Взаимодействие сероводорода с металлами

Обновлено: 06.01.2025

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH - РРРРРМНМНННННННН--ННН
F - РМРРРМННММНННРРРРР-НРР
Cl - РРРРРРРРРРРРРРРРРНРМРР
Br - РРРРРРРРРРРРРРРРРНММРР
I - РРРРРРРРРР?Р?РРРРНННМ?
S 2- МРРРР---Н--Н-ННННННННН
HS - РРРРРРРРР?????Н???????
SO3 2- РРРРРННМН?-Н?НН?ММ-Н??
HSO3 - Р?РРРРРРР?????????????
SO4 2- РРРРРНМРНРРРРРРРРМ-НРР
HSO4 - РРРРРРРР-??????????Н??
NO3 - РРРРРРРРРРРРРРРРРРРР-Р
NO2 - РРРРРРРРР????РМ??М????
PO4 3- РНРР-ННННННННННННННННН
CO3 2- РРРРРНННН??Н?ННННН?Н?Н
CH3COO - РРРРРРРРР-РР-РРРРРРР-Р
SiO3 2- ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:


Скопируйте эту ссылку, чтобы разместить результат запроса " " на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Внимание, если вы не нашли в базе сайта нужную реакцию, вы можете добавить ее самостоятельно.

На данный момент доступна упрощенная авторизация через VK.
В будущем добавлю авторизацию через Гугл и Яндекс.

Здесь вы можете выбрать параметры отображения органических соединений.

Эти параметры действуют только для верхнего изображения вещества и не применяются в реакциях.

Размер шрифта
Отображение гетероатомов

Корректная работа сайта обеспечена на всех браузерах, кроме Internet Explorer.

Если вы пользуетесь Internet Explorer, смените браузер.

На сайте есть сноски двух типов:

Подсказки - помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация - такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Сероводород — H2S

Серовдород

СЕРОВОДОРОД, H2S, (сернистый водород, сульфид водорода) — бесцветный горючий газ с резким запахом, t кипения 60,35 °C. Водный раствор — сероводородная кислота. Сероводород часто встречается в месторождениях нефти и газа.

Сероводород H2S токсичен: острое отравление человека наступает уже при концентрациях 0,2–0,3 мг/м 3 , концентрация выше 1 мг/м 3 — смертельна. Сероводород H2S является агрессивным газом, провоцирующим кислотную коррозию, которую в этом случае называют сероводородной коррозией. Растворяясь в воде, он образует слабую кислоту, которая может вызвать точечную коррозию в присутствии кислорода или диоксида углерода.

В этой связи, без современных станций подготовки газа и модулей сероочистки, сероводород способен наносить сильнейший ущерб людям. Предельно допустимая концентрация сероводорода в воздухе рабочей зоны составляет 10 мг/м 3 , а в смеси с углеводородами С1–С3 равна 3 мг/м 3 .

Без станций очистки от сероводорода серьезно страдает и выходит из строя самое различное оборудование в нефтяной, энергетической, транспортной и газоперерабатывающей отраслях.

Что происходит с металлами, если сероводород не удален?

Сероводород - тотальная коррозияя металла

Сероводород — H2S — тотальная коррозия металла

Сероводород реагирует почти со всеми металлами, образуя сульфиды, которые по отношению к железу играют роль катода и образуют с ним гальваническую пару. Разность потенциалов этой пары достигает 0,2–0,48 В. Способность сульфидов к образованию микрогальванических пар со сталью приводит к быстрому разрушению технологического оборудования и трубопроводов.

Бороться с сероводородной коррозией чрезвычайно трудно: несмотря на добавки ингибиторов кислотной коррозии, трубы из специальных марок нержавеющей стали быстро выходят из строя. И даже полученную из сероводорода серу перевозить в металлических цистернах можно в течение ограниченного срока, поскольку цистерны преждевременно разрушаются из-за растворенного в сере сероводорода. При этом происходит образование полисульфанов HSnH. Полисульфаны более коррозионно-активные элементы, чем сероводород.

Сероводород, присоединяясь к непредельным соединениям, образует меркаптаны, которые являются агрессивной и токсичной частью сернистых соединений — химическими ядами. Именно они значительно ухудшают свойства катализаторов: их термическую стабильность, интенсифицируют процессы смолообразования, выпадения и отложения шлаков, шлама, осадков, что вызывает пассивацию поверхности катализаторов, а также усиливают коррозийную активность материала технологических аппаратов.

H2S значительно усиливает процесс проникновения водорода в сталь. Если при коррозии в кислых средах максимальная доля диффундирующего в сталь водорода составляет 4% от общего количества восстановленного водорода, то в сероводородсодержащих растворах эта величина достигает 40%.

Присутствие в газе кислорода значительно ускоряет процессы коррозии. Опытным путем было найдено, что наиболее коррозионным является такой газ, в котором отношение кислорода к сероводороду составляет 114:1. Это отношение называется критическим.

Наличие влаги в газе влечет коррозию металла, одновременное же присутствие H2S, O2 и H2O является наиболее неблагоприятным с точки зрения коррозии.

Коррозионные действия на металл указанных примесей резко возрастают при увеличении давления.

Скорость коррозии газопроводов прямо пропорциональна давлению газа, проходящего через этот газопровод. При давлении до 20 атм. и влажном газе достаточно даже следов сероводорода 0,002–0,0002% об., чтобы вызвать значительные коррозионные поражения металла труб, ограничивая срок службы газопровода 5–6 годами.

Вследствие коррозионных действий сероводорода, присутствующего в газах, значительно сокращается срок службы силового генерационного оборудования (ГПЭС - ГТУ) и аппаратуры при добыче, транспорте, переработке и использовании газа.

В промысловых условиях особенно большому коррозионному воздействию подвергаются трубы, задвижки, камеры сгорания и поршни силовых установок электростанций, счетчики газа, компрессоры, холодильники.

Значительная часть сероводорода реагирует с металлом и может отложиться в виде продуктов коррозии на клапанах силовых установок, компрессоров, на внутренних стенках аппаратуры, коммуникаций и магистрального газопровода.

Актуальность проблемы очистки газа от сероводорода

Актуальность проблемы очистки газа от сероводорода усиливается требованиями обеспечения экологической безопасности при разработке сернистых месторождений, сокращением вредных выбросов в атмосферу.

При этом особое внимание уделяется совершенствованию действующих и разработке новых технологий сероочистки, исключающих выбросы токсичного сероводорода и продуктов его горения в окружающую среду.

Несмотря на все перечисленные минусы, сероводород является ценным химическим сырьем, поскольку из него можно получить огромное количество неорганических и органических соединений.

Основные физико-химические свойства сероводорода (H2S) и важнейшие соединения серы

Серовдород - химическая формула

Сероводород H2S.
Сероводород H2S встречается в природе в водах некоторых минеральных источников, в вулканических газах, в попутных газах месторождения нефти. Бесцветный газ с неприятным запахом тухлых яиц, tпл = -86 °С, tкип = -60 °С. Ядовит. В твердом состоянии существует в трех различных модификациях. Мало растворим в воде, водный раствор H2S — это слабая кислота. К1 = 0,87•10-7, К2= 10-14. Сильный восстановитель. Получают в промышленности как побочный продукт при очистке нефти, природного и коксового газа. В лаборатории часто получают в аппарате Киппа при взаимодействии FeS c HCl. Применяют в производстве H2SO4, S; для получения сульфидов, сераорганических соединений; в аналитической химии для осаждения сульфидов; для приготовления лечебных, сероводородных ванн. Раздражает слизистые оболочки и дыхательные органы.

Соединения серы со степенью окисления +1

Оксид серы (I) S2O.
Оксид серы (I) S2O это желтый газ, который может несколько часов сохраняться при комнатной температуре (в чистом и сухом сосуде) лишь под давлением не выше 40 мм. рт. ст. Молекула SO2 полярна. Сильное охлаждение переводит закись серы в оранжево-красное твердое вещество. Молекулярным кислородом при обычной температуре не окисляется, а водой легко разлагается. Более или менее легко реагирует с большинством металлов. Получают при взаимодействии SO2 с серой.

Хлористая сера S2Cl2.
Хлористая сера S2Cl2 это бесцветная жидкость, tпл = -77 °С, tкип = 138 °С. Получают в больших количествах прямым действием сухого хлора на избыток серы. Применяют для получения двухлористой серы.

Соединения серы со степенью окисления +2

Серноватистая (тиосерная) кислота H2S2O3.
Сильная кислота (по силе близка к серной кислоте). При комнатной температуре неустойчива и разлагается на H2O, SO2 и S. Молярная электропроводность при бесконечном разведении при 25 °С равна 874,4 Cм•см 2 /моль.

Двухлористая сера SCl2.
Жидкость красного цвета, tпл = -78 °С, tкип = 60 °С. Молекула SCl2 имеет форму равнобедренного треугольника. Получается при взаимодействии хлористой серы с хлором. В обычных условиях медленно разлагается на хлористую серу и хлор.

Соединения серы со степенью окисления +3

Дитионистая кислота H2S2O4.
Неустойчива и в свободном состоянии не получена.

Соединения серы со степенью окисления +4

Оксид серы (IV) SO2.
Бесцветный газ с удушливым запахом, легко превращаемый в жидкость, tпл = -75 °С, tкип = -10 °С. Ядовит. Хорошо растворим в воде. При растворении образуется полигидрат SO2•nH2O кислотного характера. Получают сжиганием элементной серы или обжигом руды — пирита FeS2. Образуется также в ряде металлургических процессов и при сжигании каменных углей, всегда содержащих некоторое количество серы. Особенно много SO2 выделяют работающие на каменном угле электростанции. Небольшие количества SO2 удобно получать в лаборатории из сульфитов. Применяют для производства серной кислоты, в текстильной промышленности, в качестве обесцвечивающего вещества в сахарном производстве, пищевой промышленности, для дезинфекции помещений и уничтожения паразитов на теле животных.

Сернистая кислота H2SO3.
Двухосновная кислота средней силы. Неустойчива. В свободном состоянии не выделена. Молярная электропроводность при бесконечном разведении при 25 °С равна 843,6 Cм•см 2 /моль.

Хлористый тионил SOCl2.
Бесцветная жидкость с резким запахом, tпл = -100 °С, tкип = 76 °С. Является плохим растворителем типичных солей, но хорошим для многих менее полярных веществ. Взаимодействует с водой. Применяется для изготовления красителей, фармацевтических препаратов. Им удобно пользоваться для получения безводных хлоридов металлов из их кристаллогидратов.

Соединения серы со степенью окисления +6

Оксид серы (VI) SO3.
Известен в трех модификациях: a, b, g. При конденсации паров SO3 образуется бесцветные, прозрачные как лед кристаллы ( tпл = 62 °С), это g-форма, которая при хранении переходит в b-форму, похожую на асбест ( tпл= 32 °С). a-форма ( tпл = 17 °С, tкип = 44,8 °С) образуется при особых условиях. Из этих трех форм наиболее высоким давлением пара обладает g-форма. Полученный серный ангидрид может быть твердым или частично жидким. Жадно соединяясь с водой, дымит на воздухе. В воде он растворяется с образованием серной кислоты. Образует соединения с водой, аммиаком или его органическими производными. Получают окислением сернистого газа.

Серная кислота H2SO4.
Безводная серная кислота — бесцветная маслянистая жидкость, без запаха, tпл = 10 °С, tкип = 296 °С. Концентрированная серная кислота вызывает ожоги кожи. Серная кислота может быть различной чистоты и концентрации. Плотность увеличивается с концентрацией и достигает максимального значения при концентрации 98,3%, при дальнейшем повышении концентрации плотность кислоты снижается. Растворение в воде сопровождается выделением большого количества тепла и уменьшением объема. При давлении 760 мм рт. ст. все водные растворы кипят при температуре выше 100 °С, точка кипения повышается с увеличением концентрации. Мало летуча. Концентрированная серная кислота действует почти на все металлы без выделения водорода. Молярная электропроводность при бесконечном разведении при 25 °С равна 859,6 Cм•см 2 /моль. Для промышленного получения применяются два способа: нитрозный и контактный. Основным исходным продуктом в обоих случаях является сернистый газ. Является важнейшим химическим продуктом. Применяется почти во всех отраслях химической промышленности и в целом ряде других отраслей народного хозяйства.

Хлористый сульфурил SO2Cl2.
Представляет собой бесцветную жидкость с резким запахом, tпл = -54 °С, tкип = 69 °С. Холодная вода действует на него медленно, но горячей он быстро разлагается с образованием серной и соляной кислот.

Водород: химия водорода и его соединений

Водород расположен в главной подгруппе I группы и в первом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение водорода

Электронная конфигурация водорода в основном состоянии :

+1H 1s 1 1s

Атом водорода содержит на внешнем энергетическом уровне один неспаренный электрон в основном энергетическом состоянии.

Степени окисления атома водорода — от -1 до +1. Характерные степени окисления -1, 0, +1.

Физические свойства

Водород – легкий газ без цвета, без запаха. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью:

Н–Н

Соединения водорода

Основные степени окисления водорода +1, 0, -1.

Типичные соединения водорода:

вода H2O и др. летучие водородные соединения (HCl, HBr)

кислые соли (NaHCO3 и др.)

основания NaOH, Cu(OH)2

Способы получения

Еще один важный промышленный способ получения водорода — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Химические свойства

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов :

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием .

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом .

1.6. Водород горит , взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов . Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например , водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов .

Например , водород взаимодействует с оксидом азота (I):

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Применение водорода

Применение водорода основано на его физических и химических свойствах:

  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);
  • кислородно-водородное пламя применяется для получения высоких температур при сварке металлов;
  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;
  • водород используется для получения аммиака и искусственного жидкого топлива;
  • получение твердых жиров (гидрогенизация).

Водородные соединения металлов

Соединения металлов с водородом — солеобразные гидриды МеНх. Это твердые вещества белого цвета с ионным строением. Устойчивые гидриды образуют активные металлы (щелочные, щелочноземельные и др.).

Гидриды металлов можно получить непосредственным взаимодействием активных металлов и водорода.

Например , при взаимодействии натрия с водородом образуется гидрид натрия:

Гидрид кальция можно получить из кальция и водорода:

Химические свойства

1. Солеобразные гидриды легко разлагаются водой .

Например , гидрид натрия в водной среде разлагается на гидроксид натрия и водород:

NaH + H2O → NaOH + H2

2. При взаимодействии с кислотами гидриды металлов образуют соль и водород.

Например , гидрид натрия реагирует с соляной кислотой с образованием хлорида натрия и водорода:

NaH + HCl → NaCl + H2

3. Солеобразные гидриды проявляют сильные восстановительные свойства и взаимодействуют с окислителями (кислород, галогены и др.)

Например , гидрид натрия окисляется кислородом:

2NaH + O2 = 2NaOH

Гидрид натрия также окисляется хлором :

NaH + Cl2 = NaCl + HCl

Летучие водородные соединения

Соединения водорода с неметаллами — летучие водородные соединения.

Строение и физические свойства

Все летучие водородные соединения — газы (кроме воды).

Способы получения силана

Силан образуется при взаимодействии соляной кислоты с силицидом магния:


Видеоопыт получения силана из силицида магния можно посмотреть здесь.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непрореагировавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Способы получения фосфина

В лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов.

Например , фосфин образуется при водном гидролизе фосфида кальция:

Или при кислотном гидролизе, например , фосфида магния в соляной кислоте:

Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах.

Например , фосфор реагирует с гидроксидом калия с образованием гипофосфита калия и фосфина:

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства силана

1. Силан — неустойчивое водородное соединение (самовоспламеняется на воздухе). При сгорании силана на воздухе образуется оксид кремния (IV) и вода:

Видеоопыт сгорания силана можно посмотреть здесь.

2. Силан разлагается водой с выделением водорода:

3. Силан разлагается (окисляется) щелочами :

4. Силан при нагревании разлагается :

Химические свойства фосфина

1. В водном растворе фосфин проявляет очень слабые основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион фосфония. Основные свойства фосфина гораздо слабее основных свойств аммиака. Проявляются при взаимодействии с безводными кислотами .

Например , фосфин реагирует с йодоводородной кислотой:

Соли фосфония неустойчивые, легко гидролизуются.

2. Фосфин PH3 – сильный восстановитель за счет фосфора в степени окисления -3. На воздухе самопроизвольно самовоспламеняется:

3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей.

Например , азотная кислота окисляет фосфин. При этом фосфор переходит в степень окисления +5 и образует фосфорную кислоту.

Серная кислота также окисляет фосфин:

С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора.

Например , хлорид фосфора (III) окисляет фосфин:

2PH3 + 2PCl3 → 4P + 6HCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства прочих водородных соединений


Кислоты образуют в водном растворе: водородные соединения VIA (кроме воды) и VIIA подгрупп.

Прочитать про химические свойства галогеноводородов вы можете здесь.

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличие от ее газообразных аналогов H2S, H2Se и Н2Те.

1. Вода реагирует с металлами и неметаллами .

1.1. С активными металлами вода реагирует при комнатной температуре с образованием щелочей и водорода :

2Na + 2H2O → 2NaOH + H2

  • с магнием реагирует при кипячении:
  • алюминий не реагирует с водой, так как покрыт оксидной плёнкой. Алюминий, очищенный от оксидной плёнки, взаимодействует с водой, образуя гидроксид:
  • металлы, расположенные в ряду активности от Al до Н , реагируют с водяным паром при высокой температуре, образуя оксиды и водород:
  • металлы, расположенные в ряду активности от после Н , не реагируют с водой:

Ag + Н2O ≠

2. Вода реагирует с оксидами щелочных и щелочноземельных металлов , образуя щелочи (с оксидом магния – при кипячении):

3. Вода взаимодействует с кислотными оксидами (кроме SiO2):

4. Некоторые соли реагируют с с водой. Как правило, в таблице растворимости такие соли отмечены прочерком :

Например , сульфид алюминия разлагается водой:

5. Бинарные соединения металлов и неметаллов , которые не являются кислотами и основаниями, разлагаются водой.

Например , фосфид кальция разлагается водой:

6. Бинарные соединения неметаллов также гидролизуются водой.

Например , фосфид хлора (V) разлагается водой:

6. Некоторые органические вещества гидролизуются водой или вступают в реакции присоединения с водой (алкены, алкины, алкадиены, сложные эфиры и др.).

Читайте также: