Взаимодействие серы с металлами

Обновлено: 07.01.2025

Сера - элемент VIa группы 3 периода периодической таблицы Д.И. Менделеева. Относится к группе халькогенов - элементов VIa группы.

Сера - S - простое вещество имеет светло-желтый цвет. Использовалась еще до нашей эры в составе священных курений при религиозных обрядах.

Сера

Основное и возбужденное состояние атома серы

Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных электронов отражает количество возможных связей у атома.

В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.

Основное и возбужденное состояние атома серы

Природные соединения
  • FeS2 - пирит, колчедан
  • ZnS - цинковая обманка
  • PbS - свинцовый блеск (галенит), Sb2S3 - сурьмяный блеск, Bi2S3 - висмутовый блеск
  • HgS - киноварь
  • CuFeS2 - халькопирит
  • Cu2S - халькозин
  • CuS - ковеллин
  • BaSO4 - барит, тяжелый шпат
  • CaSO4 - гипс

В местах вулканической активности встречаются залежи самородной серы.

Природные соединения серы

В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S, SO2.

Серу можно получить разложением пирита

В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.

    Реакции с неметаллами

На воздухе сера окисляется, образуя сернистый газ - SO2. Реагирует со многими неметаллами, без нагревания - только со фтором.

Горение серы в кислороде

При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.

При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.

Сера вступает в реакции диспропорционирования с щелочами.

Сера вступает в реакции с солями. Например, в кипящем водном растворе сера может реагировать с сульфитами с образованием тиосульфатов.

Реакция серы и щелочи

Сероводород - H2S

Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные ванны).

Сероводород

Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.

Сульфид железа и соляная кислота

Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит от соотношения основания и кислоты).

KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)

Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.

Сероводород - сильный восстановитель (сера в минимальной степени окисления S 2- ). Горит в кислороде синим пламенем, реагирует с кислотами.

Горение сероводорода

Качественной реакцией на сероводород является реакция с солями свинца, в ходе которой образуется сульфид свинца.

Оксид серы - SO2

Сернистый газ - SO2 - при нормальных условиях бесцветный газ с характерным резким запахом (запах загорающейся спички).

Сернистый газ

В промышленных условиях сернистый газ получают обжигом пирита.

В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота, распадающаяся на сернистый газ и воду.

Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.

С основными оксидами, основаниями образует соли сернистой кислоты - сульфиты.

Сульфит натрия

Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.

В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).

Сернистая кислота

Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.

Диссоциирует в водном растворе ступенчато.

В реакциях с основными оксидами, основаниями образует соли - сульфиты и гидросульфиты.

H2SO3 + KOH = H2O + KHSO3 (соотношение кислота - основание, 1:1)

С сильными восстановителями сернистая кислота принимает роль окислителя.

Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.

Получение бромоводорода

Оксид серы VI - SO3

Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.

В промышленности данный оксид получают, окисляя SO2 кислородом при нагревании и присутствии катализатора (оксид ванадия - Pr, V2O5).

В лабораторных условиях разложением солей серной кислоты - сульфатов.

Является кислотным оксидом, соответствует серной кислоте. При реакции с основными оксидами и основаниями образует ее соли - сульфаты и гидросульфаты. Реагирует с водой с образованием серной кислоты.

SO3 + 2KOH = K2SO4 + 2H2O (основание в избытке - средняя соль)

SO3 + KOH = KHSO4 + H2O (кислотный оксид в избытке - кислая соль)

Сульфат кальция

SO3 - сильный окислитель. Чаще всего восстанавливается до SO2.

Выделение йода

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Серная кислота

Серная кислота - сильная двухосновная кислота, при н.у. маслянистая жидкость без цвета и запаха.

Обладает выраженным дегидратационным (водоотнимающим) действием. При попадании на кожу или слизистые оболочки приводит к тяжелым ожогам.

Замечу, что существует олеум - раствор SO3 в безводной серной кислоте, дымящее жидкое или твердое вещество. Олеум применяется при изготовлении красителей, органическом синтезе и в производстве серной кислот.

Серная кислота

Получение

Известны несколько способов получения серной кислоты. Применяется промышленный (контактный) способ, основанный на сжигании пирита, окислении образовавшегося SO2 до SO3 и последующим взаимодействием с водой.

Контактный способ производства серной кислоты

Нитрозный способ получения основан на взаимодействии сернистого газа с диоксидом азота IV в присутствии воды. Он состоит из нескольких этапов:

В окислительной башне смешивают оксиды азота (II) и (IV) с воздухом:

Смесь газов подается в башни, орошаемые 75-ной% серной кислотой, здесь смесь оксидов азота поглощается с образованием нитрозилсерной кислоты:

В ходе гидролиза нитрозилсерной кислоты получают азотистую кислоту и серную:

В упрощенном виде нитрозный способ можно записать так:

Нитрозный способ производства серной кислоты

Химические свойства

В водном растворе диссоциирует ступенчато.

Сильная кислота. Реагирует с основными оксидами, основаниями, образуя соли - сульфаты.

KOH + H2SO4 = KHSO4 + H2O (гидросульфат калия, соотношение 1:1 - кислая соль)

2KOH + H2SO4 = K2SO4 + 2H2O (сульфат калия, соотношение 2:1 - средняя соль)

Ожог серной кислотой

С солями реакция идет, если в результате выпадает осадок, образуется газ или слабый электролит (вода). Серная кислота, как и многие другие кислоты, способна растворять осадки.

Серная кислота и карбонат натрия

Серная кислота окисляет неметаллы - серу и углерод - соответственно до угольной кислоты (нестойкой) и сернистого газа.

Реакции разбавленной серной кислоты с металлами не составляют никаких трудностей: она реагирует как самая обычная кислота, например HCl. Все металлы, стоящие до водорода, вытесняют из серной кислоты водород, а стоящие после - не реагируют с ней.

Подчеркну, что реакции разбавленной серной кислоты с железом и хромом не сопровождаются переходом этих элементов в максимальную степень окисления. Они окисляются до +2.

Cu + H2SO4(разб.) ⇸ (реакция не идет, медь не может вытеснить водород из кислоты)

Серная кислота и цинк

Концентрированная серная кислота ведет себя совершенно по-иному. Водород никогда не выделяется, вместо него с активными металлами выделяется H2S, с металлами средней активности - S, с малоактивными металлами - SO2.

Концентрированная серная кислота и металлы

Лей кислоту в воду

Холодная концентрированная серная кислота пассивирует Al, Cr, Fe, Ni, Be, Co. При нагревании или амальгамировании данных металлов реакция идет.

Обратите особое внимание, что при реакции железа, хрома с концентрированной серной кислотой достигается степень окисления +3. В подобных реакциях с разбавленной серной кислотой (написаны выше) достигается степень окисления +2.

Пассивирование железа

Иногда в тексте задания даны подсказки. Например, если написано, что выделился газ с неприятным запахом тухлых яиц - речь идет об H2S, если же написано, что выделилось простое вещество - речь о сере (S).

Реакции, взаимодействие серы. Уравнения реакции серы с веществами

Реакции, взаимодействие серы. Уравнения реакции серы с веществами

Реакции, взаимодействие серы. Уравнения реакции серы с веществами.



Сера реагирует, взаимодействует с неметаллами, металлами, полуметаллами, оксидами, кислотами, солями и пр. веществами.

Реакции, взаимодействие серы с неметаллами. Уравнения реакции:

1. Реакция взаимодействия серы и водорода:

Реакция взаимодействия водорода и серы происходит с образованием сероводорода.

2. Реакция взаимодействия серы и кислорода:

Реакция взаимодействия серы и кислорода происходит с образованием оксида серы (IV). Образуется также примесь оксид серы (VI) SO3. Данная реакция представляет собой сгорание серы на воздухе.

3. Реакция взаимодействия серы и фтора:

Реакция взаимодействия серы и фтора происходит с образованием фторида серы (VI). Реакция протекает при комнатной температуре.

4. Реакция взаимодействия серы и красного фосфора:

Реакция взаимодействия красного фосфора и серы происходит с образованием нонасульфида тетрафосфора. Реакция протекает при избыточном давлении. Образуется также примесь P4S7.

Реакции, взаимодействие серы с металлами и полуметаллами. Уравнения реакции:

1. Реакция взаимодействия серы и кальция:

Ca + S → CaS (t = 150 °C).

Реакция взаимодействия кальция и серы происходит с образованием сульфида кальция.

2. Реакция взаимодействия серы и кобальта:

Co + S → CoS (t ≈ 650 °C).

Реакция взаимодействия кобальта и серы происходит с образованием сульфида кобальта. В результате реакции также образуются CoS2, Co3S4, Co9S8.

3. Реакция взаимодействия серы и калия:

2K + S → K2S (t = 100-200 °C).

Реакция взаимодействия калия и серы происходит с образованием сульфида калия.

4. Реакция взаимодействия серы и лития:

2Li + S → Li2S (t > 130 °C).

Реакция взаимодействия лития и серы происходит с образованием сульфида лития.

5. Реакция взаимодействия серы и натрия:

2Na + S → Na2S (t > 130 °C).

Реакция взаимодействия натрия и серы происходит с образованием сульфида натрия.

6. Реакция взаимодействия серы и рубидия:

2Rb + S → Rb2S (t = 100-130 °C).

Реакция взаимодействия рубидия и серы происходит с образованием сульфида рубидия.

7. Реакция взаимодействия серы и серебра:

2Ag + S → Ag2S (t > 200°C).

Реакция взаимодействия серебра и серы происходит с образованием сульфида серебра .

8. Реакция взаимодействия серы и меди:

2Cu + S → Cu2S (t = 300-400 °C).

Реакция взаимодействия меди и серы происходит с образованием сульфида меди .

9. Реакция взаимодействия серы и железа:

Fe + S → FeS (t = 600-950°C).

Реакция взаимодействия железа и серы происходит с образованием сульфида железа.

10. Реакция взаимодействия серы и цинка:

Zn + S → ZnS (t = 130 °C).

Реакция взаимодействия цинка и серы происходит с образованием сульфида цинка .

11. Реакция взаимодействия серы и таллия:

2Tl + S → Tl2S (t = 320 °C).

Реакция взаимодействия таллия и серы происходит с образованием сульфида таллия. Реакция протекает в атмосфере водорода.

Реакции, взаимодействие серы с оксидами. Уравнения реакции:

1. Реакция взаимодействия серы и оксида углерода (II):

CO + S → COS (t ≈ 350 °C).

Реакция взаимодействия оксида углерода (II) и серы происходит с образованием оксосульфида углерода . Катализатором может выступать углерод .

Реакции, взаимодействие серы с солями. Уравнения реакции:

1. Реакция взаимодействия серы и сульфита натрия:

Реакция взаимодействия сульфита натрия и серы происходит с образованием тиосульфата натрия. Реакция происходит в кипящем водном растворе.

2. Реакция взаимодействия серы и сульфида калия:

Реакция взаимодействия сульфида калия и серы происходит с образованием дисульфида калия.

3. Реакция взаимодействия серы и трисульфида гадолиния:

Реакция взаимодействия трисульфида гадолиния с серой происходит с образованием сульфида гадолиния.

4. Реакция взаимодействия серы и сульфида таллия (I):

Реакция взаимодействия сульфида таллия (I) и серы происходит с образованием трисульфида таллия (I).

5. Реакция взаимодействия серы и сульфида бора (III):

Реакция взаимодействия сульфида бора (III) с серой происходит c образованием сульфида бора (V).

6. Реакция взаимодействия серы и трисульфида диванадия:

Реакция взаимодействия трисульфида диванадия с парами серы происходит с образованием сульфида ванадия.

Реакции, взаимодействие серы с кислотами. Уравнения реакции:

С концентрированными кислотами-окислителями сера реагирует только при длительном нагревании.

Реакции, взаимодействие серы с водородсодержащими соединениями. Уравнения реакции:

1. Реакция взаимодействия серы и гидрида рубидия:

2RbH + S → Rb2S + H2S (t = 300-350 °C).

Реакция взаимодействия гидрида рубидия и серы происходит с образованием сульфида рубидия и сероводорода.

2. Реакция взаимодействия серы и йодоводорода:

Реакция взаимодействия йодоводорода и серы происходит с образованием йода и сероводорода.

3. Реакция взаимодействия серы и селеноводорода:

Реакция взаимодействия селеноводорода и серы происходит с образованием селена и сероводорода. В ходе реакции используется насыщенный раствор селеноводорода. Реакция медленно протекает при комнатной температуре.

4. Реакция взаимодействия серы и гидрида натрия:

2NaH + 2S → Na2S + H2S (t = 350-400 °C).

Реакция взаимодействия гидрида натрия и серы происходит с образованием сульфида натрия и сероводорода.

5. Реакция взаимодействия серы и гидрида лития:

2LiH + 2S → Li2S + H2S (t = 300-350 °C).

Реакция взаимодействия гидрида лития и серы происходит с образованием сульфида лития и сероводорода.

6. Реакция взаимодействия серы и гидрида калия:

Реакция взаимодействия гидрида калия и серы происходит с образованием сульфида калия и сероводорода.

Реакции, связанные с изменением молекулярного состава серы:

1. Реакция изменения молекулярного состава серы:

Реакция происходит при нагревании.

Мировая экономика

Справочники

Востребованные технологии

  • Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (107 236)
  • Экономика Второй индустриализации России (103 685)
  • Этилен (этен), получение, свойства, химические реакции (30 334)
  • Программа искусственного интеллекта ЭЛИС (30 329)
  • Метан, получение, свойства, химические реакции (27 136)
  • Крахмал, свойства, получение и применение (26 869)
  • Природный газ, свойства, химический состав, добыча и применение (25 789)
  • Целлюлоза, свойства, получение и применение (25 494)
  • Пропилен (пропен), получение, свойства, химические реакции (24 228)
  • Прямоугольный треугольник, свойства, признаки и формулы (24 161)

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Сера, свойства атома, химические и физические свойства

Сера

Сера, свойства атома, химические и физические свойства.

32,059-32,076 1s 2 2s 2 2p 6 3s 2 3p 4

Сера — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 16. Расположен в 16-й группе (по старой классификации — главной подгруппе шестой группы), третьем периоде периодической системы.

Атом и молекула серы. Формула серы. Строение атома серы:

Сера (лат. Sulfur, из старославянского «сѣра» — «сера, смола», вообще «горючее вещество, жир») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением S и атомным номером 16. Расположен в 16-й группе (по старой классификации – главной подгруппе шестой группы), третьем периоде периодической системы.

Сера – неметалл. Относится к группе халькогенов.

Сера обозначается символом S.

Как простое вещество сера при нормальных условиях представляет собой светло-жёлтое порошкообразное вещество или лимонно-жёлтые кристаллы.

Молекула серы. Сера отличается способностью образовывать устойчивые цепочки и циклы из атомов. Наиболее стабильны циклические молекулы S8, имеющие форму короны, образующие ромбическую и моноклинную серу. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями.

Химическая формула серы чаще всего записывается просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами.

Электронная конфигурация атома серы 1s 2 2s 2 2p 6 3s 2 3p 4 . Потенциал ионизации (первый электрон) атома серы равен 999,59 кДж/моль (10,36001 эВ).

Строение атома серы. Атом серы состоит из положительно заряженного ядра (+16), вокруг которого по четырем оболочкам движутся 16 электрона. При этом 10 электронов находятся на внутреннем уровне, а 6 электронов – на внешнем. Поскольку сера расположена в третьем периоде, оболочек всего три. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлены s- и р-орбиталями. Третья – внешняя оболочка представлена s- и р-орбиталями. На внешнем энергетическом уровне атома серы на 3s-орбитали находятся два спаренных электрона, на 3p-орбитали – два спаренных и два неспаренных электрона. В свою очередь ядро атома серы состоит из 16 протонов и 16 нейтронов. Сера относится к элементам p-семейства.

Радиус атома серы (вычисленный) составляет 88 пм.

Атомная масса атома серы составляет 32,059-32,076 а. е. м.

Читайте также: