Что такое полигон в принтере
Полигональная сетка в компьютерной графике — это поверхность, которая обычно состоит из множества полигонов, соединенных общими ребрами.
Что такое ПОЛИГОНАЛЬНАЯ СЕТКА — значение, определение простыми словами.
Простыми словами, Полигональная сетка — представляет собой набор вершин, ребер и граней, которые определяют форму многогранного объекта в трехмерной компьютерной графике. По своей сути, когда мы видим 3D модель, мы и видим полигональную сетку, так как составляющие полигональной сетки и образуют формы в созерцаемой нами модели.
Что такое отображение полигональной сетки.
Обычно, когда мы рассматриваем завершенный и отрендеренный 3D объект, то зачастую нам не показывают его в сетчатом виде. Но при создании 3D объекта, художники очень часто используют режим отображения сетки (wire-frame), для того, чтоб правильно строить топологию и формы модели. Работая в этом режиме, художники могут манипулировать составляющими полигональной сетки и тем самым создавать 3D модель нужным им образом с учетом правильной формы и топологии.
Где создается полигональная сетка?
Являясь неотъемлемой частью 3D модели, работа над сеткой происходит в компьютерных программах, предназначенных для работы с 3D графиков. Из наиболее популярных программ можно выделить:
Стоит упомянуть программы, подход к работе у которых значительно отличается от программ приведенных выше:
Они позволяют работать с сеткой в более традиционном виде, точно так, как над формированием статуй работают классические скульпторы. Вместо работы с каждым полигонов по отдельности или с группой полигонов, 3d скульпторы работают одновременно с тысячами или десятками тысяч полигонов при помощи специальных кистей и инструментов, которые встроены в программы для 3D скульптинга.
Методы работы с полигональной сеткой.
Как правило, большинство программ по работе с 3D графикой имеют огромный арсенал инструментов по работе с моделью. Каждая из программ обладает своими уникальными инструментами и модификаторами, но наиболее распространенные инструменты присутствуют практически в одинаковой форме в каждой программе. Среди инструментов широкого пользования есть такие, как:
Extrude — позволяет выдавливать дополнительные полигоны из уже существующих. Является одним из основных инструментов при работе с 3D моделью и позволяет создавать достаточно сложные формы из примитивных фигур.
Cut — Позволяет резать полигоны от грани к грани, от вершины к вершине или же в более свободной форме. Другими словам, является своеобразным инструментом-ножницами, который позволяет перекроить полигональную сетку по своему желанию. Является практически обязательным инструментом любого 3D художника.
Bevel (chamfer) — Инструмент, который позволяет делать фаски на геометрии. Он весьма распространен, так как делает формы менее рублеными и более плавными. Всегда используется при работе с высоко детализированными моделями.
Эти, а также большое количество других инструментов, позволяют воссоздать любую желаемую форму в компьютерном 3D пространстве с внушительным количеством подходов к решению той или иной задачи.
Что такое Топология полигональной сетки.
Простыми словами, топология полигональной сетки — это плавная и потоковая организованность полигонов в 3D модели.
Что такое правильная топология?
Очень сложно охарактеризовать правильность топологии в несколько слов, так как ее правильность и неправильность может зависеть от конкретного рабочего процесса (пайплайна), той или иной студии в определенной сфере компьютерной графики. Например, если в одном техническом процессе присутствие полигонов с тремя вершинами допустимо, то в другом процессе полигоны с тремя вершинами (трисы) могут быть крайне нежелательными, а предпочтение будет отдаваться полигонам с 4-я вершинами (квадам). Сюда и относится построение сетки под анимируемый или статичный объект, или объект под сглаживание (subdivision).
Но стоит отметить, что “правильная топология” имеет и вполне четкие и нерушимые требования к построению корректной полигональной сетки. Так, например, сетка должна быть равномерной и оптимальной по количеству полигонов. На сетке не должно быть загибов или пересечений полигонов. По возможности, грани у полигонов должны иметь не прерывистые и плавные линии, которые нередко называют лупами.
Сегодня мы подготовили для Вас материал в рубрике “Техничка 3DTool”, посвященный П.О. известного отечественного производителя 3D-принтеров - компании PICASO 3D. Вы уже, наверно догадались, что речь пойдет про Polygon X.
Мы расскажем о том, какие параметры и функции в нем присутствуют, за что отвечают, какие из них наиболее полезны и как их использовать. В этой статье мы расскажем об настройках «слайсинга» и сделаем особый упор на редко используемые, но от этого не менее полезные функции, остановившись на них подробнее.
Знакомство с настройками печати в PolygonX
При первом запуске и после активации вашего 3D-принтера, Polygon X предлагает воспользоваться «упрощённым» режимом параметров слайсинга для новичков. Но параметры некоторых моделей необходимо контролировать вручную, а значит и их палитра нам нужна более широкая. Как же до нее добраться? Для начала разберемся с основными параметрами.
Загрузим модель и нажмем меню «подготовить задание»
Откроется следующее окно, в котором вы можете увидеть:
1) Тип настроек – «Быстрый» (упрощенный) или «Расширенный» (полноценный) интерфейс.
2) Предустановка – Выбор возможного набора параметров для обработки 3D-модели. Это меню предложить выбрать шаблоны сценария обработки геометрии модели от От «Черновика» до «Качество»*.
*Примечание: На интерфейсе 3D-принтера, одноименные функции управляют скоростью и оптимизацией движения по самому G-Code.
3) Выбор сопла 1-2 - в статье мы будем рассматривать печать на примере двухэкструдерного Picaso Designer X Pro, так что сопел у нас два. Между тем, здесь выбирается диаметр установленного в данный момент сопла. По умолчанию, это 0.3. Но, если вы печатаете, скажем, на Picaso Designer XL, выборов у вас будет несколько.
4) Высота слоя – оно же «качество» печати, или толщина слоя. По умолчанию, на 0.3 сопле от 0.05 до 0.25 мм.
5) Плотность заполнения – или «infill» на английском. Отвечает за заполненность материалом внутренней полости изделия. От 0% (просто внешние стенки) до 100% (практически литое заполнение)
6) Поддержка, Подложка, вспомогательные опции – а вот этот раздел представляет для нас наибольший интерес в этой статье.
«Поддержка» - выстраивает структуры параллельно основной геометрии, которые не позволяют верхним слоям в случае их «нависания» над платформой, провиснуть и испортить поверхность. Если не выбрано иное, они будут печататься из-того же материала, что и основная модель.
*Примечание: если вы не активируете свой X Pro, или XL Pro, по умолчанию, слайсер отключит возможность использования второго сопла, и поддержка в любом случае будет напечатана из основного материала.
«Подложка» - разновидность опции позволяющая улучшить адгезию основной модели к столу. Применяется в тех случаях, когда поверхность соприкосновения модели к столу не достаточна, а верхние слои требуют большого количества поддержек. В этом случае все поддержки будут печататься на подложке и отделяться от стола вместе с ней.
При активации «Поддержки» слайсер предложит выбрать ее материал. Растворимый, или такой же как основной. Так же, здесь мы сможем указать активное сопло поддержки. То, которым эта структура будет напечатана.
Если выбрать параметр «Растворимая (поддержка)», откроются опции «Оптимизация» и «Усиленная».
Что представляют из себя опции «Оптимизация» и «Усиление» поддержки?
«Оптимизация», та самая «хитрая» функция, о которой мы говорили в начале. Эта функция позволяет экономить дорогой растворимый материал поддержки и комбинировать ее структуру.
То есть, «интерфейсные» слои, те, которые располагаются между самой поверхностью модели и структурами поддержки будут печататься из растворимого материала, а остальная часть, из основного. Это обеспечивает существенную экономию филамента, а иногда и повышает качество печати самих поддержек, благодаря чему в последствии их будет гораздо удобнее удалять. Особенно при использовании PVA пластика.
«Усиление», эта опция позволяет создать вокруг основной поддерживающий структуры дополнительную связующую стенку. Этот элемент позволяет усилить общую структуру поддержки и не дать слоям расползтись. Обязательно включайте эту галочку, если вы печатаете геометрию, например, в виде «грибка», когда основная часть структуры располагается сверху на высокой и тонкой колонне. При обычной поддержке тяжелые верхние слои могут провиснуть и испортить печать. Режим усиления, решает эту проблему.
Итак. Это первое окно дает нам выжимку основных параметров модели, которые необходимо учитывать при печати.
С их помощью мы можем регулировать толщину слоя, а значит гладкость внешней поверхности, выбирать преднастроенный профиль, регулировать степень заполнения модели, а также включать или выключать поддержки. Этих настроек хватит для какой-нибудь простой геометрии, например этого гномика.
Но что делать, если нам необходимо напечатать сложный корпус технического устройства?
На помощь приходит расширенный выбор настроек и в нем все гораздо интереснее.
Расширенные настройки печати
После того, как во вкладке «Тип настроек», мы выберем выпадающее меню «расширенные», нам откроется следующее окно. Где синими рамками мы отметили опции, с которыми уже познакомились.
Разберемся по порядку, что из настроек добавилось и как мы можем их применить.
1) Ширина экструзии – «Ширина линий периметров» и «Ширина линий заполнения». Как мы можем догадаться, помимо толщины (высоты слоя) по вертикали, существует и параметр толщины по горизонтали. Именно этот параметр регулирует данная настройка.
«Ширина линий периметров» - регулирует параметр ширины внешних границ модели, называемых периметрами. Эти элементы отвечают за прочность стенок вашего изделия и за то, насколько «крутые» углы принтер может печатать без включения функции «поддержек».
«Ширина линий заполнения» - как не трудно догадаться, отвечает за параметр ширины заполнения. Что позволяет регулировать прочность внутренней структуры и при необходимости сэкономить пластик.
2) Шов – каждый периметр начинается в какой-то точке и в какой-то точке заканчивается. Эта точка называется «точка входа на периметр». На одном слое бывает одна или несколько точек входа на периметр, но как правило, она одна и располагается в том месте, где программа математически вычислила наиболее выгодную позицию.
Если мы посмотрим на много таких точек в проекции, то увидим, что на внешней поверхности изделия они образуют как бы «шов», если фигура с простой геометрией, например – обычный цилиндр. Это происходит потому, что длина периметров одинаковая и скорость их печати, соответственно тоже. Так вот данный параметр позволяет нам регулировать внешний вид этого «шва» и положение «точек входа на периметр» принудительно. Для этого существуют:
«Глубина скрытия» - регулирует, насколько будут утоплены в тело модели точки входа и выхода на периметр.
«Принудительный зазор» - регулирует расстояние между точками входа и выхода периметров.
«Угол разброса» - задает угол на модели, в рамках которого слайсер постарается скрыть шов.
Визуально мы можем разместить шов с помощью ползунка «расположение шва»
Параметр «использование углов», позволяет автоматически прятать точки входа на периметр в местах схождения линий под углом.
3) Плотность поддержки – как и заполнения (infill), у поддерживающих структур есть своя плотность. Чем плотнее поддержка – тем лучше она поддерживает верхние слои и тем стабильнее будет результат. Данный ползунок позволяет вручную регулировать этот параметр, чтобы подобрать оптимальное соотношение.
4) Угол активации поддержки – как мы упомянули ранее, некоторые наклоны геометрии относительно стола, принтер может печатать БЕЗ использования поддержек. Это зависит от применяемого материала, ширины экструзии и высоты слоя. Данным ползунком мы можем настроить угол, с которого слайсер начнет выстраивать автоматическую поддержку.
5) Зазоры поддержки, толщина и зазоры интерфейсного слоя – при использовании поддержек, возникает вопрос – как эффективно поддерживать геометрию и не оставлять на ней следов? Что делать, если поддержка пересекает в некоторых местах внешние периметры модели?
Чтобы поддержки не росли, в прямом смысле, из стенок нашего изделия, были придуманы структуры под названием «интерфейсный слой»
Данный слой, повторяет своей конфигурацией очертания нашего изделия, а дальше от него растет сама поддержка.
При этом мы можем регулировать расстояние между верхом интерфейсного слоя и первым слоем модели.
За это отвечает «Z зазор».
Можем регулировать расстояние от поддержки до вертикальной стенки модели сбоку – «X / Y зазор»
Так же, при необходимости мы можем регулировать саму толщину интерфейсного «срединного» слоя – параметр «Толщина интерфейсных слоев»
А также то, насколько сам интерфейс отстоит от стенок модели – «Зазор Х / У интерфейсных слоев»
6) Угол заполнения интерфейсных слоев – для того, чтобы наш интерфейс легче отходил от тела модели, мы можем выбрать направление и угол его линий, чтобы они не шли параллельно линиям первого слоя модели и не слипались с ними. Ползунок позволяет выбрать этот угол.
7) «Ширина интерфейсных линий»
Аналогично параметрам ширины линий периметров и заполнения, регулирует ширину линий интерфейса.
«Зазор между интерфейсными линиями»
Этим параметром вы можете регулировать зазор между витками внутреннего заполнения интерфейса. Применяется, если с отделением интерфейса от стенок модели есть затруднения.
«Расширение поддержки»
Позволяет расширить зону поддерживающего материала дальше от стенок модели. Требуется, для более простого отделения поддержек от самой модели.
8) Адгезия к платформе – параметры позволяющие расширить область первого слоя и увеличить площадь соприкосновения с нагревательным столом. В этом меню доступны следующие опции:
«Ничего» - на первом слое печатается только «тело модели», дополнительные элементы отсутствуют. При этом, с данным параметром вокруг модели рисуется так называемая «юбка» позволяющая оценить примерные габариты изделия и оценить ровность укладки первого слоя.
«Усиление контакта детали» - в английской терминологии «Brim», эта структура представляет из себя несколько раз повторяющийся внешний периметр объекта, сплавленный с ним намертво.
«Подложка» - рисует дополнительный слой заданной толщины и параметров, сверху которого строится сама 3д модель.
«Расстояние до детали» - регулирует зазор по X / Y от внешнего периметра модели до искомой структуры.
«Ширина усиления» - позволяет сделать больше или меньше слоев того самого «повтора внешнего периметра», или юбки.
9) Оболочка и заполнение – это последнее меню расширенных параметров слайсинга. Об этих параметрах следует рассказать подробнее.
Как мы уже выяснили, у каждой 3D-модели есть внешняя оболочка и внутреннее заполнение.
Внешняя оболочка модели, ее еще называют «скорлупа» делится на две части – верхняя и нижняя «крышки» и боковые стенки. Каждый из этих элементов формируется автоматически и следует своим заданным правилам.
*Например каждый из слоев «Крышки», (основание и верхняя часть изделия) всегда печатается в режиме заполнения 100%. В зависимости от количества этих слоев мы получим прочную или хрупкую «скорлупу» сверху и снизу модели.
Надо отметить, что, если в модели недостаточно заполнения или вы печатаете полый куб, верхних слоев, а значит и скорлупы нашей модели должно быть больше. Чтобы финальные слои не провисали вниз.
Параметр «Толщина оболочки» как раз-таки регулирует количество этих самых слоев «крышки» и измеряется в мм. При условно выбранной «высоте слоя»
Например, если высота слоя 0.1мм, а толщина оболочки 1.мм, мы получим 10, 100% залитых слоев.
Так же как и у основания с «крышкой», боковые стенки имеют свою толщину, измеряемую количеством внешних и внутренних периметров.
Параметр «Количество периметров» - соответственно регулирует толщину «скорлупы» по бокам. Небольшой хинт – если выставить дробное значение, можно добиться лучшей склейки внешней стенки и внутреннего заполнения.
Измеряется в количестве и зависит от «Ширины линий периметров» в меню «Ширина экструзии»
Например, если «ширина линий периметров» 0.45мм, то при толщине внешней боковой стенки в 2 периметра, мы получим стенку 0.9мм.*
В целом, т олщина оболочки задается в мм и программа будет автоматически строить всю внешнюю оболочку (и боковые стенки включая крышку и основание) равной заданной толщине. Однако, как он это будет делать, зависит от второго параметра - количества периметров.
Например, мы выставляем толщину стенки 2,7 мм. При ширине экструзии 0,45 это 6 периметров.
Но если мы выставим параметр Количество периметров меньше 6, то программа все равно сделает стенку 2,7 мм но не периметрами, а штриховкой. Это увеличит время печати, однако в ряде случаев более предпочтительно.
*Примечание: Толщина (в плоскости) линий периметров должна быть кратна диаметру сопла или не быть тоньше примерно 50% от диаметра, или толще 150%.
Параметр «Шаблон заполнения детали» - позволяет выбрать узор внутреннего заполнения.
Это Линии, Октагоны, Скруглённые октагоны, или Соты.
Выбор того или иного узора, зависит от геометрии изделия и требований к его прочности в связке с легкостью конструкции. Самым распространенным вариантом являются Линии. Однако они расходуют больше материала уступая в прочности. Различие узоров легко понять с помощью иллюстрации.
Выбор настроек печати, это ответственный этап процесса 3D-печати. В зависимости от его точности и скрупулёзности вы можете получить желаемый или не желаемый результат.
Как правило, большинство негативных эффектов и ошибок печати можно избежать именно на этом этапе.
Надеемся, наша статья позволит вам правильно оценить задачу и получить желаемый результат!
А на этом у нас все! Спасибо что были с нами, до новых встреч. Дальше будет интереснее!
Приобрести 3D-принтер PICASO 3D Designer X Pro, расходный материал к нему, задать свой вопрос, или отследить заказ, вы можете
Регулярное обновление Polygon X на базе нового движка для генерации заданий Picaso X Core.
Для корректной работы обновите прошивку принтера до версии 5.411 (или выше)
Перед использованием ознакомьтесь с этой информациейPolygon X позволяет создавать задания на печать для принтеров Designer Classic, Designer X, Designer X PRO, Designer XL, Designer XL PRO.
В этом обновлении мы собрали ряд небольших, но важных изменений интерфейса программы, а также улучшили алгоритмы автоподбора параметров и подготовки заданий на печать. Начиная с этой версии, обновление программы будет проходить по-другому — если компьютер имеет выход в Интернет, вы получите уведомление о выходе новой версии и возможность установить её без необходимости скачивать версию с официального сайта.
Что изменилось:
— Обновлены алгоритмы автоподбора параметров. В режиме "Прототип" используeтся двойная кратность слоёв для заполнения и тела поддержки, если выбранная детализация (высота слоя) меньше половины диаметра сопла. В режиме "Прочность" теперь используется рисунок заполнения "Прочные соты" с плотностью 30% вместо "Простых сот" плотностью 50%. Эти изменения позволяют сокращать время печати некоторых заданий.
— Режим просмотра заданий по умолчанию теперь можно выбрать в настройках персонализации (актуально только для plgx-файлов).
— Линии тела поддержки теперь всегда строятся перпендикулярно линиям интерфейсных слоев (для рисунков "Линии" и "Зиг-заг"). Это позволяет улучшить качество поверхности над отделяемыми поддержками.
— Улучшены алгоритмы функций "Оптимизация для тонких стенок" и "Заполнять щели между периметрами" в Профессиональном режиме настроек.
— Исправлены некоторые ошибки подготовки и визуализации заданий.
Дополнительное обновление в октябре 2021 включает:
— Улучшения интерфейса программы при работе с облачной базой профилей PICASO 3D.
— Изменения алгоритмов автоподбора параметров, связанные с параметрами "Кратность слоев" для внутреннего заполнения и поддержек. Для растворимых поддержек всегда устанавливается одинарная кратность, то есть высота слоя при печати поддержки будет такой же как у модели. При использовании двойной или более кратности внутреннего заполнения теперь отключается параметр пересечения заполнения с периметрами — из-за особенностей печати заполнения с увеличенной высотой слоя пересечение с периметрами образуется естественным путем.
Хотите больше узнать о полигональной графике? Для чего она используется? Как сделать что-то в этой технике? Да? Тогда вы настоящий дизайнер, готовый развиваться, и расти как профессионал!
Конечно, полигональную графику вряд ли можно назвать чем-то новым, и уж тем более революционным. Тем не менее, она поможет разнообразить ваш дизайн и сделает его индивидуальным и узнаваемым. Да и очередной всплеск моды на полигоны, который бодро шагает по просторам Интернета, трудно игнорировать.
В этом посте вы узнаете о полигонах и полигональной графике и увидите потрясающие примеры ее использования. Также мы собрали для вас несколько уроков, которые помогут вам освоить эту технику. И, кто знает, может быть, вы будете рисовать полигонами даже круче, чем авторы собранных здесь работ!
Что такое полигональная графика?
Где используются полигоны?
Ответ очевиден – в цифровой графике, конечно же! Это своего рода разновидность цифрового искусства. Изначально полигональная графика появилась в 3D моделировании для создания видеоигр. Благодаря низкому разрешению у таких объектов была высокая скорость рендеринга. Также отображение в виде каркаса позволяет экономить ресурсы компьютера и облегчает работу с моделью. Затем уже она стала популярна и в так называемой 2D графике.
В какой программе можно создавать полигональные изображения?
Если вы работаете в 3D, то для вас будет вполне естественно делать это в 3D max, Maya, или Cinema 4D. Последнее ПО настолько дружелюбно, что в нем может рисовать даже ребенок. В целом, полигональная графика достаточно проста в создании, особенно если сравнивать с архитектурной визуализацией или фотореалистичным рендерингом. Она напоминает ранние дни компьютерного моделирования и анимации с налетом современных техник. А так как ретро стиль всегда в моде, практически все дизайнеры создают ее с помощью старых приемов.
Как вы уже знаете, 3D модели создают с помощью полигонов. Чем больше полигонов, тем более детализованной будет модель. Во время финальной обработки (рендеринга) объекта он приобретает «гладкий» вид. Чем меньше полигонов вы используете на стадии моделирования, тем более абстрактным будет результат. Для выраженного эффекта можно отключить функцию сглаживания в настройках рендеринга, и тогда вы получите четкие грани. Здесь все зависит от эффекта, которого вы хотите достичь. Использование низкополигональной техники совсем не означает, что сцена будет простой. Вы можете использовать сложные текстуры, реалистичные настройки отражений и преломлений в окружающей среде и т. д. Полигональные фигуры очень напоминают оригами и сейчас находятся на пике популярности в графическом дизайне.
Также можно создавать полигональные шедевры в таких программах как Adobe Illustrator, CorelDraw и даже Adobe Photoshop. Эти программы, в отличие от специфичных 3D пакетов, хорошо знакомы большинству дизайнеров.
Историческая справка
А знаете ли вы, что полигональному дизайну предшествовало целое направление в искусстве? В начале XX века зародилось и стало невероятно популярным экспрессионистское течение. Появление фотографии только подстегивало художников, ведь теперь можно было запечатлеть образ детально, таким, какой он есть на самом деле. Экспрессионисты же напротив, стремились передать суть, настроение и характер объекта. Они намеренно уходили от деталей. В наши дни экспрессионизм не менее популярен как в живописи, так и в среде цифрового искусства.
Выдающиеся примеры
Вот несколько примеров современного цифрового искусства. Быть может, они впечатлят вас на создание новых шедевров:
Уроки
Здесь вы научитесь создавать векторную полигональную мозаику из растрового изображения при помощи бесплатного веб инструмента Triangulator и Adobe Illustrator.
В этом уроке вы узнаете, как делать портреты с помощью полигонов. Автор показывает, как работать с фото используя и Photoshop и Illustrator, чтобы сделать красивый портрет в модном стиле полигональной графики.
Этот урок так же подходит вам, если вы работаете в более ранних версиях Photoshop.
Подробный видео урок, который научит вас создавать трехмерные персонажи.
Заключение
Полигональная графика – это смесь ретро и футуризма. Стиль не подвластный времени, который можно видоизменять, индивидуализировать, и экспериментировать с ним до бесконечности. Это всегда смотрится стильно, модно и самобытно. Попробуйте поработать с полигонами, и вы поймете, что уже больше не можете без них. Будем рады, если вы поделитесь своими идеями на этот счет в комментариях!
Читайте также: