Зависимость металлов от температуры
Свободные электроны – это электроны, не связанные с определенными атомами.
Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.
Температурный коэффициент сопротивления - величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на 1 К.
Основная и дополнительная литература по теме урока:
Мякишев Г. Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 216-224.
Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2009.- С.81-89.
М.М. Балашов О природе М., Просвещение, 1991г.
Е.А. Марон, А.Е. Марон Сборник качественных задач по физике. М., Просвещение, 2006
Я.И. Перельман Занимательная физика. М.: “Наука”, 1991.
Основное содержание урока
Все тела по проводимости электрического тока делятся на проводники, полупроводники и диэлектрики. Для того чтобы электрическую энергию доставить от источника тока потребителю составляют электрические цепи. В большинстве случаев в электрической цепи используются металлические провода. По физической природе зарядов – носителей электрического тока, электропроводность подразделяют на:
Какие заряженные частицы движутся в металлах при наличии тока?
После открытия в 1897 году английским ученым Дж. Дж. Томсоном электрона стали разрабатываться теории, объясняющие электропроводность металлов. Автором первой теории был Пауль Друде – немецкий физик. Эта теория нуждалась в опытном обосновании. В 1901 г. немецкий физик Э. Рикке поставил опыт по исследованию прохождения тока в металлах.
Результаты опыта свидетельствовали о том, что в переносе заряда в металлах ионы не участвуют. Впоследствии вопросом проводимости металлов заинтересовались и другие учёные. В 1913 году российские учёные Л. И. Мандельштам и Н. Д. Папалекси провели опыты по исследованию проводимости металлов. Суть опытов сводилась к тому, что катушка, на которую наматывали металлическую проволоку приводили во вращательное движение и резко тормозили. При торможении электроны продолжали двигаться по инерции и гальванометр, соединенный с катушкой фиксировал появление тока. По направлению отклонения стрелки гальванометра было установлено, что ток создается движением отрицательно заряженных частиц. На основании измерения отношения заряда частиц к их массе выяснилось, что ток создается движением свободных электронов. Аналогичный опыт был поставлен в 1916 году американскими учеными Т. Стюартом и Р. Толменом. Результаты опытов говорили, что ток в металлах создается движением электронов.
После анализа имеющихся данных о прохождении тока в металлах разными учеными была разработана современная классическая теория проводимости тока металлами. Основные положения электронной теории проводимости металлов.
1. Металл можно описать следующей моделью: кристаллическая решетка ионов погружена в идеальный электронный газ, состоящий из свободных электронов. У большинства металлов каждый атом ионизирован, поэтому концентрация свободных электронов приблизительно равна концентрации атомов 1023- 1029м-3 и почти не зависит от температуры.
2.Свободные электроны в металлах находятся в непрерывном хаотическом движении.
3. Электрический ток в металле образуется только за счет упорядоченного движения свободных электронов.
Опираясь на данную теорию удалось объяснить основные законы электрического тока в металлах. Исходя из электронной теории можно найти связь между силой тока в металлах и скоростью движения электронов.
Сила тока равна произведению заряда электрона, их концентрации, площади сечения проводника и средней скорости движения электронов:
ОтсюдаЕсли в эту формулу подставлять числовые данные силы тока, концентрации и площади сечения для разных металлов, то мы увидим, что средняя скорость движения электронов составляет всего лишь какие-то доли миллиметра в секунду. Когда говорят о скорости распространения тока имеют в виду скорость распространения электрического поля в проводнике, которое равно скорости света.
На силу тока в проводнике влияет и сопротивление проводника. Опыт показывает, что сопротивление металлов зависит от температуры. Увеличение сопротивления можно объяснить тем, при повышении температуры увеличивается скорость и амплитуда хаотического движения ионов кристаллической решетки металла и свободных электронов. Это приводит к более частым их соударениям, что затрудняет направленное движение электронов, то есть увеличивает электрическое сопротивление.
зависимость сопротивления металлов от температуры выражается формулой:
При нагревании размеры проводника практически не меняются, в основном меняется удельное сопротивление. Учет зависимости сопротивления от температуры используется в термометрах сопротивления.
Формула зависимости удельного сопротивления металлического проводника от температуры имеет вид:
где ρ0 - удельное сопротивление при 0 градусов,
α - температурный коэффициент сопротивления.
Графиком зависимости ⍴(t) является прямая.
Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим.
При понижении температуры сопротивление металлов должно уменьшаться. В 1911 году датский физик Х. Каммерлинг - Оннес открыл явление, названное сверхпроводимостью. Исследуя зависимость сопротивления ртути от температуры, он обнаружил, что при температуре 4,12 К сопротивление ртути исчезает. В сверхпроводящее состояние могут перейти многие химические соединения и сплавы. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах.
Вещества, находящиеся в сверхпроводящем состоянии, приобретают новые свойства. Наиболее важным из них является способность длительное время (многие годы) поддерживать без затухания электрический ток в проводниках.
Классическая электронная теория не способна объяснить явление сверхпроводимости. Теоретическое объяснение явления сверхпроводимости на основе квантово-механических представлений было дано учеными Дж. Бардиным, Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) в 1957 г.
В 1986 году была обнаружена высокотемпературная сверхпроводимость (при 100 К).
В настоящее время ведутся интенсивные работы по поиску новых веществ переходящими в сверхпроводящее состояние при более высокой температуре. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если удастся создать сверхпроводник при нормальной температуре, то будет решена проблема передачи электроэнергии по проводам без потерь.
Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.
Открытие вещества, переходящего в сверхпроводящее состояние при комнатной температуре, позволило бы упростить решение многих технических вопросов. Во-первых, отсутствие сопротивления означает отсутствие каких-либо потерь на нагревание. Отсутствие нагревания и потерь энергии на него чрезвычайно важно для электродвигателей и электронной вычислительной техники, а также для передачи электроэнергии.
В сверхпроводниках из-за отсутствия сопротивления протекают чрезвычайно высокие токи, создающие сильные магнитные поля, что может применяться при термоядерном синтезе для удержания высокотемпературной плазмы в реакторе.
На сегодняшний момент в некоторых странах существует железнодорожная сеть с поездами на магнитной подушке. После открытия сверхпроводимости Камерлинг-Оннес, пытаясь создать сверхпроводящий электромагнит, обнаружил, что изменение тока, или же магнитные поля, разрушают эффект сверхпроводимости. Только к середине двадцатого века удалось создать сверхпроводящие электромагниты. На данный момент продолжаются исследования по изучению высокотемпературной сверхпроводимости.
Разбор типовых тренировочных заданий
1. Сопротивление железного проводника при 0 0 С и 600 0 С равны соответственно 2 Ом и 10 Ом. Каков температурный коэффициент железа?
Зависимость сопротивления металлов от температуры определяется формулой
Из этой формулы выразим температурный коэффициент железа – α
После подстановки числовых данных получаем
2. Какова скорость дрейфа электронов в медном проводе диаметром 5 мм, по которому к стартеру грузовика подводится ток 100 А. Молярная масса медиСила тока в проводнике равна:
Выразим скорость из этой формулы:
Концентрацию электронов найдем по формуле:
Число электронов найдём по формуле:
Площадь сечения равна:
Учитывая всё это запишем конечную формулу для расчёта скорости дрейфа электронов:
Физика. 10 класс
§ 34. Электрический ток в металлах. Сверхпроводимость
Типичными представителями класса проводников являются металлы. Какова природа электрического тока в металлах?
Природа электрического тока в металлах. В металлических проводниках носители электрического заряда — свободные электроны. Под действием внешнего электрического поля свободные электроны упорядоченно движутся, создавая электрический ток ( рис. 194 ).
Электронная проводимость металлов была впервые экспериментально подтверждена немецким физиком К. Рикке ( 1845–1915 ) в 1901 г. Суть опыта Рикке заключалась в следующем: по проводнику, состоявшему из трёх отполированных и плотно прижатых друг к другу цилиндров — двух медных и одного алюминиевого ( рис. 195 ), в течение года проходил ток одного и того же направления. За этот промежуток времени через проводник прошёл заряд более 3,5 МКл. После завершения опыта взвешивание показало, что массы цилиндров остались неизменными. Это явилось экспериментальным доказательством того, что перенос заряда при прохождении тока в металлах не сопровождается химическими процессами и переносом вещества, а осуществляется частицами, которые являются одинаковыми для всех металлов, т. е. электронами.
В 1916 г. американский физик Р. Толмен ( 1881—1948 ) и шотландский физик Т. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением свободных электронов.
В этих опытах катушку с большим числом витков тонкой проволоки подключали к гальванометру и приводили в быстрое вращение вокруг своей оси ( рис. 195.1 ). При резком торможении катушки в цепи возникал кратковременный ток, обусловленный инерцией носителей заряда. По направлению отклонения стрелки гальванометра было установлено, что электрический ток создают отрицательно заряженные частицы. При этом экспериментально полученное отношение заряда каждой из этих частиц к её массе (удельный заряд) близко к удельному заряду электрона, полученному из других опытов. Так было экспериментально доказано, что носителями свободных зарядов в металлах являются электроны.
Вещества, обладающие электронной проводимостью, называют проводниками первого рода.
В соответствии с классической электронной теорией проводимости металлов, созданной немецким физиком П. Друде ( 1863–1906 ) в 1900 г., металлический проводник можно рассматривать как физическую систему, состоящую из свободных электронов и положительно заряженных ионов, колеблющихся около положений равновесия ( рис. 196 ).
Появление свободных электронов при образовании металлического кристалла из нейтральных атомов можно упрощённо объяснить следующим образом. Электроны, находящиеся на внешних оболочках атомов, слабо связаны со своими ядрами. При образовании кристалла атомы сближаются на расстояние r 0,1 нм , и электроны начинают взаимодействовать не только со своими ядрами, но и с ядрами соседних атомов. В результате этого их взаимодействие с собственными ядрами значительно ослабевает, вследствие чего они теряют с ними связь и могут двигаться по всему кристаллу в любом направлении как свободные частицы. Атомы превращаются при этом в положительно заряженные ионы. В пространстве между ионами беспорядочно движутся подобно частицам идеального газа свободные электроны. Поэтому для описания движения электронов используют модель «электронный газ» — совокупность свободных электронов в кристаллической решётке металла. На рисунке 196.1 пунктирной линией изображена траектория движения одного из электронов.
В этой модели электроны, упорядоченное движение которых является током проводимости, рассматривают как материальные точки, модуль потенциальной энергии взаимодействия которых пренебрежимо мал по сравнению с их кинетической энергией. Считают, что движение электронов под действием электрического поля подчиняется законам классической механики, а их столкновения с ионами кристаллической решётки металла являются неупругими, т. е. при столкновениях электроны полностью передают ионам кинетическую энергию своего упорядоченного движения. В промежутках между столкновениями свободные электроны совершают беспорядочное тепловое движение и в то же время движутся упорядоченно и равноускоренно под воздействием электрического поля.
Интересно знать
Модель электронного газа позволяет теоретически объяснить природу сопротивления и обосновать закон Ома для участка цепи, не содержащего источника тока, на основе классической электронной теории проводимости металлов. Проанализируем упорядоченное движение электронов проводимости.
Пусть электрон движется с ускорением в направлении, противоположном направлению напряжённости электрического поля ( рис. 196.2 ): где m0 — масса электрона, e — элементарный электрический заряд (модуль заряда электрона).
Тогда модуль средней скорости его направленного движения: , где — усреднённый промежуток времени между двумя последовательными столкновениями электрона с ионами кристаллической решётки.
Поскольку электрическое поле внутри однородного прямолинейного проводника с током однородное, то модуль напряжённости этого поля где l — длина проводника, U — напряжение между его концами. Тогда модуль средней скорости направленного движения электронов пропорционален напряжению между концами проводника .
Сила тока в проводнике пропорциональна модулю средней скорости направленного движения электронов:
где q — модуль заряда электронов проводимости, находящихся в проводнике, — усреднённое время прохождения этих электронов по проводнику, N — количество электронов проводимости в проводнике, n — концентрация этих электронов, V = Sl — объём проводника. Следовательно, сила тока пропорциональна напряжению между концами проводника I U.
Т. Зависимость сопротивления от температуры
Зависимость сопротивления проводника от температуры
Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что
- возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
- изменяется их концентрация при нагревании проводника.
Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:
\(~\rho_t = \rho_0 (1 + \alpha t) ,\) \(~R_t = R_0 (1 + \alpha t) ,\)
где ρ0, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1 ). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.
Температурный коэффициент сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.
где \(~\mathcal h \alpha \mathcal i\) — среднее значение температурного коэффициента сопротивления в интервале ΔΤ.
Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. У чистых металлов α = 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение ρ происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.
Формулы зависимости ρ и R от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором α = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.
Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.
При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости. Металл переходит в сверхпроводящее состояние.
Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.
Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 256-257.
А зависит ли сопротивление от температуры проводника?
Проведём опыт. Соберём электрическую цепь, состоящую из источника тока, проволочной спирали и гальванометра ( рис. 197 ). Из опыта следует, что при нагревании спирали показания гальванометра уменьшаются. Вывод очевиден: при увеличении температуры сопротивление металлов увеличивается.
Удельное сопротивление вещества металлического проводника зависит от концентрации свободных носителей заряда и частоты их столкновений с ионами кристаллической решётки, совершающими колебательные движения около положений устойчивого равновесия.
В металлических проводниках концентрация свободных электронов практически постоянна для данного проводника и не зависит от температуры. Однако частота столкновений свободных электронов с ионами кристаллической решётки с ростом температуры возрастает. Это приводит к возрастанию удельного сопротивления металлического проводника при повышении температуры.
При описании температурной зависимости удельного сопротивления проводника вводят температурный коэффициент сопротивления α, численно равный относительному изменению удельного сопротивления вещества проводника при приращении его температуры на 1 К:
где ρ 0 и ρ — удельные сопротивления вещества проводника соответственно при температуре T0 = 273 К (0 °С) и данной температуре Т .
Из формулы (1) следует, что
где ΔT = T - T0 — приращение абсолютной температуры проводника, которое совпадает с приращением температуры по шкале Цельсия ΔT = Δt . Таким образом, удельное сопротивление вещества металлического проводника возрастает с увеличением температуры.
График этой зависимости представлен на рисунке 197.1.
Поскольку сопротивление проводника , то, пренебрегая незначительной температурной зависимостью отношения , можно записать:
где R0 и R — сопротивления проводника соответственно при температуре T0 = 273 К (0 °С) и данной температуре T(t).
Для металлических проводников эти формулы применимы при температурах T > 140 К . У всех металлов при повышении температуры сопротивление возрастает, т. е. температурный коэффициент сопротивления α — величина положительная. Для большинства металлов (но не сплавов) при температурах от 0 для 100 °С среднее значение температурного коэффициента сопротивления .
Зависимость сопротивления металлов от температуры используют в специальных приборах — термометрах сопротивления ( рис. 198 ).
Широкое распространение получили термометры сопротивления из чистых металлов, особенно платины и меди, которые конструктивно представляют собой металлическую проволоку, намотанную на жёсткий каркас (из кварца, фарфора, слюды), заключённый в защитную оболочку (из металла, кварца, фарфора, стекла) ( рис. 199 ).Платиновые термометры сопротивления применяют для измерения температуры в пределах от –263 до 1064 °С, медные — от –50 до 180 °С.
Если при изготовлении электроизмерительных приборов требуются проводники, сопротивление которых должно как можно меньше зависеть от температуры окружающей среды, то используют специальные сплавы — константан и манганин. Температурный коэффициент у константана в 820 раз, а у манганина в 510 раз меньше, чем у серебра.
Сверхпроводимость. При очень низких температурах сопротивление некоторых металлических проводников резко (скачком) уменьшается до нуля. Впервые это обнаружил в 1911 г. нидерландский физик Г. Камерлинг-Оннес ( 1853–1926 ). Он экспериментально установил, что при температуре Т ≤ 4,12 К (по современным измерениям 4,15 К) электрическое сопротивление ртути исчезает. Позже многочисленными опытами было установлено, что это явление характерно для многих проводников. Температуру, при которой электрическое сопротивление проводника уменьшается до нуля, называют критической температурой. Состояние проводника при этом называют сверхпроводимостью, а сам проводник — сверхпроводником. Каждый сверхпроводящий металл характеризуется своей критической температурой. Явление сверхпроводимости свойственно не только некоторым металлам, но и сплавам, полупроводникам и полимерам.
Если в сверхпроводнике создать электрический ток, то он будет существовать в нём неограниченно долго. При этом для поддержания тока нет необходимости в источнике тока. Это указывает на перспективу использования явления сверхпроводимости при передаче электрической энергии.
Сверхпроводящие соединения нашли применение в качестве материала обмоток электромагнитов для создания сильных магнитных полей в мощных электрических двигателях, генераторах, ускорителях и др. Разрабатывают проекты сверхпроводящих электронно-вычислительных машин. Уже созданы компактные интегральные схемы на сверхпроводниках, обладающие рядом преимуществ по сравнению с имеющимися аналогами.
1. Какова природа электрического тока в металлах?
2. Как было доказано, что носителями электрического заряда в металлах являются электроны?
3. Как изменяется сопротивление металлического проводника при повышении температуры?
4. Что понимают под электронным газом?
5. Что называют температурным коэффициентом сопротивления?
6. На каком свойстве проводников основано действие термометра сопротивления?
7. В чём проявляется явление сверхпроводимости?
Определите сопротивление алюминиевого проводника при температуре t2 = 90 °С , если при температуре t1 = 20 °С его сопротивление R1 = 4,0 Ом . Температурный коэффициент сопротивления алюминия α = 4,2 · 10 -3 К -1 .
Решение: Согласно формуле сопротивления проводника при температурах t1 и t2 соответственно
Решая систему уравнений, получим:
Упражнение 24.1
1. В металлическом проводнике длиной l = 1,0 м проходит электрический ток. Число электронов проводимости, упорядоченно движущихся в этом проводнике, N = 2,5 · 10 19 , а сила тока I = 2,0 мА . Определите модуль средней скорости упорядоченного движения электронов проводимости.
2. Сопротивление металлического проводника при температуре t0 = 0,0 °С в b = 1,5 раза меньше, чем при температуре t = 120 °С . Определите температурный коэффициент сопротивления вещества проводника.
3. При температуре t0 = 0,0 °С сопротивление вольфрамового ( α = 5,0 · 10 -3 К -1 ) проводника R0 = 40 Ом . При прохождении электрического тока по проводнику его сопротивление увеличилось на ΔR = 100 Ом . Определите изменение температуры проводника.
4. При температуре t1 = 20,0 °С сопротивление латунного ( α = 6,50 · 10 -3 К -1 ) проводника R1 = 30,0 Ом . Проводник подключили к сети, напряжение которой U = 120 В . Определите температуру проводника, если сила электрического тока, проходящего по нему, I = 800 мА .
5. При нагревании медного проводника, площадь поперечного сечения которого S = 0,10 мм 2 , его сопротивление увеличилось на ΔR = 30 мОм . Определите изменение внутренней энергии проводника. Для меди температурный коэффициент сопротивления α = 4,3 · 10 -3 К -1 , плотность D = 8,9 · 10 3 , удельная теплоёмкость с = 380 , удельное сопротивление ρ = 1,7 · 10 -8 Ом·м .
Зависимость электрического сопротивления от температуры
При проектировании электрических схем, инженеры сталкиваются с тем, что проводники обладают определенным сопротивлением, на которое оказывают влияния температурные колебания. Статья даст подробное описание, что такое зависимость сопротивления от температуры и как температура влияет на проводимость различных веществ — металлов, газов и жидкостей. Дополнительно будет приведена формула расчета такой зависимости.
Сопротивление
Сопротивлением называется способность проводника пропускать через себя электрический ток. Единицей измерения данной физической величины является Ом. На принципиальных схемах эта величина обозначается буквой «R». На величину сопротивления любого проводника электрическому току влияет его структура. Двигаясь внутри структуры, свободные электроны сталкиваются с атомами и электронами, которые замедляют их движение. Чем их концентрация больше, тем выше будет само электрическое сопротивление.
О способности проводников проводит электрический ток судят по величине его удельного сопротивления. Удельное сопротивление проводника — это сопротивление протеканию тока через проводник из любого вещества с площадью поперечного сечения 1 м² и длиной один метр. Обозначается в физике данная величина буквой «ρ». Данный параметр является табличной величиной и измеряется в системе СИ как Ом×м (может также измеряться в Ом×см и Ом×мм²/м).
Коэффициент сопротивления
Во время работы электрических цепей прослеживается прямая зависимость сопротивления металлов от температуры. Это явление называют коэффициентом температурного сопротивления. Оно определяет соотношение сопротивления к температурным изменениям. Объясняется это явление следующим образом: с повышением температуры структура проводника получает долю тепловой энергии, вследствие чего эта энергия увеличивает скорость движения атомов. В результате повышается вероятность их столкновения со свободными электронами. Чем чаще происходят эти столкновения, тем ниже будет проводимость.
Можно провести простой опыт: в электрическую схему из аккумулятора и омметра подключим кусок медной проволоки. При таком подключении схема будет иметь строго определенное значение сопротивления. Далее надо будет нагреть медную проволоку. В момент нагрева можно заметить, что сопротивление всей схемы растет, а после остывания проводника оно наоборот уменьшается. На основании такого опыта довольно просто прослеживается температурная зависимость сопротивления проводника.
Температурный коэффициент отображает увеличение сопротивления при изменении температуры вещества на 1 градус. Для максимально чистого металла это значение равняется 0.004 °С -1 . То есть, при увеличении температуры на 10 градусов, электрическая проводимость в металлах изменится на 4 % в большую сторону. Данная величина обозначается буквой «α». При расчете сопротивления через удельное сопротивление используется такая формула:
В данной зависимости:
- «R» — сопротивление, Ом;
- «l» — длина проводника, м;
- «s» — поперечное сечение проводника, м²;
- «ρ» — значение удельного сопротивления, Ом×м.
Зависимость проводимости металлического проводника от температуры можно проследить с помощью таких выражений:
Для металлов все предельно просто — изменение температуры приводит к увеличению его сопротивления. Ниже будет дано описание этой зависимости для газов, которые по своей природе являются диэлектриками.
Для закрепления материала, решим следующую задачу:
Имеется стальной проводник, диаметр которого равен один миллиметр, а длина его составляет 100 метров. Определите сопротивление такого проводника из стали, если величина удельного сопротивления стального проводника составляет 12×10 -8 Ом×м.
Определяем сопротивление проводника по формуле:
где S является площадью поперечного сечения. Определить площадь можно с помощью формулы:
S= π×r 2 = π×d 2 /2 2 =3.14×(1×10 -3 ) 2 /4=3.14×10 -6 /4=0.785×10 -6 м 2
После этого можно определить сопротивление:
R=12×10 -8 ×100/(0.785×10 -6 )=15.287 Ом
Газы не являются проводниками, но их проводимость так же зависит от температуры. Происходит это за счет так называемого эффекта ионизации. Ионизация в газах происходит за счет насыщения их жидкостью или иными веществами, которые способны проводить электрический ток. Проследить то, как увеличивается сопротивление при повышении температуры газа можно на таком опыте.
К схеме с амперметром и аккумулятором добавим 2 металлические пластины, которые не соприкасаются друг с другом. Такая электрическая цепь является разомкнутой. Между пластинами поместим зажженную горелку. При нагреве происходит смещение стрелки амперметра в сторону увеличения. То есть такую цепь можно считать замкнутой. На основании этого можно сделать вывод, что с ростом температуры воздух ионизируется, происходит снижение его сопротивления и увеличение проводимости заряженных электронов. Данный эффект называют пробоем изоляционного слоя газа, зависящий от степени их ионизации и величины протекающего напряжения. Подобное явление знакомо каждому из нас — это грозовой разряд.
Жидкости
В жидкостях прослеживается обратная зависимость. С увеличением температуры, сопротивление жидкого проводника уменьшается. Для электролита свойственно правило отрицательного значения температурного коэффициента — а˂0. Удельное сопротивление электролита рассчитывается следующим образом:
При этом увеличившееся значение температуры электролита сопровождается уменьшением сопротивления и ростом его проводимости.
Сверхпроводимость
Снижение температуры металлических проводников сильно увеличивает их проводимость. Это связано с тем, что в структуре вещества замедляется движение атомов и электронов, благодаря чему снижается вероятность их столкновения со свободными электронами. При температуре абсолютного 0 (–273 градуса Цельсия) возникает явление падения до нуля сопротивления проводника. Зависимость сопротивления проводника от температуры при абсолютном 0 — сверхпроводимость.
Температура, при которой обычный проводник становится сверхпроводником, называется критической. Она будет разной для различных чистых металлов и сплавов. Все будет зависеть от их структуры, химического состава и структуры кристаллов. Например, серое олово с алмазной структурой является полупроводником. Но белое олово при своей тетрагональной кристаллической ячейке, мягкости и плавкости, переходит в состояние сверхпроводника при температуре 3.70 К. Также при критической температуре прослеживается целый ряд других способностей:
- Повышение частоты переменного тока вызывает рост сопротивления, значение гармоник с периодом световой волны.
- Способность удерживать величину силы тока ранее приложенного, а затем отключенного источника.
Металл или сплав может перейти в состояние сверхпроводника и при нагревании. Такое явление называют высокотемпературной проводимостью. Ответ на вопрос, почему от высокой температуры сопротивление металлов снижается, может довольно просто объяснить их кристаллическая структура. В момент нагрева до критических значений, электроны перестают хаотично перемещаться внутри структуры вещества. Они выстраиваются в цепочку. Такое построение не мешает движению свободных электронов, а значит падает общее сопротивление. Переход в состояние высокотемпературной проводимости начинается с порога 1000К и этот показатель выше, чем точка кипения азота.
Применение
Свойство проводников изменять сопротивление при определённой температуре используют для создания различных элементов электрических схем и измерительных приборов. О них будет рассказано далее в данной статье.
Резистор
Сопротивление устройств старого типа сильно зависело от их нагрева. При нагревании проводимость резистора пропорционально изменялась в меньшую сторону. Для электрических цепей требуется идеальный резистор, который обладает наивысшим коэффициентом проводимости. Для снижения нагрева при производстве данных устройств теперь используется материал, имеющий малую зависимость сопротивления от температуры нагрева. Это позволило применять резисторы с малым сопротивлением для цепей с большим напряжением.
Терморезистор
Существует отдельная группа резисторов, которые применяют для измерения температуры. Особенностью такого устройства является то, что он может снижать свою проводимость при нагреве. При этом он отключает цепь при достижении определенного порогового значения.
Термометр сопротивления
Это прибор был разработан для измерения температуры среды. Он состоит из тонкой платиновой проволоки, защитного чехла и корпуса. Прибор имеет стабильную реакцию на перепады температуры. Измеряемой величиной в данном устройстве служит сопротивление этой проволоки из платины. Чем выше будет температура, тем сопротивление соответственно будет больше. Понижение сопротивления так же фиксируется, так как в этот момент меняются проводимость и сопротивление. Для измерения температуры термометром сопротивления, в настоящее время применяются проволочные индикаторы из разнообразных металлов. В зависимости от свойств используемого металла, погрешность устройства может составлять не более 0.1 %. Благодаря этому достигается очень высокая точность измерения температуры.
Самый известный нам газовый проводник — это люминесцентная лампа. Газ нагревается за счет увеличения напряжения между анодом и катодом лампы.
Известным жидкостным проводником является щелочной аккумулятор. При понижении температуры нарушается структура жидкости и изменяется ее сопротивление.
Нагрев провоцирует движение атомов и электронов, увеличивая сопротивление и зарядный ток устройства.
Заключение
В данной статье мы рассмотрели, как зависит сопротивление от температуры. Металлы, газы и жидкости имеют свойства изменять свою проводимость и сопротивление при температурных перепадах. Это свойство изменения электрического сопротивления используются для измерения температуры среды. Наибольшая точность измерений температуры в настоящее время достигается за счет применения современных материалов, даже в бытовой технике.
Читайте также: