Где используется 3д принтер
Одним из основных применений 3D печати в производстве является прототипирование. С помощью аддитивного производства можно сократить время разработки нового продукта и значительно сэкономить средства.
Развитие 3D технологий привело к появлению новых алгоритмов для разработки продукции. Эти алгоритмы легли в основу многих процессов, которые используются в разных отраслях промышленности.
В этой статье мы рассмотрим где и как применяются 3D технологии, в частности 3D печать.
Медицина и стоматология
Медицинский сектор стал одним из первых, где аддитивные технологии нашли свое применение. Медицина имеет огромный потенциал для использования 3D технологий, так как их возможности позволяют значительно улучшить качество жизни людей.
3D печать может использоваться для разных целей. Помимо создания прототипов и разработки новых продуктов, технология 3D печати используется для изготовления литьевых форм, производства инструментов.
Также 3D печать находит применение при производстве стандартных имплантов и протезов, (например суставов бедра и колена), изготовления индивидуальных ортопедических изделий. На 3D принтерах можно печатать различные хирургические шаблоны, которые значительно облегчают процесс оперативного вмешательства, делают его более точным и простым.
Будущее 3D технологий для медицины заключается в производстве биологических тканей: кожи, органов и костей.
Аэрокосмическая промышленность
Как и медицинский сектор, аэрокосмическая отрасль одной из первых начала внедрять 3D технологии в свою деятельность. В партнерстве с научно-исследовательскими институтами ученые смогли расширить границы использования 3D технологий.
Например, разработка нового самолета стоит больших усилий, при этом каждый объект должен соответствовать определенным требованиям.3D печать может помочь в этом! Оборудование для аэрокосмической промышленности подвергается тщательным испытаниям. Специальные материалы и техника, созданные для этого сектора промышленности, полностью готовы к использованию в реальных условиях.
Среди компаний, использующих 3D печать в своей работе - Boeing, Rolls-Royce, Airbus, BAE-Systems и другие.
Автомобильная промышленность
Еще одним первооткрывателем аддитивных технологий стал автомобильный сектор промышленности. Многие автомобильные компании, особенно те, которые участвуют в автомобильном спорте, используют 3D печать для разработки прототипов. Также новые технологии позволяют оптимизировать производственные процессы и использовать современные материалы при изготовлении автомобильных деталей.
Ювелирная промышленность
Процесс изготовления ювелирных украшений традиционным способом требовал познаний в разных областях - производство форм для литья, особенности литья разных металлов, гальваника, ковка, резка камня, гравировка и полировка. Освоение каждой из этих дисциплин занимает много лет и требует серьезной практики.
Для ювелирного дела 3D печать стала настоящим открытием. Это простой, быстрый и точный способ создания ювелирных изделий, который позволяет пропустить некоторые шаги традиционного производства. Кроме того, 3D печать позволяет реализовать любые дизайнерские замыслы.
Искусство, дизайн, скульптура
Для искусства 3D технологии открывают новые возможности. Исследование формы и функциональности предметов новыми способами позволяет найти оригинальные решения для современного искусства. Возможности 3D печати позволяют перенимать опыт прославленных мастеров, а также экспериментировать и создавать необычные предметы декора. Некоторые художники, например Джошуа Харкер, Ник Эрвинк и Лайонел Дин прославились только благодаря экспериментам с 3D сканированием, моделированием и печатью.
Благодаря 3D печати и сканированию современные мастера имеют возможность воссоздавать произведения искусства, создавать точные копии памятников культуры и подробно изучать мировые шедевры.
Архитектура
Многие современные архитектурные компании используют 3D печать для расширения клиентской базы и успешной коммуникации с заказчиками. Компании печатают макеты будущих строений или помогают визуализировать проект, выполненный в программах для моделирования.
Некоторые архитекторы используют 3D печать непосредственно для строительства. Так появилось соответствующее оборудование и материалы для крупномасштабной 3D печати.
Поскольку 3D печать постоянно совершенствуется (в частности в области открытия новых материалов), этой инновацией заинтересовался и модный бизнес. На мировые подиумы вышли аксессуары, напечатанные на 3D принтерах - головные уборы, обувь, сумки и одежда. Новинки демонстрируются на подиумах по всему миру, а производители уже всерьез задумываются над тем, как сделать материалы для 3D печати из доступного и недорогого переработанного сырья.
Первопроходцем в области развития 3D технологий в этом направлении стала Ирис ван Херпен, которая создала нестандартные коллекции, взорвавшие представления о современной моде.
3D печать едой - одно из новых направлений, которое воодушевляет людей и может стать настоящим мейнстримом. Этот оригинальный способ приготовления и подачи еды становится все более популярным.
Первоначально для такой печати использовался шоколад и сахар, но сейчас эксперименты продолжаются. Скоро станет возможной печать мяса из белкового материала, а также пасты.
Перспективы развития данной технологии печати позволят сбалансировать рацион на уровне приготовления пищи.
Массовое потребление
В качестве услуги 3D печать набирает большие обороты. 3D печать доступна как для обычных пользователей, так и для компаний, которые не часто прибегают к этому виду производства.
Производители стараются сделать 3D печать более доступной и понятной для пользователей с разным уровнем подготовки. Среди лидеров услуг печати - 3DSystems, Makerbot и Stratasys.
Поскольку обычные 2D-принтеры уже утратили потенциал к развитию — развито уже всё, что только можно и нельзя — пора обращать взоры к печати в трёхмерном пространстве. Признайтесь, ведь вы не раз мечтали, чтобы можно было не покупать себе вещи, а просто напечатать их. И сегодня это уже можно, правда, с массой оговорок.
3D-принтеры сегодня в моде. Выпущено уже несколько сотен моделей, только это ни о чем не говорит: все они работают в основном по одному и тому же принципу, и даже «фирменное ПО» используют одинаковое, отличающееся подчас только цветом кнопочек. Подчеркиваем, что мы говорим о моделях дня сегодняшнего: такие принтеры быстро эволюционируют, и уже завтра (или через месяц) может выйти на рынок что-нибудь революционное и сногсшибательное.
Итак, что же такое 3D-принтер для домашнего использования? Это устройство, использующее метод послойного изготовления физического объекта из виртуальной 3D-модели. Первые принтеры такого типа появились еще лет 30 назад, и на сегодняшний день представлены десятком разных типов. Перечислять мы их не будем, а пристальное внимание обратим на один, самый доступный обычному пользователю тип сегодня: FDM 3D-принтер. FDM расшифровывается как «моделирование методом наплавления» (Fused Deposition Modeling).
Принцип действия FDM-принтера прост: раздаточной головкой на поверхность охлаждаемой платформы-основы выдавливаются капли находящегося в разогретом состоянии термопластика. Быстро застывая и слипаясь между собой, капли формируют слои создаваемого объекта. Так и получается в итоге объемный предмет, с которым потом что-нибудь можно сделать.
Зачем?
Первое, что нужно для себя понять — а зачем, собственно, нужен 3D-принтер? Что мы хотим — просто развлекаться и создавать модели и макеты? Использовать принтер для ведения бизнеса? Воплощать творческие фантазии? Бизнес, конечно, оценил 3D-печать давно: такие мировые промышленные гиганты, как Airbus, Boeing, General Electric, Ford, Siemens, NASA используют их постоянно; и это не говоря уже об инженерах, ученых, медиках и огромном количестве мелких предпринимателей.
Дома 3D-принтер открывает широчайшие возможности использования и применения своей фантазии, и поскольку самые дешевые модели стоят от 20 тыс. рублей и выше, они доступны практически каждому человеку с компьютером.
Применений на самом деле можно найти массу. Кто-то задумает сделать себе стол с макетами, воссоздающие какую-нибудь область реально существующую или фантастическую (скажем, поверхность планеты из «Звездных войн»). Кто-то напечатает себе солдатиков и вспоминает детство. А кто-то печатает паззлы детям, придумывая все новые и новые варианты. К тому же можно создать работоспособный макет чего-то более сложного.
А один индивидуум вообще напечатал себе пластиковый и полностью работоспособный пистолет, который не виден на металлодетекторах. В связи с этим законники некоторых стран уже начинают беспокоиться на тему срочного внесения поправок в соответствующие законы, дабы не превратить новую технологию в оружие массового уничтожения (хотя Форд тоже не отвечал за то, что кто-то совершал ограбления, пользуясь его машинами).
В общем, резюмируя, можно выделить несколько основных преимуществ 3D-принтеров: домашнее творчество, использование более сотни различных типов материалов (не только огромное количество самых разнообразных пластиков и полимерных смол, но и металлы, бумага, керамика, ткань, пищевые продукты, соль, лунный и марсианский грунт и даже живые клетки!), универсальность и снижение трудоёмкости (один принтер может заменить несколько сложных агрегатов), простота в использовании (об этом мы поговорим далее), экономичность, быстрота создание объектов и гибкость технологии.
Кстати, в сферу применения можно включить и медицину: инновационная биомедицинская печать сможет предложить в ближайшем будущем искусственные органы и ткани тела, а сегодня уже можно печатать протезы и хирургические имплантаты.
Предположим, вы купили себе 3D-принтер, он стоит и занимает места примерно столько, сколько обычный принтер (или, скорее, МФУ), и далее нужно создать в специальной программе объект для печати. А программ таких множество: Google SketchUp, 3DCrafter, 3Dtim, BRL-CAD, FreeCAD и другие (тысячи их). Желательно, конечно, хоть что-нибудь понимать в CAD-моделировании, но и без этого программы достаточно просты для применения даже новичками.
После смоделированной 3D-версии наступает время её обработки специальной программой (называемой также «слайсером» или «генератор G-кода»). Исходный объект делится на множество тонких горизонтальных слоев и преобразуется в некий цифровой код, понятный 3D-принтеру. Другими словами, генератор создает набор команд, которые указывают 3D-принтеру, как и куда нужно наносить материал при 3D-печати данного объекта. Для пользователя данный этап работы не скажет ничего, потому что фактически принимать участие в нем он в нем не сказать чтобы будет.
А потом наступает волнительный момент печати (кстати, в Windows 8 есть даже поддержка драйвера 3D-печати для принтера MakerBot). Начинается построение объекта из тонких горизонтальных слоев материала.
Сам по себе процесс довольно прост. В самом начале рабочая платформа находится в верхнем положении, а печатающая головка накладывает на неё нижний слой объекта. После того, как сформирован первый слой, рабочая платформа опускается на толщину слоя, и печатающая головка накладывает новый слой материала на предыдущий. Данный цикл повторяется до последнего слоя, то есть до момента завершения создания объекта.
Висящий в воздухе подбородок Ленина был напечатан на недорогом 3D-принтере с подпоркой,
которая в дальнейшем будет отломана, а подбородок – подрихтован.
Если же есть необходимость напечатать висящий в воздухе объект (например, гарцующую лошадь), то сегодня для таковых используется разнообразные подпорки, которые после завершения процесса отламываются или отрезаются, а место стыка шлифуется вручную. В дорогих (то есть хороших) принтерах для подпорок используется водорастворимый материал: после печати модели опускается в воду, где лишние подпорки растворяются.
Параметры печати
О скорости пока речь и не идёт. Понятно, что создание одного объекта займет далеко не один час работы принтера, поэтому выбор 3D-принтера сегодня состоит в выборе между параметрами и решении, насколько тот или иной параметр важен.
И самый главный из них — разрешение печати. Здесь под этим понятием подразумевается минимально допустимая высота слоя материала, с помощью которого может печатать данный 3D-принтер. Разрешение печати принято обозначать в микрометрах (мкм, микрон, тысячной доле миллиметра). Понятно, что чем тоньше слои, тем меньше заметен переход между ними: в итоге поверхность объекта более гладкая, а детали — более выразительные. Обратная сторона высокого разрешения — увеличенное время печати, большая нагрузка на печатающие механизмы и быстрый износ. Разрешение печати зависит от технологии работы принтера, точности печатных механизмов, выбранного материала и настроек приложения.
На сегодняшний день самый точный 3D принтер может печатать с высотой слоя в 50 мкм.
Вторая важная характеристика — рабочий объём (он же — «область печати» или «зона печати»). От него зависит размер напечатанного объекта. Фактически он обозначает зону досягаемости (охвата) печатающей головки принтера в трех плоскостях.
Третий пункт — какими типами пластиковых нитей может печатать принтер. Самыми распространенными на сегодняшний день являются ABS (акрилонитрилбутадиенстирол) и PLA (полилактид). Некоторые принтеры могут печатать обоими типами, некоторые — только одним из них. Но кроме этих двух типов есть и другие (ещё парочка самых распространенных — HIPS — ударопрочный полистирол и PVA — поливинилацетат), и все они обладают рядом физико-химических характеристик: растворимость в воде, гибкость, структура и запах, прочность и даже свечение в темноте. Возможность печати тем или иным пластиком обуславливается наличием/отсутствием подогрева платформы (который в идеале должен присутствовать), рабочим диапазоном температур экструдера (нагревательный элемент, который плавит пластик) и конструкцией камеры для печати. В идеале лучше всего выбирать принтер с максимальным количеством поддерживаемых нитей, чтоб не ограничивать себя — как сейчас, так и в будущем.
А последний пункт, как ни странно, — страна-производитель. Сейчас на российском рынке можно найти модели из США и Европы, китайские и российские. Американские и европейские модели зачастую завозят в Россию небольшими партиями, а сами компании-производители не имеют официальных представителей в России. Качество китайских моделей на порядки отстаёт от всех прочих, понятное дело, и тут выигрыш идёт больше уже в цене.
Производители
Помимо китайских и кустарных принтеров (да, его реально собрать дома самостоятельно), есть несколько моделей, которые популярны больше остальных, и поэтому их поддержка программным обеспечением максимально широка, если можно так говорить о столь новой области. На сегодняшний день это модели MakerBot Replicator 2, PrintBox3D One, Picaso Designer, UP Plus 2, Cube и CubeX. Отличия у каждого из них сводятся к перечисленным в предыдущем параграфе пунктам, размерам камеры и различным дополнительным опциям наподобие Wi-Fi-модуля. Помимо этих моделей, есть, конечно, и другие, но опять-таки нельзя сказать, что они сильно отличаются с технической точки зрения: всё-таки это больше страна-производитель, размеры, скорость печати и количество поддерживаемых типов пластика.
Вот такие они, поворотные принтеры
Напоследок нужно сказать про поворотные 3D-принтеры. Они пока что совсем никакой популярностью не пользуются, но у них есть всё-таки ряд существенных преимуществ по сравнению с «традиционными» 3D-принтерами — если последние можно так назвать. Главное из них — 3D-принтер с поворотной платформой обеспечивает больший рабочий объем по сравнению с устройствами, работающими в декартовой системе координат. Такой принтер использует полярную систему координат (радиус и угол), чтобы рассчитать движение печатной головки: система автоматически конвертирует модели, созданные в декартовой системе координат, в полярные координаты. Поэтому с подобным 3D-принтером можно использовать стандартное ПО, использующееся в «традиционных» 3D-принтерах без поворотной платформы. Физически это выглядит вполне очевидно: платформа вращается, а его экструдер движется по радиусу платформы от её центра к краю. Такая конструкция в два раза сокращает путь экструдера и снижает необходимость его поддержки.
Недостатки 3D-принтеров
Минусы есть у всего, и 3D-принтеры — не исключение. Поэтому на сегодняшний день у технологии существует определенное количество недостатков.
И первый из них — это, наверное, размеры печати. Вы видите на фотографиях «шкафчики» этих принтеров — и вот именно ими всё и ограничивается. Принтер может напечатать только то, что поместится на платформе. А что-то больше этого — разве что по частям, а затем части придется тем или иным образом склеить. И даже несмотря на то, что уже сейчас существует прототип 3D-принтера, размеры рабочей платформы которого практически не ограничены ничем, о массовом внедрении такой технологии говорить пока рано.
Второй недостаток касается самой технологии. Послойная структура сама по себе означает, что между этими слоями всегда будет некий рубеж, переход: поверхность останется матовой и шероховатой. Конечно, последующая обработка может «сгладить углы» во всех смыслах, но эта «доработка напильником» явно не говорит в пользу технологии. К тому же, слоистая структура означает меньшую плотность и, соответственно, меньшую прочность объекта, по сравнению с цельными деталями.
Третий недостаток — достаточно высокая цена 3D-принтеров на сегодняшний день. Они стоят от 20 тысяч рублей, а хорошая модель стоит в среднем 100 тысяч, и пока подешевение не ожидается.
Так покупать или нет?
Формально покупка 3D-принтера для дома сегодня оправдана только в том случае, если вы можете определить для себя сферу его применения. Выбор моделей достаточно широк, энтузиасты могут собрать принтер даже у себя дома, но тем, кто не хочет сильно рисковать, можно порекомендовать выбрать или одну из самых популярных моделей, которые поддерживаются распространенным и доведённым до ума программным обеспечением (и при этом можно выбрать из десятков приложений). Если же покупка такого необычного агрегата у вас не стоит остро, можно попробовать подождать годик-другой, пока технология не разовьётся достаточно для того, чтобы унифицироваться по максимуму и избавиться от массы неудобных ограничений, которые свойственны ей сегодня.
В любом случае, будущее у технологии весьма радужное и применение она себе уже нашла: а в будущем сферы применения будут только шириться.
Как говорят знающие люди, главная проблема 3D-печати заключается в том, что никто не знает, зачем она нужна. К сожалению, для большинства россиян аддитивные технологии до сих пор остаются чем-то загадочным и непонятным, несмотря на их растущую популярность во всем мире. На самом деле бытовые 3D-принтеры достаточно просты в эксплуатации, да и вполне успешно производятся российскими компаниями по вполне доступным ценам. Промышленные же устройства очень дороги, но их потенциал не может не впечатлять. О том, что можно и нужно печатать, мы расскажем с помощью десяти самих ярких примеров применения 3D-принтеров в быту и промышленности.
На 3D-принтерах уже печатают органы человека и даже целые дома!
Медицина
Самое перспективное направление для 3D-печати в целом – это штучное или мелкосерийное производство. Если ширпотреб проще и дешевле отливать и штамповать, то кастомизированные изделия выгоднее печатать, ведь 3D-печать позволяет перейти от цифровой модели непосредственно к производству, не требуя изготовления дорогостоящей оснастки. Иногда же без штучного производства просто не обойтись. Отличным примером служат детские протезы, которые необходимо постоянно менять по мере роста ребенка. Идея протезирования получила широкое распространение по всему миру, причем некоторые вполне способные механические версии обходятся всего в 50 долларов, тогда как привычные индивидуальные протезы могут стоить все 50 000 долларов. Наиболее известным отечественным проектом в этом направлении стала компания Can Touch, основанная Владимиром Румянцевым при поддержке команды W.E.A.S. Robotics. На помощь дизайнерам приходят 3D-сканеры, используемые для получения трехмерного рисунка конечности. Затем протез печатается под полученные размеры и очертания. В последнее время компания использует профессиональные 3D-принтеры ради более высокого качества поверхностей, однако вполне функциональные и очень дешевые версии можно получить с помощью бытовых печатающих устройств.
Но протезы – всего лишь начало.
Существует в аддитивном производстве специальное направление, именуемое биопечатью. Суть его состоит в 3D-печати трехмерных структур живыми клетками и биоразлагаемыми материалами, служащими каркасом, или «матриксом», для клеточной массы. Само собой, вырастить клеточную массу можно и в пробирке, но вот создать полностью функциональный орган из нескольких тканей и с сетью кровеносных сосудов, да еще и пригодный для пересадки, сможет только биопечать. Работы в этом направлении уже ведутся, хотя сложные органы получить пока не удалось. Самым продвинутым примером можно считать эксперименты российской компании 3D Bioprinting Solutions, напечатавшей щитовидную железу, которая затем была успешно имплантирована подопытной мышке.
А вот американская компания Organovo уже производит ткани печени, используемые в качестве образцов для тестирования новых лекарственных препаратов на эффективность, токсичность и побочные эффекты без участия двуногих подопытных.
Иногда же для того, чтобы спасти жизнь, совсем не обязательно печатать новый орган. Можно починить уже имеющийся. Ярким примером стала операция, проведенная хирургами Санкт-Петербургского государственного педиатрического медицинского университета. Врачам пришлось спасать младенца, рожденного со сложным дефектом сердца. Для того чтобы разобраться в структуре порока, врачи напечатали точную модель сердца по томографическим снимкам и поработали все детали перед тем, как приступить к двум сложным операциям. Завершилась история благополучно: мальчик пошел на быстрое выздоровление.
Робототехника
Протезы мы уже упомянули, а как насчет полноценных роботов? Легко. Вариантов на самом деле великое множество, но разработка компании Siemens интересна тем, что в ее основе лежат 3D-печатные роботы, выполняющие роль 3D-принтеров! По задумке создателей, такие устройства должны выполнять роль производственного роя подобно муравьям или пчелам. Группа машин следует общим алгоритмам, распечатывая новые объекты с помощью бортовых 3D-принтеров.
Работают такие «робопауки» на аккумуляторах, запоминая свое положение в пространстве и относительно друг друга.
Когда аккумуляторы разряжаются, робот-паук вызывает полностью заряженного сменщика, а сам уходит на отдых и подзарядку. Разработчики считают, что промышленная версия такого роя сможет заниматься производством поистине крупногабаритных объектов вроде зданий или корпусов кораблей.
Строительство
Правда, здания можно печатать уже сейчас. Строительных 3D-принтеров пока не много, но они уже демонстрируют интересные результаты. Суть процесса, как правило, сводится к послойной печати стен из специально сформулированной цементной смеси. Рецепт смеси очень важен, так как она должна достаточно быстро застывать, чтобы ее не раздавило следующими слоями. С другой стороны, слишком быстрое высыхание не позволит слоям схватываться друг с другом. Получаемые полые стенки служат своего рода несъемной опалубкой, в которую можно вставить утеплители, арматуру, провести коммуникации, а для пущей прочности залить оставшиеся полости бетоном и получить монолитную структуру. Преимущество такой технологии над привычной опалубкой заключается в возможности создавать всевозможные доселе немыслимые формы – округлые, спиральные и пр.
Хотели бы себе дом, напечатанный на 3D-принтере?
Прекрасным примером стали работы Андрея Руденко, напечатавшего миниатюрный замок на иллюстрации. Недавно Андрей взялся за совершенно серьезный проект, напечатав пристройку к гостиничному комплексу на Филиппинах. А сноровистые китайцы из компании WinSun уже успели напечатать пятиэтажное здание, хотя осуществили этот проект по частям, собирая напечатанные панели на месте строительства.
Автомобилестроение
Всего через несколько лет вы заметите, что из гаража вашего соседа каждый раз выезжает новая машина. Как такое может быть? Ответ прост: он их печатает. Производство запасных частей для автомобилей быстро стало одним из любимых направлений среди самодельщиков-печатников или «мейкеров». Стоит ли ждать доставки или рыскать по магазинам в поисках сломанной ручки или оторванного хулиганом украшения с капота, когда их можно напечатать? При этом напечатанные изделия обходятся в сущие копейки, тогда как запасные детали у дилеров могут стоить довольно дорого. Для печати же можно использовать АБС-пластик – тот самый, из которого изготавливается большинство пластиковых элементов отделки. Но на этом автомобильная карьера 3D-печати не закончилась.
Теперь над своей версией 3D-печатной машины работает даже Toyota.
Когда компания MarkForged представила специальный 3D-принтер, позволяющий печатать композитами из пластика и углеволокна, 3D-печатные детали стали появляться даже на болидах «Формулы-1». А американская компания Local Motors пошла еще дальше и создала автомобиль с 3D-печатным корпусом.
Космос
Летать рожденный не должен ползать, а космонавты любят высокотехнологичные гаджеты. Сам собой напрашивается космический 3D-принтер! Первое такое устройство, аналогичное прутковым настольным машинам, доступным на Земле любому желающему, было запущено на орбиту сентябре 2014 года. 3D-принтер производства компании Made in Space был успешно протестирован в невесомости и уже вернулся на родную планету, а на смену ему пришла более совершенная версия.
И да, как и автомобилисты, астронавты намереваются использовать 3D-печать для производства запасных частей. Логика здесь проста: зачем везти на орбиту полный набор деталей и инструментов, когда их можно напечатать по мере необходимости из относительно небольшого запаса материалов на борту станции? Последний же проект Made in Space, пока еще концептуальный, предполагает 3D-печать двигателей и бортового оборудования на астероидах с использованием подручных материалов. Зачем? Чтобы доставить огромную глыбу ценного сырья на околоземную орбиту, где ее можно будет использовать для возведения новых орбитальных сооружений или спустить на Землю.
Хотя у всех свои заботы: итальянские астронавты не начинают свой день без чашечки сваренного с помощью специальной кофемашины эспрессо. А для того, чтобы напиток на растекался по всей станции, используются 3D-печатные чашки специальной формы, удерживающие жидкость за счет поверхностного натяжения. А совсем недавно на борт МКС прибыл российский спутник, изготовленный специалистами Томского политехнического университета. Конструкция спутника частично выполнена с помощью 3D-печати.
Авиастроение
Постойте, скажут многие в нашем Telegram-чате, какие еще 3D-печатные двигатели? Разве это возможно? Вполне, причем аддитивное производство успешно используется во многих сферах машиностроения, включая авиационную и космическую промышленность, где 3D-печатные детали двигателей быстро становятся обыденным делом. Все дело в таких методах 3D-печати, как выборочное лазерное спекание (SLS) и наплавление (SLM). Эти методы позволяют создавать высокоточные детали, состоящие целиком из металлов и сплавов.
Скоро и 3D-пилоты будут?
В качестве сырья используются мелкодисперсные порошки, разогреваемые почти до температуры плавления, а затем спекаемые или сплавляемые по заданным контурам с помощью сверхточных лазеров. Хотя насчет прочности таких изделий изначально были определенные сомнения, многочисленные опыты развеяли страхи: плотность получаемых деталей почти аналогична литым аналогам, а возможность изготавливать сложнейшие компоненты целиком позволяет избегать формирования слабых зон, обычно появляющихся на месте сварочных швов.
3D-печатные детали двигателей, вплоть до форсунок, уже применяются на аппаратах компании SpaceX, Airbus активно и успешно испытывает 3D-печатные детали двигателей и несущих конструкций авиалайнеров, а отечественным примером можно считать 3D-печатные завихрители, созданные Всероссийским научно исследовательским институтом авиационных материалов (ВИАМ) для перспективных двигателей ПД-14, в настоящее время проходящих летные испытания.
Промышленный дизайн
Хотя для изготовления двигателей используются сложные, дорогостоящие системы, печатающие металлами, наибольшее применение в промышленности находят 3D-принтеры, печатающие пластиками. Применяются они не столько для изготовления готовых изделий, сколько прототипов. Изначально технология 3D-печати так и называлась – быстрое прототипирование. 3D-принтеры позволяют изготавливать высокоточные прототипы деталей, корпуса гаджетов, архитектурные макеты и даже обувь. Готовые изделия не только служат для наглядной визуализации, но и позволяют примеривать компоненты, подлежащие сборке. Последний вариант используется разработчиками танков «Армата». Так как для изготовления прототипов не приходится создавать специализированную оснастку, а сам дизайн можно быстро изменить в цифровом виде и напечатать заново, использование 3D-печати для прототипирования приводит к существенной экономии времени и средств при проведении опытно-конструкторских работ.
Недорогие 3D-принтеры пользовательского уровня все активнее используются в школах и кружках, а по всей России создаются центры молодежного творчества, где будущие инженеры могут опробовать технологии аддитивного производства на собственном опыте.
При этом 3D-печати все возрасты покорны. Пока серьезные инженеры проектируют танки и самолеты, их юные коллеги все активнее используют 3D-печать для обучения навыкам моделирования и дизайна.
Оружие
Само собой, 3D-печать не обошли вниманием и любители оружия, что вызвало немалую головную боль для регулирующих органов по всему миру. Началось все с проекта Liberator за авторством американского борца за свободный оборот оружия по имени Коди Уилсон. Незамысловатый пластиковый пистолет можно напечатать на любом домашнем 3D-принтере, единственным металлическим элементом служит гвоздь, используемый в качестве бойка, а вероятность взрыва и вытекающих увечий самого стрелка выше, чем шанс успешного выстрела.
Печать оружия во многих странах под запретом
Это легальная реплика
Хотя иногда бывают и вполне легальные проекты вроде полностью функциональных 3D-печатных реплик пистолета Colt 1911, выпущенных ограниченной партией техасской оружейной компанией Solid Concepts. Как бы там ни было, 3D-печать оружия в России обернется как минимум уголовной статьей за незаконное хранение и распространение, а потому опыт Коди Уилсона перенимать не стоит.
Украшения
Зачем золото, когда есть такое?
Собственно, основатель компании MakerBot Бри Петтис продемонстрировал возможность 3D-печати крупногабаритных изделий с помощью 3D-принтера Replicator Z18 самым наглядным образом – надев напечатанный целиком шлем на голову перед аудиторией восторженных печатников.
Но с помощью 3D-печати можно создавать не только игрушечные украшения, но и самые настоящие. Ювелиры по всему миру все чаще прибегают к 3D-моделированию и печати заготовок, на основе которых изготавливаются формы для отливки украшений из драгоценных металлов. Для подобных проектов используются высокоточные стереолитографические принтеры, печатающие смолами, отвердевающими под воздействием лазеров или световых проекторов.
3D-Принтеры
И наконец, с помощью 3D-принтеров можно печатать… 3D-принтеры! В среде мейкеров существует термин «RepRap», расшифровывающийся примерно как «самовоспроизводящийся 3D-принтер». На самом деле простейший 3D-принтер есть ни что иное, как станок с числовым программным управлением – набор направляющих, подшипников, креплений и печатающих головок, управляемых относительно простым компьютерным контроллером.
Многие из элементов конструкции (крепления, ножки, уголки и даже корпуса печатающих головок) изготавливаются из пластика, так почему бы не напечатать их на другом 3D-принтере? Именно этим и занимаются настоящие мейкеры, а многие из лидирующих компаний вроде MakerBot, Ultimaker или российского PICASO выросли именно из таких самодельных проектов и до сих пор используют 3D-печатные детали в конструкции своих фирменных принтеров.
Аддитивные технологии долго шли в массы: институты и исследовательские центры вплотную занимались ими ещё с 80-х годов, и вот настал момент, когда вы можете прикоснуться к хайтеку и освоить 3D-печать прямо у себя дома. Для этого даже не придётся грабить банк: цены на 3D-принтеры сравнялись со средними смартфонами. Разбираемся, как это работает и какие возможности открываются для мейкеров и DIY-энтузиастов!
Зачем нужен 3D-принтер
Принтер весьма пригодится инженерам-самодельщикам. Вам больше не придётся искать универсальный корпус для проекта, а потом сверлить в нём дополнительные отверстия. 30 минут проектирования, несколько часов на печать — и у вас уже готов корпус, который идеально подходит именно под ваше устройство. Сборка из 5 шилдов никуда не влезает? Забудьте о таких проблемах.
Принтер точно поможет в ремонте штуковин по дому. У каждого в жизни случалась ситуация, когда вещь приходилось выбросить, хотя в ней сломалась всего одна пластиковая деталь. С помощью 3D-печати вы сможете легко заменить в приборах редкие пластиковые детали, которые трудно найти отдельно.
Пока вы не научились моделировать пластиковые детали самостоятельно, их можно попросту качать в интернете. Существует множество сайтов с миллионами готовых бесплатных моделей, которыми свободно обмениваются пользователи. Мы посвятили поиску моделей отдельную статью.
Какие бывают 3D-принтеры
Существует несколько основных видов 3D-принтеров, которые кардинально отличаются между собой по принципу работы.
Технология FDM (Fused Deposition Modeling)
Наиболее распространённый тип — FDM-принтеры с послойным наплавлением пластика. Они работают за счёт подвижной печатной головки с нагревательным элементом. В неё подаётся пластик в виде прутка, который плавится и в жидком виде выдавливается на печатный стол. При этом пластик обдувается вентилятором и мгновенно застывает, а головка начинает выдавливать новый слой поверх застывшего.
Технология SLA (Stereolithography Apparatus)
SLA-принтеры работают на основе стереолитографии: вместо пластика здесь используется специальная фотополимерная смола, которая застывает под воздействием ультрафиолетовых лучей. Для печати смола наполняется в ванночку, снизу которой расположен дисплей с ультрафиолетовыми пикселями. На него в течение нескольких секунд выводится рисунок нижнего слоя модели. При этом смола над дисплеем застывает в виде отображаемого рисунка и затем прилипает на специальный подвижный стол сверху. После этого стол с первым слоем приподнимается, и в смоле происходит полимеризация следующего слоя.
Технология SLS (Selective Laser Sintering)
SLS-принтеры используют технологию выборочного лазерного спекания, для которой применяется специальный пластиковый порошок. В процессе печати насыпается тонкий слой порошка, и принтер обрабатывает его лазером, чтобы слой затвердел в соответствии с моделью. Далее насыпается следующий слой порошка и сплавляется с предыдущим — и так по кругу. В конце остаётся лишь очистить готовую деталь от остатков порошка, которые затем можно использовать повторно.
Сравнение технологий
Каждый тип 3D-принтеров имеет свои преимущества и недостатки.
- SLS-принтеры обладают большими размерами и требуют дорогого сырья. Они часто используются на высокотехнологичных производствах для штучных деталей.
- SLA-принтеры распространены гораздо шире. Ультрафиолетовый дисплей повышает точность, однако работать с токсичной фотополимерной смолой дома затруднительно.
- FDM-принтеры пользуются наибольшей популярностью у хоббистов. Пластиковый пруток стоит гораздо дешевле специального порошка или фотополимерной смолы. Однако, для печати сложной геометрии на таком принтере придётся позаботиться о вспомогательных поддержках. Да и скорость печати в среднем ниже, чем на других технологиях. Зато FDM-принтеры самые простые и безопасные в обслуживании.
Как подготовить печать
Процесс от зарождения идеи до выхода готовой пластиковой детали несложный — школьник справится. Мы разобрали всё по полочкам в руководстве по 3D-печати на примере принтера Flying Bear Ghost 5, а здесь покажем общий принцип.
Исходная модель
Слайсинг
Программа для нарезки моделей (слайсер) потребует от вас самую малость — ввести модель вашего принтера и задать настройки печати: толщину слоя, процент внутреннего заполнения детали, вспомогательные опоры и тому подобное. На основе этих данных слайсер автоматически подготовит специальный код для принтера — G-Code, в котором описано, как нужно двигать печатающей головкой, до какой температуры её нагревать и с какой скоростью выдавливать пластик, чтобы слой за слоем получить желаемую модель. Затем остаётся загрузить этот код в 3D-принтер и запастись терпением до конца печати.
Весь процесс подготовки модели наглядно иллюстрируется программой и снабжается интуитивными подсказками для начинающих пользователей. В общем, не так страшен слайсинг, как его малюют!
Обработка
После того, как модель готова, её можно дополнительно обработать шкуркой или химическим раствором. Это сгладит неровности между слоями, и деталь будет выглядеть прямо как заводская. В интернете немало лайфхаков, которые помогут минимизировать изъяны модели и придать ей улучшенный вид.
Расходники для печати
Свойства напечатанной вещи во многом зависят от сырья. Как мы уже говорили, 3D-принтеры FDM используют в качестве расходника пластиковые нити, и у вас есть огромный простор для экспериментов с разными видами пластика.
-
хорошо поддаётся экструзии и позволяет печатать сложные формы при относительно низких рабочих температурах головки от 190 °C. Биоразлагаемость PLA играет на руку экологии, но в то же время, вещи из него получаются не слишком прочные. прочнее, чем PLA, но тоже хорошо подходит для принтеров с нагревом в районе 200 °C. Разновидности пластика PET хорошо знакомы вам по пакетам и пластиковым бутылкам от газировки.
- ABS-пластик обладает более высокой прочностью по сравнению с остальными типами. Однако для качественной печати из пластика ABS вашему принтеру понадобится повышенная температура экструзии порядка 250 °C и подогреваемый до 120 °C стол, поэтому не всякая модель замахивается на его поддержку.
- HIPS-пластик близок по температурным свойствам к ABS, но обладает низкой спекаемостью с ним и легко удаляется органическим растворителем. Благодаря этому пластик HIPS часто применяют для печати составных моделей и опор под модели из ABS.
- Пластик Wood производится с добавлением древесной пыли. Готовые модели из него неплохо имитируют древесину не только своим видом, но и запахом.
Катушки пластика встречаются в продаже на каждом шагу — вам не составит труда выбрать подходящие расходники и комбинировать различные свойства и цвета деталей при печати.
В заключение
Читайте также: