Катапультируемое кресло к 36дм
Вам это может показаться удивительным, но сама идея катапультирования летчика из самолета появилась еще на самой заре авиации вместе с первыми самолетами конструкции братьев Райт. При этом произведенная тогда простейшая конструкция работала, но использовать ее на самолетах-бипланах было почти невозможно, поэтому долгое время летчики покидали машину просто, вываливаясь из кабины. Однако теперь для этого используются специальные катапультируемые кресла, которые с момента своего массового появления смогли спасти жизнь тысячам летчиков. Катапультируемое кресло — это последний шанс пилота или других членов экипажа самолета (а теперь и вертолетов: Ка-50, Ка-52) спасти свою жизнь при возникновении на борту аварийных ситуаций.
При этом подобными средствами спасения сегодня оснащаются далеко не все самолеты. В большинстве своем речь идет о военных и спортивных машинах. Первое катапультируемое кресло на вертолете было установлено на отечественном Ка-50 «Черная акула». В дальнейшем они стали появляться и на других летательных аппаратах, вплоть до космических кораблей. Для того чтобы максимально повысить возможность выживания пилота после аварии летательного аппарата или даже его падения на землю, начали выпускать такие катапультируемые кресла, которые обеспечивают выживание пилота и защищают его во всем диапазоне высот и скоростей полета.
Современные системы катапультирования обеспечивают выброс несколькими способами:
1) По типу кресла К-36ДМ, когда катапультирование осуществляется при помощи реактивного двигателя.
2) По типу кресла-катапульты КМ-1М, когда выбрасывание осуществляется за счет срабатывания порохового заряда.
3) Когда для выбрасывания кресла с пилотом применятся сжатый воздух, как на самолетах Су-26.
Обычно после катапультирования современное кресло самостоятельно отсоединяется, а летчик приземляется на парашюте. При этом в последнее время ведутся разработки целых катапультируемых капсул или кабин, которые в состоянии самостоятельно приземлиться при помощи парашютов, а экипаж не покидает катапультируемого модуля.
Вот лишь два наглядных примера из недавнего прошлого, когда катапультируемые кресла спасали летчикам жизни. 12 июня 1999 года в день открытия 43-го Парижского авиационно-космического салона, новейший российский истребитель Су-30МК поднялся в небо для демонстрации тысячам зрителей возможностей сверхманевренности машины за счет использования управляемого вектора тяги.
Однако летную программу не удалось выполнить до конца: летчик Вячеслав Аверьянов неправильно оценил высоту полета при выходе машины из плоского штопора и поздно начал выводить машину из пикирования. Истребителю не хватило буквально метра высоты и машина хвостовой частью задела землю, повредив при этом левый двигатель. На правом двигателе уже горящий истребитель смог набрать высоту в 50 метров, после чего пилот и его штурман Владимир Шендрик катапультировались.
Осуществление катапультирования с небольших высот — это очень тяжелая ситуация. Считается удачным, если летчик после этого просто остается в живых. Поэтому специалисты с большим удивлением смотрели на приземлившихся российских летчиков, которые самостоятельно шли по полю аэродрома. Это произвело столь сильное впечатление на гендиректора парижского авиасалона Эдмона Маршеге, что во время своего выступления на пресс-конференции по случаю авиакатастрофы он сказал: «Я не знаю никаких других средств, которые могли бы спасти экипаж в этих условиях».
Российских летчиков спасло отечественное катапультируемое кресло К-36ДМ, созданное НПП «Звезда». Придумать ему лучшую рекламу было бы трудно.
Второй раз это кресло доказало свои высокие характеристики в 2009 году, когда при подготовке к авиасалону «Макс-2009» в воздухе произошло столкновение двух истребителей — Су-27 и спарки Су-27УБ из пилотажной группы «Русские Витязи». Все пилоты истребителей успели катапультироваться, двое из них выжили, хотя и получили очень серьезные травмы. Третий летчик — командир пилотажной группы Игорь Ткаченко — погиб, его парашют сгорел.
История создания катапультируемых кресел
До 30-х годов прошлого века скорости всех летательных аппаратов были невысоки и не создавали пилоту особых проблем, он просто откидывал фонарь кабины, отстегивался от привязной системы, переваливался через борт кабины и прыгал. Но к началу Второй мировой войны боевые самолеты преодолели невидимый барьер: при скорости полета более 360 км/ч летчика воздушным потоком прижимало к самолету с огромной силой — почти 300 кгс. А ведь в этот момент необходимо было еще как следует оттолкнуться, для того чтобы не удариться о крыло или киль, да и летчик уже мог быть ранен, а сам самолет сильно поврежден. Самое простое решение — отстегнуться, после чего подать ручку вперед, для того чтобы самолет «клюнул» и под действием перегрузки пилота выкинуло из кабины, — срабатывало далеко не всегда, только на небольших скоростях.
Первые специальные катапультируемые кресла были произведены в Германии. В 1939 году экспериментальный самолет Heinkel 176 с ракетным двигателем был оснащен сбрасываемой носовой частью, при этом скоро катапульты стали серийными. Их ставили на турбореактивный He 280 и винтовой He 219. При этом ночной истребитель He 219 стал первой в мире серийной боевой машиной, получившей катапультируемые кресла. 13 января 1943 года немецкий пилот Гельмут Шенк совершил первое в мире реальное катапультирование — аэродинамические поверхности его истребителя обледенели и самолет стал неуправляемым. К окончанию Второй мировой войны на счету немецких летчиков насчитывалось уже более 60 реальных катапультирований.
Катапультируемые кресла тех лет относят к креслам первого поколения, хотя данная классификация и условна. Они решали лишь одну задачу — выбросить летчика из кабины. Достигалось это за счет использования пневматики, хотя встречались и пиротехнические, и механические (подпружиненные рычаги) решения. Отлетев от самолета, пилот должен был самостоятельно отстегнуть ремни, оттолкнуть от себя кресло и раскрыть парашют — тот еще экстрим…
Второе поколение катапультных кресел появилось уже после окончания войны в 1950-е годы. В них процесс покидания самолета стал уже частично автоматизированным: достаточно было повернуть рычаг, для того чтобы пиротехнический стреляющий механизм выбросил кресло вместе с пилотом из самолета, также вводился парашютный каскад (стабилизирующий парашют, затем тормозной и основной). Использование самой простой баровременной автоматики позволяло обеспечить лишь блокировку по высоте (на большой высоте полета парашют открывался не сразу) и по времени. При этом задержка времени была постоянной и могла обеспечить оптимальный для спасения летчика результат лишь на максимальной скорости полета.
Так как один лишь стреляющий механизм (который был ограничен габаритами кабины и физиологическими возможностями летчика по переносимым нагрузкам) не мог выбросить пилота на необходимую высоту, к примеру, на стоянке самолета, в 60-е годы прошлого века катапультируемые кресла начали оснащать 2-й ступенью — твердотопливным ракетным двигателем, который начинал работать уже после выхода кресла из кабины пилота.
Катапультируемые кресла, оснащенные такими двигателями, принято относить к 3-му поколению. Они оснащены более совершенной автоматикой, при этом вовсе необязательно электрической. К примеру, на первых моделях данного поколения, созданных в СССР НПП «Звезда», парашютный автомат КПА был соединен с самолетом при помощи 2-х пневмотрубок и таким образом настраивался на высоту и скорость полета. С того момента техника сделал огромный шаг вперед, однако все современные серийно выпускаемые катапультные кресла относятся именно к 3-му поколению — американские Stencil S4S и McDonnell Douglas ACES II, английские Martin Baker Mk 14 и знаменитые российские К-36ДМ.
При этом стоит отметить, что изначально на данном рынке было представлено достаточно много компаний, но со временем на Западе остались лишь американские Stencil и McDonnell Douglas, а также английская Martin Baker. В СССР, а затем и в России катапультные кресла, как и другое полетное снаряжение, начиная с 1960-х годов, производит НПП «Звезда». Унификация кресел положительным образом сказалась на бюджете тех, кто эксплуатирует боевую технику (особенно, если в частях находится на вооружении не один тип самолетов, а сразу несколько).
Российское катапультируемое кресло К-36ДМ
Российское катапультируемое кресло К-36ДМ является лучшим в своем роде, это очень сложная система, которая не имеет аналогов в мире. В чем же уникальность российского подхода к спасению пилотов? Ныне покойный главный конструктор НПП «Звезда» Гай Северин так отвечал на этот вопрос: «Стоимость обучения профессионального, хорошо подготовленного военного летчика составляет около 10 млн. долларов, что составляет до половины стоимости некоторых машин. Поэтому мы с самого начала задумались над тем, чтобы не просто спасти летчика любой ценой, как это делают на Западе, а еще и спасти его без травм, для того чтобы в будущем он снова встал в строй. После катапультирования при помощи российских кресел 97% пилотов продолжают поднимать самолеты в небо».
В российском кресле все сделано для того, чтобы минимизировать возможность травмы пилота. Для того чтобы минимизировать риск травмы позвоночника, необходимо заставить пилота принять правильное положение. Именно поэтому механизм К-36ДМ притягивает плечи летчика к спинке кресла. Пиропритяг плеч сегодня есть на всех катапультных креслах (такие ремни используются даже в современных автомобилях), однако на К-36 имеется еще и поясной ремень. Еще одной степенью фиксации кресла являются боковые ограничители рук, которые обеспечивают боковую поддержку пилота и дополнительную защиту.
Еще один опасный фактор — это воздушный поток, который встречает пилота после выхода его из кабины. На все выступающие части тела летчика действуют колоссальные перегрузки, к примеру, воздушный поток запросто может сломать ноги. Именно поэтому все современные катапультируемые кресла оснащены специальными петлями, которые фиксируют голени, при этом российское кресло оснащено также и системой подъема ног — кресло сразу же «группирует» летчика (в таком положении снижает риск получения травм). Также кресло К-36 обладает выдвижным дефлектором, который защищает голову и грудь летчика от встречного потока воздуха при катапультировании на очень высоких скоростях полета (до 3 Махов). Все эти защитные механизмы приводятся в действие без участия летчика, а время приготовления занимает всего 0,2 секунды.
Помимо этого, российское кресло К-36 оснащено специальными двигателями коррекции по крену, которые находятся за заголовником и способны придать ему вертикальное положение. Вертикальное положение позволяет максимально использовать импульс ракетного двигателя, а также набрать высоту. Помимо этого, такое положение позволяет пилоту выдержать большие нагрузки при торможении (по направлению «грудь-спина»).
НПП «Звезда»: колыбель отечественных систем катапультирования
Октябрь 1952 года. В подмосковном поселке Томилино организуется опытный завод №918 для создания средств обеспечения безопасности экипажей и повышения живучести боевых самолетов. Решение было принято не случайно – массовый переход авиации на реактивную тягу и естественное увеличение скоростей и высот оставлял мало шансов на спасение летчикам в аварийных ситуациях. В те времена было понятно, что на скорости более 400 км/ч летчик ни при каких условиях не сможет самостоятельно покинуть борт самолета без столкновения с элементами конструкции. Космическая гонка с США также накладывала особые обязательства на завод №918, среди которых были:
— разработка опытных высотных скафандров и противоперегрузочных костюмов для экипажа самолетов;
— конструирование систем покидания летательных аппаратов, катапультных кресел и специального оборудования для защиты человека после покидания кабины самолета;
— исследования в области противопожарной безопасности летательных аппаратов.
Интересно, что завод «поселили» в корпусе, ранее выпускавшем мебель и лыжи, а конструкторский штаб вообще отправили в холодное полуподвальное помещение – послевоенное состояние Советского Союза давало о себе знать. В инженерном направлении катапультирования работы велись с целью обеспечения безопасной траектории полета кресла с летчиком относительно самолета и защиты от травмирования аэродинамическим потоком. Для этого разрабатывали многотрубные стреляющие механизмы и системы фиксации ног, притяга плеч, а также ограничители разброса рук. Первенцами были кресла К-1, К-3 и К-22, обеспечивающие безопасное катапультирование с высоты не менее 100 м и скоростей до 1000 км/ч. Их активно устанавливали на свои машины ОКБ С. А. Лавочкина, В. М. Мясищева и А. Н. Туполева. Фирмы А. М. Микояна, А. С Яковлева и П. О. Сухого самостоятельно строили системы аварийного покидания кабины пилота для своей продукции. Однако, оставалась проблема спасения на режимах взлета и посадки, решением которой стало кресло К-24, в котором появился ряд новых решений. Так, дополнительно установили ракетный двигатель, запускающий летчика подальше от земли, и трехкупольную парашютную систему, состоящую из стабилизирующего, тормозного и основного куполов. На этом фактически и закончилась история систем спасения первого поколения, итогом которой стало около 30 различных кресел от разных разработчиков. К 60-м годам вся эта разношерстная компания требовала от пилотов специфических навыков применения, а обслуживающий персонал страдал от «головных болей», связанных с эксплуатацией и ремонтом. И вот в 1965 году вышло постановление Министерство авиационной промышленности, в соответствии с которым завод №918 приступил к созданию унифицированного катапультного кресла для установки на все самолеты всех авиационных фирм страны Советов. Главным требованием было обеспечение безопасного покидания кабины на всем диапазоне высот, скоростей и чисел М, в том числе при нулевых значениях скорости и высоты – так называемый режим «0-0». Для тех времен это была непростая задача – для этого разработали энергодатчик катапультирования с повышенным импульсом и парашют с системой принудительного ввода на скорости до 650 км/ч с одновременным отделением летчика от кресла. Жесткие телескопические штанги с установленными на концах вращающимися парашютами обеспечивали вертикальную стабилизацию, что позволяло полнее реализовать импульс ракетного двигателя. Все это вкупе с защитным дефлектором и комплексом мер по ограничению подвижности пилота, позволяло покидать аварийную машину в защитном шлеме на скоростях до 1300 км/ч, а при использовании гермошлема до 1400 км/ч. Вообще, максимальные параметры, по словам главного конструктора «Звезды» Сергея Позднякова, при которых была возможность катапультироваться — высота до 25 км и скорость до 3 значений М! Вот имена отважных испытателей, проверивших новую технику на всех возможных режимах – В. И. Данилович, А. К. Хомутов, В. М. Соловьев и М. М. Бессонов. Кресла получили наименование К-36 и существовали в трех вариантах: К-36Д – для высокоскоростных самолетов, К-36Л без дефлектора – для самолетов со скоростью до 1100 км/ч и уникальное К-36В – для самолетов вертикального взлета и посадки с системой автоматического (!) покидания кабины. В последнем случае катапультирование осуществлялось прямо через остекление фонаря – времени на его отстрел в условиях быстрого развития аварийной ситуации в вертикальном режиме маневрирования на машинах семейства Як порой не было.
Была в истории НПП «Звезда» страница «обмена опытом» с американскими коллегами (естественно, в 90-е годы), в ходе которого разработали кресло К-36Д-3,5А, модифицированное под штатовские требования по размещению в нем летного состава широкого антропометрического ряда. На базе Холломан в США провели шесть катапультирований в различных углах атаки, скольжений, скоростей и крена. К 1998 году американские эксперты дружно признали «Звезду» мировым лидером в деле создания систем жизнеобеспечения и аварийного спасения пилотов. Кто знает, какие итоги того «обмена опытом» легли в конструкцию катапультного кресла US16E для истребителя F-35?
С 1972 года НПП «Звезда» занимается, на первый взгляд, парадоксальной тематикой разработки систем катапультирования экипажа вертолетов. Базовой схемой аварийного покидания кабины вертолета стал запуск пилотов вверх с помощью буксирующего ракетного двигателя с предварительным отстрелом несущих лопастей. Как известно, первым стал Ка-50 с ракетно-парашютной системой К-37-800, обеспечивающей катапультирование в диапазоне от 0 до 4000 метров на скоростях до 350 км/ч. Для двухместного Ка-52 к индексу кресла добавили букву «М».
Ми-28 такой роскоши лишен, поэтому ему положена light-версия в виде амортизационного кресла «Памир», снижающая ударные нагрузки в векторе голова-таз при аварии с 50 единиц до 15-18. «Памир» также может помочь при лобовом и боковом ударе – система фиксации головы пилота снизит перегрузки до 9-20 единиц. Требования авиационных правил и нормы летной годности инициировали в НПП «Звезда» разработку амортизационного кресла АК-2000, применяемого на винтокрылых машина Ка-62, Ми-38 и Ка-226.
Деятельность ОАО «НПП «Звезда» имени академика Г. И. Северина» не ограничивается только катапультными креслами – в активе фирмы системы дозаправки в полете по схеме «шланг-конус», уникальное снаряжение для космонавтов, кислородные системы и защитные средства пилотов, а также различные парашютные системы. Но это темы отдельных историй.
Последний шанс пилота: спасительный выстрел в воздух
Когда самолет падает и кажется, что спасения нет, лучшее в мире катапультное кресло К-36Д-3,5 может дать пилоту еще один шанс.
В день открытия 43-го Парижского авиационно-космического салона, 12 июня 1999 года, новейший российский истребитель Су-30МК поднялся в воздух, чтобы продемонстрировать десяткам тысяч зрителей возможности сверхманевренного самолета с управляемым вектором тяги. Показ не удалось выполнить до конца: пилот Вячеслав Аверьянов неправильно оценил высоту при выходе из плоского штопора и слишком поздно вывел самолет из пикирования. Не хватило буквально 1 метра — Су-30МК хвостовой частью задел землю, повредив левый двигатель. На правом двигателе горящий самолет медленно набрал высоту 50 м, а затем пилот и штурман (Владимир Шендрик) катапультировались.
Катапультирование с малых высот — случай достаточно тяжелый, и считается удачным, если летчики просто останутся живы. Поэтому специалисты с величайшим изумлением смотрели на приземлившихся летчиков, самостоятельно идущих по полю аэродрома. Это настолько впечатлило генерального директора авиасалона Эдмона Маршеге, что он в своем выступлении на пресс-конференции по случаю катастрофы так и сказал: «Я не знаю других средств, которые могли бы спасти экипаж в этих условиях». Для катапультных кресел К-36ДМ, разработанных российским НПП «Звезда», трудно было придумать лучшую рекламу.
Выпрыгнуть из кабины
До 1930-х годов невысокие скорости летательных аппаратов не создавали проблем: пилот просто откидывал фонарь, отстегивал привязную систему, переваливался через борт и прыгал. К началу Второй мировой военная авиация перешагнула невидимый порог: при скорости 360 км/ч человека воздушным потоком прижимает к самолету с силой почти в 300 кгс. А ведь нужно еще как следует оттолкнуться, чтобы не удариться о киль или крыло, да и пилот может быть ранен, а самолет — поврежден. Простейшее решение — отстегнуться, а затем подать ручку вперед, чтобы самолет «клюнул» и под действием перегрузки пилота выбросило из кабины, — работало только на не слишком высоких скоростях.
Первые катапульты появились в Германии. В 1939 году экспериментальный летательный аппарат Heinkel He 176 с ракетным двигателем был оснащен сбрасываемой носовой частью. Вскоре катапульты стали серийными: их устанавливали на турбореактивный Heinkel He 280 и винтовой Heinkel He 219. 13 января 1942 года пилот He 280 Гельмут Шенк выполнил первое в мире реальное катапультирование — аэродинамические поверхности его самолета обледенели, и истребитель стал неуправляемым. К концу войны на счету немецких пилотов насчитывалось уже более 60 катапультирований.
Катапультные кресла тех времен (их принято относить к первому поколению, хотя эта классификация весьма условна) выполняли единственную задачу — выбросить человека из кабины. Это достигалось в основном с помощью пневматики, хотя встречались и механические (подпружиненные рычаги), и пиротехнические решения. Отлетев от самолета, пилот должен был по-прежнему самостоятельно отстегнуть ремни, оттолкнуть кресло и раскрыть парашют.
Немного автоматики
Второе поколение катапультных кресел появилось в 1950-х годах. Процесс покидания был уже частично автоматизирован: достаточно было дернуть рычаг, пиротехнический стреляющий механизм выбрасывал кресло из самолета, вводился парашютный каскад (стабилизирующий, затем тормозной и основной). Простейшая баровременная автоматика обеспечивала только задержку по времени и блокировку по высоте (на большой высоте парашют открывался не сразу). При этом задержка была постоянной и обеспечивала оптимальный результат только на максимальной скорости.
Поскольку один только стреляющий механизм (ограниченный габаритами кабины и физиологическими возможностями пилота по переносимым перегрузкам) не мог выбросить летчика на нужную высоту, например, на стоянке, в 1960-х годах кресла начали оснащать второй ступенью — твердотопливным ракетным двигателем, начинающим работать после выхода кресла из кабины.
Кресла с таким двигателем принято относить к третьему поколению. Они снабжены более совершенной автоматикой, причем совсем не обязательно электрической. Например, на первых креслах этого поколения, разработанных НПП «Звезда», парашютный автомат КПА соединялся с самолетом двумя пневмотрубками и таким образом настраивался на скорость и высоту. С тех пор техника шагнула далеко вперед, но все современные серийные катапультные кресла относятся к третьему поколению — британское Martin Baker Mk 14, американские McDonnell Douglas ACES II и Stencil S4S, а также знаменитое российское К-36ДМ.
Кстати, на Западе авиастроительные компании начинали разрабатывать средства спасения пилотов самостоятельно (у нас то же самое было в 1940—1950-х), и лишь с 1960-х началась унификация, и на рынке остались британская компания Martin Baker и американские McDonnell Douglas и Stencil. У нас в стране катапультные кресла, как и другое полетное снаряжение, с 1960-х годов делает только НПП «Звезда». Это весьма благотворно сказывается на бюджете тех, кто эксплуатирует технику (особенно если в частях стоит на вооружении не один тип самолетов, а несколько).
Защитный кокон
В чем же уникальность российского подхода к средствам спасения? Генеральный конструктор НПП «Звезда» Гай Северин отвечает на этот вопрос так: «Стоимость подготовки квалифицированного пилота оценивается в $10 млн. Это почти половина стоимости самого самолета. Поэтому мы с самого начала решили не просто спасать пилота любой ценой, как это делают на Западе, а спасать без травм, чтобы он в дальнейшем мог вернуться в строй. После катапультирования с помощью наших кресел 97 процентов пилотов продолжают летать!»
«Мы с самого начала решили, что характеристики наших средств аварийного покидания должны полностью соответствовать возможностям самолетов. Если кресло может спасти пилота на скорости 1400 км/ч, то на скорости 800 км/ч это будет сделать гораздо проще», — говорит начальник расчетно-теоретического отдела НПП «Звезда» Александр Лившиц. Поэтому К-36ДМ — чрезвычайно сложная система, аналогов которой нет нигде в мире.
От чего же кресло должно защищать пилота? В первую очередь (еще до катапультирования) — от усталости. Кресло — это рабочее место летчика, где он проводит многие часы, и ему должно быть максимально удобным. Поэтому сиденье и спинка кресла особым образом профилированы, есть подгонка по росту и по наклону спинки (в последних моделях).
Но, предположим, самолет терпит аварию и летчик вынужден катапультироваться. Ослабленные ремни могут привести к повреждению позвоночника. Чтобы минимизировать риск такой травмы, нужно заставить пилота принять правильное положение. Поэтому механизм кресла в первую очередь притягивает плечи пилота к спинке. Пиропритяг плеч есть на всех современных катапультных креслах (и даже в современных автомобилях), но К-36 притягивает еще и поясной ремень. Еще одна степень фиксации — боковые ограничители рук (только у К-36). Они обеспечивают дополнительную защиту и боковую поддержку пилота (при вращении самолета по крену сила Кориолиса стремится выбросить летчика из кресла).
Следующий опасный фактор — это воздушный поток после выхода из кабины. На любые выступающие части тела пилота действуют гигантские нагрузки — например, ноги воздушным потоком может просто сломать. Поэтому на всех современных креслах голени фиксируются специальными петлями, но только К-36 оснащено еще и системой подъема ног — кресло как бы «группирует» летчика (при этом риск сломать голень снижается). Кроме того, К-36 оснащено выдвижным дефлектором, защищающим грудь и голову летчика от воздушного потока при катапультировании на высоких скоростях (до 3 Махов!). Все эти защитные факторы действуют без участия пилота и занимают всего 0,2 секунды.
Мягкая посадка
Положение самолета в момент катапультирования может быть произвольным. Но покинувшему кабину креслу нужно придать вертикальное положение. Это делается с помощью двигателей коррекции по крену, расположенных за заголовником, и двух выдвижных штанг со стабилизирующими парашютами. Вертикальное положение кресла обеспечивает возможность максимально использовать импульс ракетного двигателя и набрать высоту, а также обеспечить защиту от воздушного потока с помощью уже упомянутого дефлектора. Кроме того, именно такое положение летчика дает ему возможность выдержать большие перегрузки торможения (в направлении «грудь-спина»).
Западные катапультные кресла позволяют раскрывать парашют при 400 км/ч. Парашют К-36 может вводиться на скорости до 650 км/ч, время торможения, а следовательно, высота безопасного катапультирования получается меньше. По статистике 90% катапультирований происходит на малых высотах и скоростях менее 700 км/ч.
Парашют расположен в заголовнике, при его отстреливании кресло получает противоположный импульс и отделяется. А целый и невредимый летчик на парашюте плавно опускается на землю. Сторонним наблюдателям это кажется чудом, но лучше всего об этом сказал Гай Северин: «Автор этого чуда — уникальное кресло К-36ДМ, разработанное в НПП ‘Звезда'».
Как устроены катапульты истребителей V поколения и в чем их предназначение
Российский истребитель пятого поколения Т-50 отличается высочайшей маневренностью, он многофункционален и оснащен разнообразными электронными системами, однако пока на борту боевого самолета все еще находится место для человека, системы жизнеобеспечения и спасения пилота будут оставаться не менее важным и сложным элементом конструкции самолета, чем двигатели или авионика.
Еще несколько десятилетий назад считалось, что катапультные кресла как основное средство спасения летчика должны разрабатывать те же КБ, что занимаются проектированием и самих самолетов. Однако опыт привел к пониманию того, что создание систем жизнеобеспечения и спасения необходимо отдать специализированным предприятиям. В странах НАТО таким «монополистом» является британская компания Martin-Baker, а у нас со второй половины 1970-х — ОАО «НПП "Звезда"». Эта фирма из подмосковного Томилино разрабатывает не только катапультные кресла, но также кислородные системы, высотные и противоперегрузочные костюмы для пилотов, системы аварийного пожаротушения и дозаправки в воздухе. Отдельный предмет гордости — космос. Этой темой «Звезда» начала заниматься еще с начала 1950-х. В музее предприятия на манекены надеты подлинные скафандры Гагарина, Терешковой, Леонова: все экипажи отечественных космических кораблей носили и носят скафандры, созданные в Томилино.
ОАО «НПП «Звезда»» — российское предприятие с большими традициями. Основанное в 1952 году, оно с самых первых пилотируемых полетов создавало экипировку для наших космонавтов. Это не только скафандры, но и, например, опытные образцы индивидуальных средств маневрирования в космосе или ассенизационные устройства для установки на орбитальных кораблях. Другая важнейшая тема — средства жизнеобеспечения и спасения пилотов ВВС. Предприятие обладает серьезной испытательной базой, включающей в себя центрифугу для исследования воздействия перегрузок на организм, комплекс термобарокамер для проведения испытаний в условиях вакуума и аномальных температур, аэродинамический стенд.
Не высовываться!
В том же музее можно проследить историю создания средств жизнеобеспечения и спасения для пилотов военных самолетов. На каждом этапе конструкторам удавалось сделать эти средства все более легкими, эффективными и безопасными. Сегодня вершиной отечественной конструкторской мысли в этой области стал комплект для пилотов перспективного многофункционального истребителя фирмы «Сухой» — ПАК ФА, он же Т-50. Комплект состоит из катапультного кресла К-36Д-5, противоперегрузочного костюма ППК-7, высотно-компенсирующего костюма ВКК-17 и защитного шлема ЗШ-10.
Катапультирование на скоростях 1300 км/ч и выше представляет собой сложнейшую техническую задачу. На такой скорости набегающий поток воздуха обладает просто убийственными свойствами: достаточно пилоту немного отвести от тела руку или ногу, как ее просто оторвет. На летчика воздействует целый ряд травмоопасных факторов — перегрузки, угловые скорости, избыточное давление набегающего потока Чтобы им противостоять, необходимо, чтобы пилот и кресло в момент покидания самолета представляли собой единое и хорошо обтекаемое целое.
Скоростная аэродинамическая труба служит предприятию верой и правдой уже многие годы. С виду труба не производит ошеломляющего впечатления своими размерами, однако для создания нужного давления и достижения скорости потока 1800 км/ч воздух запасается в каскаде связанных с трубой газгольдеров, сопоставимых по объему с железнодорожными цистернами. На пути воздушного потока из трубы стоит мощный отбойник: любая незакрепленная деталь может превратиться в пушечный снаряд. В настоящее время идет переоснащение трубы более современной управляющей аппаратурой.
Поэтому сразу после того, как летчик вытягивает рукоять катапультирования, срабатывает сложная автоматика. Пояс и плечи принудительно прижимаются к креслу, бедра приподнимаются для защиты корпуса, фиксируются голени и опускаются ограничители разброса рук. Также поднимается специальный дефлектор, на который при движении в набегающем потоке «садится» аэродинамический скачок уплотнения (его воздействие на тело и голову пилота было бы опасным).
После надежной фиксации пилота в кресле включается стреляющий механизм: срабатывает пиротехнический заряд, и кресло по направляющим рельсам покидает кабину. Далее запускается реактивный двигатель, уводящий кресло вверх (чтобы избежать удара о киль). Важную роль играет система аэродинамической стабилизации — она включает в себя два стабилизирующих парашюта на раздвигающихся телескопических штангах. Система обеспечивает такое положение кресла, чтобы перегрузки, которым подвергается пилот, шли по линии «спина-грудь» (они переносятся легче), а не «голова-таз». Лишь после этого самого ответственного этапа катапультирования происходит ввод в поток спасательного парашюта, расфиксация летчика и отделение его от каркаса кресла. Вместе с пилотом на парашюте к земле отправится только крышка сиденья, под которым расположен НАЗ — носимый аварийный запас и аварийный запас кислорода.
К-36ДМ
К-36ДМ — катапультное кресло серии 2 из семейства авиационных кресел К-36. Служит рабочим местом члена экипажа и средством аварийного покидания самолета. Разработано НПП «Звезда». Считается одним из лучших и самых надёжных катапультных кресел в мире. [1]
Содержание
Назначение
Катапультное кресло К-36ДМ предназначено для установки на самолёты современной авиации России (МиГ-29, Су-24, семейство Су-27, Су-34, Ту-160 и т. д.). Кресло универсальное, возможно применение с моделями любых производителей.
Технические характеристики
Катапультное кресло обеспечивает спасения члена экипажа в широком диапазоне скоростей и высот полёта самолёта, включая взлет, послепосадочный пробег, режим нулевой высоты и скорости, и применяется в сочетании с защитным оборудованием.
В полёте член экипажа удерживается в кресле индивидуальной подвесной системой и может фиксироваться с помощью механизмов системы фиксации, а бесступенчатое регулирование сиденья по росту обеспечивает члену экипажа удобное для работы и обзора размещение в кабине самолета.
Катапультное кресло состоит из сиденья с установленной на нем профилированной крышкой с блоком жизнеобеспечения, комбинированного стреляющего механизма, коробки механизма, заголовника, спасательной системы с куполом, уложенным в заголовник, эксплуатационных систем, обеспечивающих безопасное катапультирование.
Принудительная фиксация при катапультировании обсепечивается системой фиксации, состоящей из механизма притягивания плеч, размещенного в коробке механизмов, механизма притяга пояса, двух ограничителей разброса рук с лопастями, двух механизмов подъёма ног, двух притягов ног с ложементами голеней и пиромеханизма с электромеханическим затвором, срабатывающим по команде системы управления катапультированием. Пиромеханизм системы фиксации заряжается пиропатроном, а затвор пиромеханизма — электропиропатроном.
Механизм ввода парашюта обеспечивает отстрел заголовника для ввода спасательного парашюта и состоит из правого и левого патронников с механическими затворами и корпуса с хвостовиком. Патронники механизма ввода парашюта заряжаются пиропатронами, дублирующими друг друга.
Катапультирование начинается при вытягивании поручней катапультирования и обеспечивается работой системы управления катапультированием и механизмов блокировки.
Кислородное обеспечение члена экипажа от бортового кислородного оборудования в полете до аварийного запаса при катапультировании производится кислородной системой кресла, состоящей из объединённого разъема коммуникаций, блока кислородного оборудования с аварийным запасом кислорода.
Хронология катапультирования
0 секунд. Лётчик дёргает поручни. Подается команда на сброс фонаря, начинается работа автоматики. Происходит инициация системы фиксации: начинается притягивание ремней, фиксация и подъём ног, опускаются и сводятся боковые ограничители рук.
0,2 секунды. Фиксация заканчивается. Если сброшен фонарь — подается команда на катапультирование. На высоких скоростях вводится защитный дефлектор.
0,35-0,4 секунды. Стреляющий механизм двигает кресло по направляющим. Начинается ввод стабилизирующих штанг.
0,45 секунды. Кресло выходит из кабины. Включаются реактивные двигатели. При необходимости (крен самолёта или разведение летчиков при двойном катапультировании) включаются двигатели коррекции по крену.
0,8 секунды. На малых скоростях происходит отстрел заголовника, разделение с креслом и ввод парашюта. На больших скоростях это происходит после торможения до приемлемой скорости. Лётчик спускается на специальном сидении, под которым расположена кислородная система и ящик с носимым аварийным запасом (НАЗ) (около 10 кг). Через 4 секунды после разделения с креслом НАЗ отделяется и повисает снизу на тросе.
Читайте также: