, где световая энергия преобразуется в электрический сигнал. ФЭУ-сканеры имеют намного более высокую светочувствительность и более низкий уровень шума, чем сканеры ПЗС, и, следовательно, способны к хорошей передаче тонов, будучи менее восприимчивыми к ошибкам в преломлении или фокусировке света, чем их планшетные коллеги.
Однако барабанные сканеры медленнее и дороже, чем сканеры ПЗС. В настоящее время они обычно используются только в специализированных высокопроизводительных приложениях.
Прибор с зарядовой связью (ПЗС)
Технология прибора с зарядовой связью, которая лежит в основе настольных сканеров, ранее использовалась долгое время в таких устройствах, как телефаксы и цифровые камеры. ПЗС - твердотельное электронное устройство, которое конвертирует свет в электрический заряд. Датчик настольного сканера, как правило, имеет массив (линейку) из тысяч элементов ПЗС, размещенных на подвижной каретке. Отраженный свет лампы сканера, пройдя светофильтры, направляется на массив ПЗС через систему зеркал и линз.
Контактный сенсор (CIS)
Это относительно новая технология Датчиков, которая начала появляться на рынке планшетных сканеров в конце 1990-х годов Сканеры этой системы используют компактные банки красных, зеленых и синих светодиодов в сочетании с линейкой датчиков ПЗС, помещенных чрезвычайно близко к исходному изображению. В результате получен сканер, который меньше, легче, дешевле и экономичнее, чем традиционное устройство на основе ПЗС, однако эта технология еще далека от совершенства.
Показатели эффективности сканера
Механизм датчика - не единственный фактор, который задает эффективность сканера. Следующие показатели являются важными аспектами спецификации устройства:
- разрешающая способность;
- разрядная глубина;
- динамический диапазон.
Разрешающая способность сканера
Разрешающая способность описывает точность устройства и обычно измеряется в точках на дюйм (тнд). Типичная разрешающая способность недорогого настольного сканера в конце 1990-х годов составляла 300 х 300.
Типичный планшетный сканер использует элемент ПЗС для каждого пикселя, так что для настольного сканера, имеющего горизонтальную оптическую разрешающую способность 600 тнд и максимальную ширину документа 8.5", требуется массив из 5100 (5100=600 x 8.5) элементов ПЗС в блоке, известном как сканирующая головка.
Головка устанавливается на каретке, которая перемещается вдоль оригинала изображения. Хотя движение кажется непрерывным, перемещение происходит дискретными шагами (в доли дюйма), и в каждой паузе осуществляется считывание информации. В случае планшетного сканера головка управляется шаговым двигателем - устройством, которое поворачивает ось на данный угол (и не больше) каждый раз, когда подан электрический импульс.
Число физических элементов в массиве ПЗС определяет интервал дискретизации направления X, а количество остановок на дюйм задает дискретизацию направления У. Хотя они обычно упоминаются как «разрешающая способность» сканера, термин не вполне точен. Разрешающая способность (возможность сканера выявить все подробности изображения) определяется качеством электроники, оптики, фильтров и моторного привода, а также частотой дискретизации (оцифровки).
К концу 1998 года максимальная плотность элементов ПЗС в линейке составляла 600 на 1 дюйм. Однако видимая разрешающая способность может быть увеличена, используя методику, известную как интерполяция, которая заключается в программном или аппаратном вычислении промежуточных значений сигнала и их вставке между реальными данными. Некоторые сканеры делают это более эффективно, другие - менее. Естественно, формулируя требования к разрешению сканера, не следует забывать о его согласовании с параметрами устройства вывода информации.
Рассмотрим, как можно было бы оценить требования к разрешению сканеров в зависимости от качества выходного изображения.
Цветная полиграфия
Здесь оборудование, воспроизводящее различные уровни цвета, использует метод, именуемый обработкой полутонов. Наборные устройства, используемые в офсетной печати - технологии печати глянцевых журналов - способны к выводу 133 строк/дюйм. Как показывает опыт, для получения качественной печати разрешение сканера должно быть в 1.5 раза выше, то есть около 200 тнд.
Струйный принтер
При сканировании для последующего вывода на принтер разрешающая способность сканера должна соответствовать разрешающей способности вывода настолько близко, насколько возможно, принимая во внимание относительные размеры оригинала и выходного изображения. Если они одинаковы, никакой корректировки не требуется. Если, однако, выходное изображение должно быть напечатано в ином размере (большем или меньшем, чем оригинал), разрешение сканера должно быть соответственно откорректировано.
Предположим, необходимо от сканированную почтовую марку размером 1 х 1.5 «напечатать на струйном принтере, который имеет разрешение печати 600 тнд, причем изображение должно быть увеличено и составить в размере 2 х 3». Если бы марка сканировалась при разрешении 600 тнд, от сканированное изображение имело бы 600 пикселей по вертикали (1«умножить на 600) и 900 пикселей по горизонтали (1.5» умножить на 600). Увеличение изображения до размера, предназначенного для печати (2 х 3«), уменьшает фактическую разрешающую способность до 300 тнд (900/3=300, поскольку 900 горизонтальных пикселей будут расположены в 3»), и так же в вертикальном измерении. Это только половина разрешающей способности принтера, и качество вывода будет ниже оптимального. Для лучшего качества напечатанного изображения, которое фактически использует 600 тнд, сканирование должно проводиться при 1200 тнд.
Вывод на монитор
Подобные расчеты можно сделать также, если размер выводимого образа меньше, чем оригинал. Предположим, необходимо от сканировать фотографию размером 4 х 5, которая будет отображена на WEB странице в половинном размере, 2 х 2.5. Компьютерные мониторы обычно имеют разрешающую способность 72 или 90 тнд. Сканирование фотографии при 72 тнд дает изображение размером в 288 x 360 пикселей. Сокращение этого размера в 2 раза давало бы изображение с вертикальной разрешающей способностью 144 тнд, что вдвое больше необходимой. В этом примере оригинальное изображение могло быть от сканировано при 36 тнд без потери качества результирующего изображения.
Соотношения, используемые в этих примерах, описываются следующей формулой:
где SR - идеальное разрешение сканера, тнд;
DR - разрешение устройства вывода, тнд;
DW - ширина, с которой изображение будет напечатано или отображено, в дюймах;
OW - ширина сканируемого оригинала, в дюймах.
Интерполяция
Несмотря на то что в спецификациях сканеров могут указываться разрешающие способности в 2400.4800 и 9600, необходимо понимать, что реально они не способны к различению такого уровня подробности. Фактическое оптическое разрешение ПЗС в самых современных сканерах в лучшем случае - 600 х 1200 тнд, и любые более высокие показатели основаны на интерполяции.
Указание неоднородной разрешающей способности (например, 600 х 1200 тнд) обязательно подразумевает аппаратную интерполяцию, так как прием данных при 600 тнд по одной оси (X) и 1200 по другой (Y) явно не приведет к «квадрату» изображения. При 600 х 600 тнд такой сканер будет понижать разрешение в 1200 тнд по оси Y до 600 (обычно это делается путем увеличения вдвое шага двигателя, который перемещает головку), а при 1200 х 1200 - будет интерполировать измерение X. При этом чип интегральной схемы в сканере генерирует дополнительные данные, используя точки, которые фактически сняты сканером, и прогнозируя наиболее вероятный цвет и яркость промежуточных пикселей.
Цветовые сканеры
Головки одних цветовых сканеров содержат единственную флюоресцентную трубку с тремя ПЗС, снабженными цветными фильтрами, в то время как другие имеют три цветные трубки и единственный блок ПЗС. Первые производят полное цветовое изображение за единственный проход, в то время как вторые - за три прохода. Однако с конца 1990-х годов однопроходные устройства составляют большинство цветовых сканеров.
Эти сканеры используют один из двух методов: либо расщепление луча, либо ПЗС с цветовыми фильтрами. В первой конструкции свет, проходящий через призму, разделяется на три первичных цвета, каждый из которых считывается соответствующими ПЗС. Этот метод считается наилучшим для обработки отраженного света, но для снижения затрат многие изготовители используют три массива ПЗС, каждый из которых покрыт фильтрующей пленкой так, чтобы он воспринимал только один из первичных цветов. Будучи технически менее точным, этот метод обычно производит результаты, которые трудно отличить от таковых для сканера с расщеплением луча.
Разрядная глубина
Разрядная (битовая, цветовая) глубина сканера характеризует количество информации, содержащейся в одном пикселе выходного образа. Самый простой сканер (черно-белый сканер на 1 бит) использует для представления каждого пикселя «1» или «0». Чтобы воспроизвести полутона между черным и белым, сканер должен иметь хотя бы 4 бита (для 16=2 4 полутонов) или 8 бит (для 256=2 8 полутонов) на каждый пиксель.
Самые современные цветовые сканеры поддерживают не менее 24 бита, что означает фиксацию 8 бит информации по каждому из первичных цветов (красный, синий, зеленый). Устройство на 24 бита может теоретически фиксировать более чем 16 млн различных цветов, хотя практически это число намного меньше. Это почти фотографическое качество, и упоминается поэтому обычно как «полно цветное» сканирование («true colour» scanning).
В последнее время все более увеличивающийся список изготовителей предлагает сканеры с разрядной глубиной на 36 или 30 бит. Хотя немногие прикладные программы машинной графики способны к обработке изображений с глубиной более чем 24 бита, этот избыток разрешения позволяет осуществлять полезные операции по редактированию графики как в драйверах, так и в приложениях.
Динамический диапазон. Динамический диапазон по своей сути подобен разрядной глубине, которая описывает цветовой диапазон сканера, и определяется как функционированием АЦП сканера, так и чистотой света, качеством цветных фильтров и уровнем любых помех в системе.
Динамический диапазон измеряется в шкале от 0.0 (абсолютно белый) до 4.0 (абсолютно черный), и единственное число, данное Для конкретного сканера, говорит, сколько оттенков модуль может Различить. Большинство цветных планшетных сканеров с трудом воспринимает тонкие различия между темными и светлыми цветами на обоих концах диапазона и имеет динамический диапазон около 2.4. Это конечно, немного, но обычно достаточно для проектов, где идеальный цвет - не самоцель. Для получения большего динамического диапазона следует использовать цветовой планшетный сканер высшего качества с увеличенной разрядной глубиной и улучшенной оптикой. Эти высокопроизводительные модули обычно обеспечивают динамический диапазон между 2.8 и 3.2 и хорошо подходят для большинства приложений, требующих высококачественный цвет (например, офсетная печать). Наиболее близко к пределу динамического диапазона позволяют подойти барабанные сканеры, часто обеспечивающие значения от 3.0 до 3.8.
Теоретически сканер на 24 бита предлагает диапазон 8 бит (256 уровней) для каждого первичного цвета, и различие между двумя из 256 уровней обычно не воспринимается человеческим глазом. К сожалению, наименьшие из значащих битов теряются в шуме, в то время как любые тональные исправления после сканирования еще более сужают диапазон. Именно поэтому лучше всего предварительно устанавливать любые исправления яркости и цвета на уровне драйвера сканера перед заключительным сканированием. Более дорогие сканеры с глубиной 30 или 36 бит имеют намного более широкий диапазон, предлагая более детализированные оттенки, и разрешают пользователю делать тональные исправления, заканчивающиеся приличным 24-битовым изображением. Сканер на 30 бит принимает 10 бит данных на каждый цвет, в то время как сканеры на 36 бит - по 12 бит. Драйвер сканера позволяет пользователю выбрать, какие именно 24 бита из исходных 30 или 36 бит сохранить, а какие - нет. Эта настройка делается путем изменения «кривой цветовой гаммы» (Gamma Curve) и доступна при обращении к Настройке тонов (Tonal Adjustment control) драйвера TWAIN.
Режимы сканирования
Среди общего разнообразия методов представления изображения в ЭВМ наиболее распространенными являются:
- штриховая графика (line art);
- полутоновое изображение (greyscale);
- цветное изображение (colour).
Штриховая графика - наиболее простой формат. Так как сохраняется только черно-белая информация (в компьютере черный цвет представлен как «1» и белый как «0»), требуется только 1 бит данных, чтобы сохранить каждую точку просмотренного изображения. Штриховая графика наиболее подходит при сканировании чертежей или текста.
Полутоновое изображение. В то время как компьютеры могут сохранять и выдавать изображения в полутонах, большинство принтеров не способно печатать различные оттенки серых цветов. Они применяют метод, названный обработкой полутонов, используя точечный растр, имитирующий полутоновую информацию.
Изображения в оттенках серого - наиболее простой метод сохранения графики в компьютере. Человек может различить не более 255 различных оттенков серого, что требует единственного байта данных со значением от 0 до 255. Данный тип изображения составляет эквивалент черно-белой фотографии.
Полноцветные изображения - наиболее объемные и самые сложные, сохраняемые и обрабатываемые в персональном компьютере, используют 24 бита (по 8 на каждый из основных цветов), чтобы представить полный цветовой спектр.
Конструкции сканеров
По областям применения различают персональные и производственные сканеры, а по технической реализации - ручные, планшетные и проекционные устройства.
Дополнительная информация по теме
В статье дается полное описание устройства принтеров и описание с графическими схемами основных частей печатающих устройств
Полное описание, как устроены жидкие кристаллы на кремнии в различного рода экранах
Полное описание как устроены плазменные экраны широко используемые в уличных условиях
Полное описание, как устроены светодиодные экраны для промышленного использования или в рекламных целя
Читайте также: