Что можно сделать из шагового двигателя от принтера
Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор:
Большие лопасти медленно, но верно вращались, флюгер ориентировал устройство по направлению ветра.
Мне захотелось реализовать подобную конструкцию, пусть и не способную вырабатывать мощность, достаточную для обеспечения "серьезных" потребителей, но все-таки работающую и, например, заряжающую аккумуляторы или питающую светодиоды.
Шаговые двигатели
Одним из наиболее эффективных вариантов небольшого самодельного ветроэлектрогенератора является использование шагового двигателя (ШД) (англ. stepping (stepper, step) motor) - в таком моторе вращение вала состоит из небольших шагов. Обмотки шагового двигателя объединены в фазы. При подаче тока в одну из фаз происходит перемещение вала на один шаг.
Эти двигатели являются низкооборотными и генератор с таким двигателем может быть без редуктора подключен к ветряной турбине, двигателю Стирлинга или другому низкооборотному источнику мощности. При использовании в качестве генератора обычного (коллекторного) двигателя постоянного тока для достижения таких же результатов потребовалась бы в 10-15 раз более высокая частота вращения.
Особенностью шаговика является достаточно высокий момент трогания (даже без подключенной к генератору электрической нагрузки), достигающий 40 грамм силы на сантиметр.
Коэффициент полезного действия генератора с ШД достигает 40 %.
Для проверки работоспособности шагового двигателя можно подключить, например, красный светодиод. Вращая вал двигателя, можно наблюдать свечение светодиода. Полярность подключения светодиода не имеет значения, так как двигатель вырабатывает переменный ток.
Кладезем таких достаточно мощных двигателей являются пятидюймовые дисководы гибких дисков, а также старые принтеры и сканеры.
Например, я располагаю ШД из старого 5.25″ дисковода, работавшего еще в составе ZX Spectrum - совместимого компьютера "Байт".
Такой дисковод содержит две обмотки, от концов и середины которых сделаны выводы - итого из двигателя выведено шесть проводов:
первая обмотка (англ. coil 1) - синий (англ. blue) и желтый (англ. yellow);
вторая обмотка (англ. coil 2) - красный (англ. red) и белый (англ. white);
коричневые (англ. brown) провода - выводы от средних точек каждой обмотки (англ. center taps).
разобранный шаговый мотор
Слева виден ротор двигателя, на котором видны "полосатые" магнитные полюсы - северный и южный. Правее видна обмотка статора, состоящая из восьми катушек.
Сопротивление половины обмотки составляет
Я использовал этот двигатель в первоначальной конструкции моего ветрогенератора.
Находящийся в моем распоряжении менее мощный шаговый двигатель T1319635 фирмы Epoch Electronics Corp. из сканера HP Scanjet 2400 имеет пять выводов (униполярный мотор):
первая обмотка (англ. coil 1) - оранжевый (англ. orange) и черный (англ. black);
вторая обмотка (англ. coil 2) - коричневый (англ. brown) и желтый (англ. yellow);
красный (англ. red) провод - соединенные вместе выводы от средней точки каждой обмотки (англ. center taps).
Сопротивление половины обмотки составляет 58 Ом, которое указано на корпусе двигателя.
В улучшенном варианте ветрогенератора я использовал шаговый двигатель Robotron SPA 42/100-558, произведенный в ГДР и рассчитанный на напряжение 12 В:
Ветротурбина
Возможны два варианта расположения оси крыльчатки (турбины) ветрогенератора - горизонтальное и вертикальное.
Преимуществом горизонтального (наиболее популярного) расположения оси, располагающейся по направлению ветра, является более эффективное использование энергии ветра, недостаток - усложнение конструкции.
Я выбрал вертикальное расположение оси - VAWT (vertical axis wind turbine), что существенно упрощает конструкцию и не требует ориентации по ветру. Такой вариант более пригоден для монтирования на крышу, он намного эффективнее в условиях быстрого и частого изменения направления ветра.
Я использовал тип ветротурбины, называемый ветротурбина Савониуса (англ. Savonius wind turbine). Она была изобретена в 1922 году Сигурдом Йоханнесом Савониусом (Sigurd Johannes Savonius) из Финляндии.
Сигурд Йоханнес Савониус
Работа ветротурбины Савониуса основана на том, что сопротивление (англ. drag) набегающему потоку воздуха - ветру вогнутой поверхности цилиндра (лопасти) больше, чем выпуклой.
Коэффициенты аэродинамического сопротивления (англ. drag coefficients) $C_D$
двумерные тела:
вогнутая половина цилиндра (1) - 2,30
выпуклая половина цилиндра (2) - 1,20
плоская квадратная пластина - 1,17
трехмерные тела:
вогнутая полая полусфера (3) - 1,42
выпуклая полая полусфера (4) - 0,38
сфера - 0,5
Указанные значения приведены для чисел Рейнольдса (англ. Reynolds numbers) в диапазоне $10^4 - 10^6$. Число Рейнольдса характеризует поведение тела в среде.
Сила сопротивления тела воздушному потоку $ = S \rho > $, где $\rho$ - плотность воздуха, $v$ - скорость воздушного потока, $S$ - площадь сечения тела.
Такая ветротурбина вращается в одну и ту же сторону, независимо от направления ветра:
Подобный принцип работы используется в чашечном анемометре (англ. cup anemometer) - приборе для измерения скорости ветра:
Такой анемометр был изобретен в 1846 году ирландским астрономом Джоном Томасом Ромни Робинсоном (John Thomas Romney Robinson):
Робинсон полагал, что чашки в его четырехчашечном анемометре перемещаются со скоростью, равной одной трети скорости ветра. В реальности это значение колеблется от двух до немногим более трех.
В настоящее время для измерения скорости ветра используются трехчашечные анемометры, разработанные канадским метеорологом Джоном Паттерсоном (John Patterson) в 1926 году:
Генераторы на коллекторных двигателях постоянного тока с вертикальной микротурбиной продаются на eBay по цене около $5:
Такая турбина содержит четыре лопасти, расположенные вдоль двух перпендикулярных осей, с диаметром крыльчатки 100 мм, высотой лопасти 60 мм, длиной хорды 30 мм и высотой сегмента 11 мм. Крыльчатка насажена на вал коллекторного микродвигателя постоянного тока с маркировкой JQ24-125H670. Номинальное напряжение питания такого двигателя составляет 3 . 12 В.
Энергии, вырабатываемой таким генератором, хватает для свечения "белого" светодиода.
Скорость вращения ветротурбины Савониуса не может превышать скорость ветра, но при этом такая конструкция характеризуется высоким крутящим моментом (англ. torque).
Эффективность ветротурбины можно оценить, сравнив вырабатываемую ветрогенератором мощность с мощностью, заключенной в ветре, обдувающем турбину:
$P = <1\over 2>\rho S $ , где $\rho$ - плотность воздуха (около 1,225 кг/м 3 на уровне моря), $S$ - ометаемая площадь турбины (англ. swept area), $v$ - скорость ветра.
Первоначально в крыльчатке моего генератора использованы четыре лопасти в виде сегментов (половинок) цилиндров, вырезанных из пластиковых труб:
Размеры сегментов -
длина сегмента - 14 см;
высота сегмента - 2 см;
длина хорды сегмента - 4 см;
расстояние от начала сегмента до центра оси вращения - 3 см.
Я установил собранную конструкцию на достаточно высокой (6 м 70 см) деревянной мачте из бруса, прикрепленную саморезами к металлическому каркасу:
Недостатком генератора была достаточно высокая скорость ветра, требуемая для раскрутки лопастей. Для увеличения площади поверхности я использовал лопасти, вырезанные из пластиковых бутылок:
Размеры сегментов -
длина сегмента - 18 см;
высота сегмента - 5 см;
длина хорды сегмента - 7 см;
расстояние от начала сегмента до центра оси вращения - 3 см.
Проблемой оказалась прочность держателей лопастей. Сначала я использовал перфорированные алюминиевые планки от советского детского конструктора толщиной 1 мм. Через несколько суток эксплуатации сильные порывы ветра привели к излому планок (1). После этой неудачи я решил вырезать держатели лопастей из фольгированного текстолита (2) толщиной 1,8 мм:
Прочность текстолита на изгиб перпендикулярно пластине составляет 204 МПа и сравним с прочностью на изгиб алюминия - 275 МПа. Но модуль упругости алюминия $E$ (70000 МПа) намного больше, чем у текстолита (10000 МПа), т.е. тексолит намного эластичнее алюминия. Это, по моему мнению, с учетом большей толщины текстолитовых держателей, обеспечит гораздо большую надежность крепления лопастей ветрогенератора.
Ветрогенератор смонтирован на мачте:
Опытная эксплуатация нового варианта ветрогенератора показала его надежность даже при сильных порывах ветра.
Недостатком турбины Савониуса является невысокая эффективность - только около 15 % энергии ветра преобразуется в энергию вращения вала (это намного меньше, чем может быть достигнуто с ветротурбиной Дарье (англ. Darrieus wind turbine)), использующей подъемную силу (англ. lift). Этот вид ветротурбины был изобретен французским авиаконструктором Жоржем Дарье (Georges Jean Marie Darrieus) - патент США от 1931 года № 1,835,018.
Жорж Дарье
Недостатком турбины Дарье является то, что у нее очень плохой самозапуск (для выработки крутящего момента от ветра турбины уже должна быть раскручена).
Преобразование электроэнергии, вырабатываемой шаговым двигателем
Выводы шагового двигателя могут быть подключены к двум мостовым выпрямителям, собранным из диодов Шоттки для снижения падения напряжения на диодах.
Можно применить популярные диоды Шоттки 1N5817 с максимальным обратным напряжением 20 В, 1N5819 - 40 В и максимальным прямым средним выпрямленным током 1 А. Я соединил выходы выпрямителей последовательно с целью увеличения выходного напряжения.
Также можно использовать два выпрямителя со средней точкой. Такой выпрямитель требует в два раза меньше диодов, но при этом и выходное напряжение снижается в два раза.
Затем пульсирующее напряжение сглаживается с помощью емкостного фильтра - конденсатора 1000 мкФ на 25 В. Для защиты от повышенного генерируемого напряжения параллельно конденсатору включен стабилитрон на 25 В.
схема моего ветрогенератора
электронный блок моего ветрогенератора
Применение ветрогенератора
Вырабатываемое ветрогенератором напряжение зависит от величины и постоянства скорости ветра.
При ветре, колышущем тонкие ветви деревьев, напряжение достигает 2 . 3 В.
При ветре, колышущем толстые ветви деревьев, напряжение достигает 4 . 5 В (при сильных порывах - до 7 В).
ПОДКЛЮЧЕНИЕ К JOULE THIEF
Сглаженное напряжение с конденсатора ветрогенератора может подаваться на Joule Thief - низковольтный DC-DC преобразователь
Значение сопротивления резистора R подбирается экспериментально (в зависимости от типа транзистора) - целесообразно использовать переменный резистор на 4,7 кОм и постепенно уменьшать его сопротивление, добиваясь стабильной работы преобразователя.
Я собрал такой преобразователь на базе германиевого pnp-транзистора ГТ308В (VT) и импульсного трансформатора МИТ-4В (катушка L1 - выводы 2-3, L2 - выводы 5-6) :
ЗАРЯД ИОНИСТОРОВ (СУПЕРКОНДЕНСАТОРОВ)
Ионистор (суперконденсатор, англ. supercapacitor) представляет собой гибрид конденсатора и химического источника тока.
Ионистор - неполярный элемент, но один из выводов может быть помечен "стрелкой" - для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.
Для первоначальных исследований я использовал ионистор 5R5D11F22H емкостью 0,22 Ф на напряжение 5,5 В (диаметр 11,5 мм, высота 3,5 мм):
Я подключил его через диод к выходу Joule Thief через германиевый диод Д310.
Для ограничения максимального напряжения зарядки ионистора можно использовать стабилитрон или цепочку светодиодов - я использую цепочку из двух красных светодиодов:
Для предотвращения разряда уже заряженного ионистора через ограничительные светодиоды HL1 и HL2 я добавил еще один диод - VD2.
Разобрав старый принтер мне достался вот такой красавец:
Собрал по классической схеме удвоитель напряжения и подключил его к одной фазе двигателя:
Конденсаторов на 10 000 мкФ и лихвой хватит для роботы с моим шаговиком.
Диоды Шоттки имеют немного высший КПД нежели обычные кремниевые, потому я остановился на них. Мои диоды рассчитанные на ток 5 Ампер, так что спалить их не боюсь.
Попробуем сделать искру:
Накопившейся энергии в конденсаторах хватило даже на две.
Напряжение ушло выше 20-ти вольт, но не следует думать что выше 20 вольт это уже много, как видим энергия накопившаяся в конденсаторах несильно раскрутила компьютерный кулер. Как учили в школе, мощность (измеряется в Ваттах) это напряжение умножено на ток, ток же, небольшой, что можно будет увидеть на видео ниже:
Может от руки полученная мощность и небольшая но кулер крутится немного быстрей ежели через обычный мостовой выпрямитель, да и можно же собрать ещё один удвоитель и подключить его к второй свободной фазе и подсоединяя последовательно или параллельно можно удваивать ток или же напряжение.
Шаговые двигателя в настоящее время широко применяются в качестве приводов в принтерах, сканерах, DVD-проигрывателях и многих других . В случае выхода из строя такого прибора, из него можно извлечь некоторые полезные узлы и, если они работоспособны, использовать по другому подходящему назначению. Статья предназначена для любителей делать что-нибудь своими руками и не претендует на оригинальность, но содержит некоторые сведения, которые могут быть полезны.
Во-первых, все эти приборы имеют в своём составе блок питания, как правило — импульсный, на несколько напряжений. В основном это выходы с постоянными напряжениями +5, +12 и +24 … 36 вольт с токами до 2 … 3 ампер. Такие блоки питания можно использовать, например, для зарядных устройств, питания светодиодных лент или электроинструмента небольшой мощности. Но в данной статье будут даны примеры использования шаговых двигателей из подобных аппаратов.
Для питания и управления шаговым двигателем, конечно, требуется специальная схема-драйвер, это обеспечит его полную функциональность. Но если вам нужен «просто двигатель» без управления частотой вращения и шагом поворота вала, то вполне можно обойтись простейшей схемой питания с применением конденсатора:
- эта схема предполагает использование двигателей с двумя обмотками и отводами от их середины (всего 6 проводов). Обмотка 1 имеет выводы красного и белого цвета, обмотка 2 — синего и жёлтого. Средние выводы (коричневого цвета) здесь не используются. В зависимости от напряжения питания и мощности двигателя может потребоваться подбор элементов С* и R*.
При использовании такой схемы нельзя будет менять частоту (скорость) вращения, но можно менять его направление — при помощи переключателя S1. Вместо трансформатора и выпрямительного моста в схеме можно использовать как раз «родной» блок питания, который стоял в аппаратуре, где использовался этот двигатель.
Другой вариант использования шагового двигателя — в качестве генератора. При вращении вала такого двигателя на его обмотках наводится напряжение, которое можно использовать, например, для питания низковольтной лампы или светодиодов. В интернете можно найти множество схем-вариантов автономных фонариков с использованием шагового двигателя в качестве генератора энергии. Ниже приводятся их простейшие примеры :
При использовании ламп вместо светодиодов (маломощных на 3 . 12 вольт) их можно подключать к обмоткам напрямую, без использования выпрямителей.
Для увеличения мощности такого фонарика можно использовать все имеющиеся в нём обмотки, используя суммирование их мощностей на выходе (параллельное включение):
Конденсатор на выходе служит для сглаживания колебаний напряжения при неравномерной скорости вращения вала двигателя. Также на выходе можно включить аккумулятор (например от сотового телефона), который будет подзаряжаться при вращении вала двигателя . А вращать вал можно любым удобным и подходящим способом — с помощью надетого на него шкива с ручкой, привода от ветряной или гидро-«вертушки» и т. д…
В статье приведён минимум необходимой информации и простейшие примеры. Более сложные схемы включения с реализацией всех возможностей шаговых двигателей ( с возможностью полноценного управления) можно найти на специализированных сайтах в интернете или справочной литературе.
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Как-то раз достался мне (абсолютно безвозмездно) хладный труп лазерного принтера.
Принтер был разобран на органы, ценного и полезного для rep-rap-а в нем ничего не нашлось, кроме пожалуй шагового двигателя Mitsumi M49SP-1. Польза в котором сомнительная.
Погуглил, двигатель вроде достаточно мощный. Один весомый минус - шаг в 7,5 градусов.
После раздумий куда его применить, пришла в голову мысль попробовать его в качестве привода экструдера принтера. В качестве эксперимента. Нормальные, обычные Nema17 шаговики у меня есть в некотором количестве,
но вот захотелось поэкспериментировать. Стало интересно, мысль овладела головой и руками.
Еще подумалось что микрошаг 32 ситуацию с шагом в 7,5 градусов слегка улучшит.
Спроектировал во FreeCAD-е и распечатал переходную пластину с закладными гайками м3 с этого мотора на nema17.
Родную шестерню не удалял, зубчики достаточно острые и по идее должны вполне цепляться за пруток.
Распечатанный экструдер у меня уже был, печатал остатками китайского пла.
С моим принтером пришел такой же, только литой. А модельку случайно нашел на тинге и распечатал в некотором количестве.
Собрал монстр-экструдер воедино.
Ножка из Леруа Мерлен на укосине.
А в катушку распечатал вот такие вставки и стопор.
Ток выставил экспериментально, чтоб мотор крутился и не пропускал шаги под нагрузкой.
Экспериментально определил количество шагов на 1см.
Тестовая печать прямоугольного столба в 2 стенки.
. дала вот такие занимательные артефакты.
Оно даже печатает, но при печати мотор разогрелся.
В общем для прямого привода моторчик явно не годится. :)
Надо попробовать собрать экструдер с редуктором или с ременной передачей.
Прекрасно понимаю что все это блажь и баловство, не заменит этот моторчик хорошо работающий nema17 17hs4401.
Подытожу: не каждый эксперимент удачный, зато в процессе приобретается бесценный опыт :)
Подпишитесь на автора
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Подскажите знающие люди, что за мотор, вынут из принтера, как подключать и куда можно применить. Есть мысль для самодельного ЧПУ пристроить
Добавлено (05.03.2018, 20:50)
---------------------------------------------
Спрошу ещё одну вещь, в мотор входит 2 провода и стоит кондёр 0.01 мкф переменник, значит ли это, что можно просто 220 подать. Если так, то применение найти не составит труда, а энкодер(вроде так) можно выкинуть
Добавлено (05.03.2018, 20:54)
---------------------------------------------
За дельный совет подарю такой же, отправлю за свой счёт. Кстати в нете на подобные нецензурные цены и чё в них такого
Добавлено (30.07.2019, 11:09)
---------------------------------------------
Подскажите, кто в теме, как закрепить цанговый зажим на валу. На али предложения на 9 или 10 мм, а у движка 9.5. Рискнуть наждачкой на оборотах снять? или как вариант на токарном вал зажать и снять
Ни в коем случае, испортите вал, такое делают на токарном станке, а еще можно рассверлить дырку в цанговом зажиме, но тоже вопрос точности.
Хотя, можно исходить из того, чего не жалко - движка или зажима.
А еще на первой картинке просматривается очень интересная вещь - что-то в стиле датчика оборотов, на таком замутить бы регулятор этих самых оборотов, с визуализацией.
всё равно мало,
купил пару маленьких камушков, маленький наждак тоже хочу сделать, моторов 3 шт. Обороты не нужно особо контролировать. Один мотор, как писал выше, могу подарить, пересыл 200-300 р выйдет на первой картинке просматривается очень интересная вещь - что-то в стиле датчика оборотов, на таком замутить бы регулятор этих самых оборотов, с визуализацией.
Тоже смотрел на нее. Датчик Холла?
Я как то собрал схему с контролем по току на такую сверлилку с журнала "В помощь радилюбителю" вроде.
Если сверло на весу, обороты минимальные.
Только прикоснулся сверлом к плате, обороты подымаются.
Целиться хорошо.
А вот цанги мне не понравились, биение было.
Брал вот такой патрон
Губки хоть и металлические, но кривые, а сам корпус из силумина.
При попытке просверлить сверлом 3мм металлического листа, сорвало резьбу.
Не берите такие.
Сейчас в чайне продают железные патроны от 0.4 до 6мм. Отличные патроны.
Но думаю что придется переходник вытачивать под этот хвостовик.
Наверно да.
Но если чел хочет делать мелкий наждачек, то этот датчик как бэ не нужен. Тем более если что оптика, то на линзы абразив будет садиться, если Холла, то металлическая стружка. Короче, он там нафиг не нужен.
Тем более чел уже определился.
купил пару маленьких камушков, маленький наждак тоже хочу сделать, моторов 3 шт. Обороты не нужно особо контролировать.
Могу подкинуть идею.
Один моторчик с одним камне, это хорошо.
Но этот наждачек можно сделать универсальным.
В дриммелях идут стандартные хвостовики 2,8мм и 3,2мм если мне память изменяет.
Можно этот моторчик закрепить в станину, найти всего два цанги без биения на этот диаметр, а хвостовики и остальной обвес, камень (обычный и самодельный отрезной), алмаз, щетка, сверло можно прикупить по мере необходимости.
Движочек, не смотря на малый вес, довольно таки мощненький, тем более можно регулировать обороты, а значит работать практически с любыми насадками.
Типа таких.
А со станиной получится что-то типа этого.
Ну а с третьего моторчика можно можно сделать мини-гриндер, типа электронапильника. Хорошая и удобная штука.
Читайте также: