Явление испускания электронов из металла при высокой температуре называется

Обновлено: 08.01.2025

Ричардсона эффект, испускание электронов нагретыми телами (твёрдыми, реже — жидкостями) в вакуум или в различные среды. Впервые исследована О. У. Ричардсоном в 1900— 1901. Т. э. можно рассматривать как процесс испарения электронов в результате их теплового возбуждения. Для выхода за пределы тела (эмиттера) электронам нужно преодолеть Потенциальный барьер у границы тела; при низких температурах тела количество электронов, обладающих достаточной для этого энергией, мало; с увеличением температуры их число растет и Т. э. возрастает (см. Твёрдое тело).

Главной характеристикой тел по отношению к Т. э. является величина плотности термоэлектронного тока насыщения jo (рис. 1) при заданной температуре. При Т. э. в вакуум однородных (по отношению к работе выхода (См. Работа выхода)) эмиттеров в отсутствии внешних электрических полей величина j0 определяется формулой Ричардсона — Дэшмана:

Здесь А — постоянная эмиттера (для металлов в модели свободных электронов Зоммерфельда: А = А0 = 4πek 2 m/h 3 = 120,4 а/К 2 см 2 , где е — заряд электрона, m — его масса, k — Больцмана постоянная, h — Планка постоянная), Т — температура эмиттера в К, средний для термоэлектронов разных энергий коэффициент отражения от потенциального барьера на границе эмиттера; eφ работа выхода. Испускаемые электроны имеют Максвелла распределение начальных скоростей, соответствующее температуре эмиттера.

При Т. э. в вакуум электроны образуют у поверхности эмиттера объёмный заряд, электрическое поле которого задерживает электроны с малыми начальными скоростями. Поэтому для получения тока насыщения между эмиттером (катодом) и коллектором электронов (анодом) создают электрическое поле, компенсирующее поле объёмного заряда. На рис. 1 показан вид вольтамперной характеристики вакуумного диода с термоэлектронным катодом. Плотность тока насыщения j0 достигается при разности потенциалов V0, величина которой определяется Ленгмюра формулой (См. Ленгмюра формула). При V V0 связано с Шотки эффектом. Рис. 1 показывает, что термоэлектронный ток может протекать и в отсутствии внешних эдс. Это указывает на возможность создания вакуумных термоэлектронных преобразователей тепловой энергии в электрическую. Во внешних электрических полях с напряжённостью Е ≥ 10 6 — 10 7 в/см к Т. э. добавляется Туннельная эмиссия и Т. э. переходит в термоавтоэлектронную эмиссию.

Величину φ для металлов (См. Металлы) и собственных полупроводников (См. Полупроводники) можно считать линейно зависящей от Т в узких интервалах температур ΔT вблизи выбранного T0: φ(T) = φ(T0) + α(TT0), где α — температурный коэффициент φ в рассматриваемом интервале температур ΔT. В этом случае формула (1) может быть написана в виде:

где Ap= А (1—) ехр (—eα/k) называется ричардсоновской постоянной эмиттера (однородного по отношению к работе выхода); еφр = φ(Т0) — αT0; еφ0 называется ричардсоновской работой выхода. Так как в интервале температур от Т = 0 до Т = Т0 α не сохраняет постоянной величины, то ричардсоновская работа выхода отличается от истинной работы выхода электронов при температуре Т = 0 К. Величины Ap и еφр находят по прямолинейным графикам зависимости: In (j0/T2) = f (1/T) (графикам Ричардсона). У примесных полупроводников зависимость φ(T) более сложная, и формула для j0 отличается от (2).

Чтобы исключить входящие в формулу (1) неизвестные для большинства эмиттеров величины А и r̅, зависящие не только от материала эмиттера, но и от состояния его поверхности (определяются экспериментально), формулу приводят к виду:

Работа выхода еφпт (Т) мало отличается по величине от истинной работы выхода эмиттера eφ(T), но легко определяется по измеренным величинам j0 и Т; её называют работой выхода по полному току эмиссии. Величина еφпт (Т) является единственной характеристикой термоэмиссионных свойств эмиттера, и её знания достаточно для нахождения j0(T) (рис. 2).

Однородными по φ эмиттерами являются грани идеальных монокристаллов как чистые, так и покрытые однородными плёнками др. вещества. Большинство употребляемых в практике эмиттеров не однородны, а состоят из «пятен» с различными φ (эмиттеры поликристаллического строения; со структурными дефектами; двухфазные плёночные и др.). Контактные разности потенциалов (См. Контактная разность потенциалов) между пятнами приводят к появлению над эмиттирующей поверхностью контактных полей пятен. Эти поля создают дополнительные барьеры для эмиссии электронов с пятен, где работа выхода меньше, чем средняя по поверхности, и вызывают аномальный эффект Шотки. Для описания Т. э. неоднородных эмиттеров в формулу (1) вводят усреднённые эмиссионные характеристики.

Для получения токов больших плотностей, постоянных во времени, требуются эмиттеры с малыми φ и с большими теплотами испарения (См. Теплота испарения) материала; в ряде случаев к термоэлектронным эмиттерам предъявляются специальные требования (химическая пассивность, коррозионная стойкость и др.). Высокой термоэмиссионной способностью обладают так называемые эффективные катоды (оксиднобариевые, оксидноториевые, гексабориды щелочноземельных и редкоземельных металлов и др.) и некоторые металлоплёночные катоды (например, тугоплавкие металлы с плёнкой щелочных, щёлочноземельных и редкоземельных металлов).

Лит.: Рейман А. Л., Термоионная эмиссия, пер. с англ., М.— Л., 1940; Гапонов В. И., Электроника, т. 1, М., 1960; Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Кноль М., Эйхмейер И., Техническая электроника, пер. с нем., т. 1, М., 1971; Херинг К., Николье М., Термоэлектронная эмиссия, пер. с англ., М., 1950; 3андберг Э. Я., Ионов Н. И., Поверхностная ионизация, М., 1969; Фоменко В. С., Эмиссионные свойства материалов, К., 1970.

Рис. 1. Зависимость плотности тока j термоэлектронного тока от разности потенциалов V, приложенной между эмиттером и коллектором электронов (вольтамперная характеристика).

Рис. 2. Плотность термоэлектронного тока насыщения при различных температурах и работах выхода eφ, определяемых по полному току термоэлектронной эмиссии.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Что такое термоэлектронная эмиссия? Мне нужно определение и кто открыл.. . :(

При повышении температуры металла увеличивается кинетическая энергия теплового движения электронов вблизи границы Ферми. Здесь она может стать настолько большой, что некоторые из электронов могут преодолевать задерживающий электрический потенциал на границе металла и выходить наружу. Если в окружающем вакууме существует электрическое поле,направленное к поверхности металла, то оно будет увлекать вышедшие электроны, и через вакуум потечёт электрический ток.Ток называется термоэлектронным, а явление - термоэлектронная эммисия. Оно было открыто Эдисоном (1847-1931) в 1883 году.

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ, испускание электронов нагретой поверхностью. Еще до 1750 было известно, что вблизи нагретых твердых тел воздух теряет свое обычное свойство плохого проводника электричества. Однако причина этого явления оставалась неясной до 1880-х годов. В ряде опытов, проведенных в период 1882–1889, Ю. Эльстер и Г. Гейтель установили, что при пониженном давлении окружающего воздуха раскаленная добела металлическая поверхность приобретает положительный заряд. Об аналогичных наблюдениях упоминалось в патентной заявке Т. Эдисоном (1883); он ввел электрод в одну из своих первых ламп накаливания и обнаружил, что между ее нитью и электродом происходит перенос электрического заряда. Этот «эффект Эдисона» , как его иногда называют, лег в основу британского патента (1905) Дж. Флеминга на «прибор для преобразования переменного тока в постоянный» – первую электронную лампу, открывшую век электроники. То, что данное явление связано с испусканием электронов (отрицательно заряженных частиц) , продемонстрировал в 1890 Дж. Томсон.
Теорию термоэлектронной эмиссии разработал в 1902 О. Ричардсон; в более позднем ее варианте ток с единицы поверхности нагретого металла, находящейся при однородной абсолютной температуре Т, определяется формулой

где А – постоянный множитель, k – постоянная Больцмана, а W – работа выхода, характерная для данного металла, но зависящая от состояния его поверхности; она равна минимальной энергии, необходимой для удаления электрона с поверхности металла. В 1927 С. Дэшман вывел формулу Ричардсона на основе квантовой механики и установил, что множитель A имеет вид

где m и e – масса и заряд электрона, а h – постоянная Планка. На практике величина А может заметно отличаться от даваемой этой формулой, если не обеспечено строгое выполнение условий, при которых выведена последняя. Так, если испускающая электроны поверхность не идеально однородна, на ней будут «пятна» с температурой, превышающей среднюю. Эмиссия электронов из этих «пятен» более интенсивна, и полный ток может оказаться гораздо больше теоретического для идеального случая.

Эмиссия электронов остается незначительной, пока Т не достигнет значения W/k. Поэтому в целях снижения потерь тепла и расхода энергии большие усилия были направлены на создание поверхностей с возможно более низкой работой выхода. В современных электронных лампах почти всегда применяются оксидные катоды, в которых достигается оптимальный компромисс между низкой работой выхода, стоимостью, долговечностью и механической прочностью

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ испускание электронов нагретыми твердыми телами или жидкостями (эмиттерами). Термоэлектронную эмиссию можно рассматривать как испарение электронов из эмиттера. В большинстве случаев термоэлектронная эмиссия наблюдается при температурах значительно выше комнатной. Используется в электровакуумных приборах (катоды) и термоэлектронных генераторах.
При нагревании металла скорости движения электронов, их кинетическая энергия и число электронов, покидающих поверхность металла, увеличиваются.
Используется главным образом в электровакуумных приборах.

История (ссылка в источнике):
Еще до 1750 было известно, что вблизи нагретых твердых тел воздух теряет свое обычное свойство плохого проводника электричества. Однако причина этого явления оставалась неясной до 1880-х годов. В ряде опытов, проведенных в период 1882–1889, Ю.Эльстер и Г.Гейтель установили, что при пониженном давлении окружающего воздуха раскаленная добела металлическая поверхность приобретает положительный заряд. Об аналогичных наблюдениях упоминалось в патентной заявке Т.Эдисоном (1883); он ввел электрод в одну из своих первых ламп накаливания и обнаружил, что между ее нитью и электродом происходит перенос электрического заряда. Этот «эффект Эдисона», как его иногда называют, лег в основу британского патента (1905) Дж.Флеминга на «прибор для преобразования переменного тока в постоянный» – первую электронную лампу, открывшую век электроники. То, что данное явление связано с испусканием электронов (отрицательно заряженных частиц), продемонстрировал в 1890 Дж.Томсон.
Теорию термоэлектронной эмиссии разработал в 1902 О.Ричардсон; в более позднем ее варианте ток с единицы поверхности нагретого металла, находящейся при однородной абсолютной температуре.

Работа выхода электронов из металла. Термоэлектронная эмиссия

Электроны проводимости в металлах образуют своеобразный электронный газ и участвуют в тепловом движении. Но поскольку они удерживаются в объеме металла, а не разлетаются из него, значит, вблизи поверхности металла существуют силы, действующие на элек­троны и направленные внутрь металла. Для того чтобы электрон вы­вести за пределы металла необходимо совершить определенную ра­боту против удерживающих его сил.

Работой выхода А электрона из металла называется работа, которую нужно совершить при удалении электрона из металла в ва­куум.

Электрон – заряженная частица и сила, препятствующая его выходу из металла, имеет электрическую природу. Существуют две наиболее вероятные причины возникновения этой силы, а следова­тельно, и работы выхода.

Электрон, обладая достаточной кинетической энергией, может покинуть поверхность металла. На поверхности металла в результате этого индуцируется положительный заряд, отчего между электроном и металлом возникает сила притяжения, препятствующая удалению электрона. Работа этой силы представляет часть работы выхода.

Электроны вследствие хаотического движения способны пере­секать поверхность металла и удаляться от нее на малые расстояния. При этом число электронов, покидающих поверхность металла, равно числу электронов, возвращающихся в металл и на границе металл-ва­куум поддерживается динамическое равновесие электронов.

Над поверхностью металла, таким образом, существует элек­тронная “атмосфера “ т.е. у поверхности образуется как бы двойной электрический слой (напоминающий плоский заряженный конденса­тор. Рис.97)

Электрическое поле такого двойного электрического слоя заключено в малом зазоре над поверхностью металла, и прохождение электрона через этот двойной электрический слой сопровождается совершением определенной работы, связанной с разностью потенциалов А = е φ. Величину φ называют потенциальным барьером. Полная работа вы­хода электрона обуславливается обеими этими причинами.

Если электрон внутри металла имеет кинетическую энергию

то он может покинуть объем металла. Работа выхода для металлов имеет порядок величины несколько эВ. Энергия же теплового движения электронов в металле при комнатной температуре (Т ≃ 300 0 К) имеет величину порядка ∼ 0,03 эВ. По­этому подавляющее большинство электронов будет связано в преде­лах металла. Однако, если электронам сообщить дополнительную энергию, то часть из них получает возможность покинуть металл и мы наблю­даем явление испускания электронов, называемое электронной эмис­сией. Различают различные типы электронной эмиссии. Если элек­троны получают энергию за счет тепловой энергии при повышении температуры, то такая эмиссия называется термоэлектронной.

При подведении энергии светом наблюдается фотоэмиссия, при бомбар­дировке поверхности какими-либо частицами наблюдается вторич­ная электронная эмиссия. Эмиссия под действием сильного элек­трического поля называется автоэлектронной.Термоэлектронную эмиссию можно наблюдать на электронной лампе – электрова­куумном диоде (рис. 98), состоящим из анода А и накаливаемого катода К, включенных в элек­трическую цепь. Ток диода (анодный ток) имеет зависимость “степени 3/2”

I = c· U 3/2 , где U – анодное напряжение; с – const.

Плотность тока насыщения, когда все вылетающие с катода электроны (при дан­ной температуре катода) достигают анода, определяют по формуле Ричардсона-Дэшмана

где А – постоянная Ричардсона-Дэшмана =6,02·10 5 А/м 2 ·К 2 , Т – абсолютная температура катода, – работа выхода материала катода, k – постоянная Больцмана.

Электрический ток в газах

Газы, состоящие из нейтральных молекул и атомов, не прово­дят электрический ток. Для возникновения электропроводности газов они должны быть ионизированы.

Ионизацией молекулы или атома называется процесс отщеп­ления или отрыва от них одного или нескольких электронов в результате чего возникают положительный ион и электроны. Если нейтральный атом и молекула присоединяют электрон, то возникает отрицательный ион. Процесс, обратный ионизации, т.е. такой, при котором элек­троны, присоединяясь к положительному иону, образуют нейтраль­ную молекулу или атом, называется рекомбинацией.

Для ионизации молекулы (атома) небходимо совершить работу ионизации Аi против сил притяжения между вырываемым электроном и атомным остатком. Эта работа зависит от вида атома, кратности ионизации, энергетического состояния. Потенциалом ионизации φi называется разность потенциалов в ускоряющем поле, которую должна пройти заряженная частица, чтобы накопить энергию, равную работе ионизации

Ионизация газов вызывается бомбардировкой его атомов и молекул заряженными части­цами (электронами, ионами, α-частицами), нейтронами, электромаг­нитным излучением.

Газовым разрядом называется процесс прохождения электри­ческого тока через газ. Различают самостоятельный и несамостоятельный газовые разряды. Предположим, что на газовый промежуток действует какой-либо ионизатор (например, ультрафиолетовые или рентгеновские лучи, падающие на ка­тод и выбивающие из него фотоэлектроны), в результате чего газ становится электропроводящим и в цепи поте­чет ток (рис. 99а). Увеличение анодного на­пряжения приведет к изменению тока в цепи. Вольтамперную ха­рактеристику можно разделить на 4 участка (рис. 99б). На первом участке кривой при небольших напряжениях выполняется закон Ома. Плотность тока в газовом промежутке равна

где n0 – число пар противопо­ложно заряженных частиц в еди­нице объема; u+ и u- - подвиж­ность этих частиц;

е – заряд электрона;

Е – напряженность поля.

На 2-м участке кривой на­блюдается отклонение от закона Ома, вызванное убыванием кон­центрации ионов в газе и ток достигает насыщения IН при не­котором значении UН. Увеличе­ние напряжения на участке 3 кри­вой не приводит к увеличению тока, т.е. все образующиеся в газе электроны и ионы достигают анода и катода.

Газовый разряд, который поддерживается вследствие действия внешнего ионизатора, получил название несамостоятельного.

Если в одном из режимов разряда на участках кривой 1-2-3 действие внешнего ионизатора прекратить, то разряд прекратится. Дальнейшее увеличение анодного напряжения приводит к резкому возрастанию анодного тока. Это происходит вследствие того, что электроны под действием поля приобретают энергию, достаточную для ионизации молекул и атомов газа. Процесс такой ионизации но­сит лавинный характер.

За время свободного пробега в сильном электрическом поле электрон(e) успевает приобрести энер­гию, достаточную для того, чтобы столкнувшись с молекулой(M), вызвать ее ионизацию.

При этом образуется положитель­ный ион и добавочный электрон.

Эти два электрона в свою очередь набрав нужную энергию ионизируют два атома, а образовавшиеся (2+2) электрона ионизируют следующие 4 атома и удвоят количество электронов и т.д. Таким образом, происходит лавинообразное раз­множение первичных ионов, созданных внешним ионизатором, и уси­ление разрядного тока как показано на рис. 100.

Самостоятельным газовым разрядом называется электрический разряд в газе, который продолжается после прекращения действия внешнего ионизатора. Для существования самостоятельного газового разряда необходимо, чтобы электронные лавины поддерживали сами себя, т.е. чтобы в газе происходил еще и другой процесс, непрерывно воспроизводящий новые электроны взамен ушедших на анод.

Такими могут быть процессы вторичной электронной эмиссии с катода в результате его бомбардировки ускоренными положитель­ными ионами, фотоэффект, соударения положительных ионов с ней­тральными молекулами и атомами.

Виды газовых разрядов:

Тлеющий – наблюдаемый при давлениях 0,1 – 0,01 мм. рт. ст., применяется в газовых трубках, лампах дневного света ( красное све­чение у неона, синевато-зеленое – у аргона, желтоватые – у натрия).

Искровой разряд – возникает между электродами при силь­ных полях – на воздухе Екрит ≃ 3·10 6 В/м или 30 кВ/см, в вакууме Ек­рит выше.

Коронный разряд – когда вследствие высокой напряженности на острие электрода начинает развиваться лавинный процесс, но вследствие снижения напряженности поля по мере удаления от ост­рия эта лавина не достигает анода.

Молния – вид искрового разряда. Токи 10 4 - 5 ·10 5 А. ΔU 10 8 - 10 9 В, длительность мкс., заряд 0,1 – 200 Кл. Сильное разо­гревание воздуха приводит к возникновению ударной звуковой волны – грому.

Дуговой разряд – при низком сопротивлении цепи искровой разряд переходит в дуговой, который протекает при высоких токах в десятки и сотни ампер.

Эмиссионные явления и их применение

1. Термоэлектронная эмиссия — это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергиям) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным.

Исследование закономерностей термоэлектронной эмиссии можно провести с по мощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод К и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, как это показано на рис. 152, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи БЛ) то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны.

Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока Iа от анодного напряжения Uа — вольт-амперную характеристику (рис. 153), то оказывается, что она не является линейной, т. е. для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока / от анодного напряжения в области малых положительных значений U описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883—1923) и американским физиком И. Ленгмюром (1881—1957)):

где В — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максимального значения IM, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.

Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики:

где А — работа выхода электронов из катода, Т -— термодинамическая температура, С — постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочноземельного металла), работа выхода которых равна 1—1,5 эВ.

На рис. 153 представлены вольт-амперные характеристики для двух температур катода: T1и T2причем Т2 > Т1.С повышением температуры катода испускание электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При Uа=0 наблюдается анодный ток, т. е. некоторые электроны, эмиттируемые катодом, обладают энергией, достаточной для преодоления работы выхода и достижения анода без приложения электрического поля.

Явление термоэлектронной эмиссии используется в приборах, в которых необходимо получить поток электронов в вакууме, например в электронных лампах, рентгеновских трубках, электронных микроскопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямления переменных токов, усиления электрических сигналов и переменных токов, генерирования электромагнитных колебаний и т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.

2. Фотоэлектронная эмиссия — это эмиссия электронов из металла под действием света, а также коротковолнового электромагнитного излучения (например, рентгеновcкого). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлектрического эффекта.

3. Вторичная электронная эмиссия — это испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных поверхностью (упруго и неупруго отраженные электроны), и «истинно» вторичных электронов — электронов, выбитых из металла, полупроводника или диэлектрика первичными электронами.

Отношение числа вторичных электронов n2 к числу первичных n1, вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии:

Коэффициент dзависит от природы материала поверхности, энергии бомбардирующих частиц и их угла падения на поверхность. У полупроводников и диэлектриков dбольше, чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, вторичные электроны, часто сталкиваясь с ними, теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектриках же из-за малой концентрации электронов проводимости столкновения вторичных электронов с ними происходят гораздо реже и вероятность выхода вторичных электронов из эмиттера возрастает в несколько раз.

Для примера на рис. 154 приведена качественная зависимость коэффициента вторичной электронной эмиссии dот энергии Епадающих электронов для KCl. С увеличением энергии электронов dвозрастает, так как первичные электроны все глубже проникают в кристаллическую решетку и, следовательно, выбивают больше вторичных электронов. Однако при некоторой энергии первичных электронов dначинает уменьшаться. Это связано с тем, что с увеличением глубины проникновения первичных электронов вторичным все труднее вырваться на поверхность. Значение dmax для КCl достигает » 12 (для чистых металлов оно не превышает 2).

Явление вторичной электронной эмиссии используется в фотоэлектронных умножителях (ФЭУ), применяемых для усиления слабых электрических токов. ФЭУ представляет собой вакуумную трубку с фотокатодом К и анодом А, между которыми расположено несколько электродов — эмиттеров (рис. 155). Электроны, вырванные из фотокатода под действием света, попадают на эмиттер Э1 пройдя ускоряющую разность потенциалов между К и Э1. Из эмиттера Э1 выбивается dэлектронов. Усиленный таким образом электронный поток направляется на эмиттер Э2, и процесс умножения повторяется на всех последующих эмиттерах. Если ФЭУ содержит nэмиттеров, то на аноде А, называемом коллектором, получается усиленный в d n раз фотоэлектронный ток.

4. Автоэлектронная эмиссия — это эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля. Эти явления можно наблюдать в откачанной трубке, конфигурация электродов которой (катод — острие, анод — внутренняя поверхность трубки) позволяет при напряжениях примерно 10 3 В получать электрические поля напряженностью примерно 10 7 В/м. При постепенном повышении напряжения уже при напряженности поля у поверхности катода примерно 105 ¸ 10 б В/м возникает слабый ток, обусловленный электронами, испускаемыми катодом. Сила этого тока увеличивается с повышением напряжения на трубке. Токи возникают при холодном катоде, поэтому описанное явление называется также холодной эмиссией. Объяснение механизма этого явления возможно лишь на основе квантовой теории.

Термоэлектронная эмиссия

Термоэлектро́нная эми́ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет, и явление термоэлектронной эмиссии становится заметным.

Исследование закономерностей термоэлектронной эмиссии можно провести с помощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод К и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны.

Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока от анодного напряжения — вольт-амперную характеристику, то оказывается, что она не является линейной, то есть для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883— 1923) и американским физиком И. Ленгмюром (1881 — 1957)): , где В — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максимального значения, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода. Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики: , где А — работа выхода электронов из катода, Т — термодинамическая температура, С — постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочноземельного металла), работа выхода которых равна 1 −1,5 эВ.

На явлении термоэлектронной эмиссии основана работа многих вакуумных электронных приборов.

Читайте также: