Взаимодействие щавелевой кислоты с металлами

Обновлено: 07.01.2025

Эта кислота известна еще с XVII столетия. Она чрезвычайно распространена в природе. В виде щавелевокислого кальция (оксалата кальция) она содержится во всех растениях. Много кислой калиевой соли щавелевой кислоты находится в щавеле и кислице. В ничтожных количествах щавелевая кислота встречается и в животных организмах. Оксалат кальция содержится в виде осадка в моче человека при некоторых нарушениях обмена веществ.

Щавелевая кислота образуется часто при окислении, различных органических веществ. Раньше ее получали окислением древесных опилок кислородом воздуха при нагревании их с расплавленными едкими щелочами. При этом для прохождения реакции обязательно требуется присутствие хотя бы небольшого количества едкого кали; с чистым едким натром получение щавелевой кислоты невозможно. Окисление сахара азотной кислотой в присутствии пятиокиси ванадия как катализатора применяется и теперь для технического получения щавелевой кислоты

(отсюда и произошло в свое время название этой кислоты — «сахарная соль»). Другой промышленный способ получения щавелевой кислоты основан на том, что при быстром нагревании до 360° С формиат натрия (а также калия) отщепляет водород, превращаясь в оксалат натрия. Так как формиат натрия получается из окиси углерода и едких щелочей, то практически щавелевую кислоту можно получить непосредственно из этих веществ.

Существует много способов получения щавелевой кислоты, представляющих теоретический интерес. Например, при взаимодействии щелочных металлов с углекислым газом при 360° С получается соль щавелевой кислоты:

При кристаллизации из воды щавелевая кислота обыкновенно получается в виде гидрата С2Н2О4 ∙ 2Н2О. Этот гидрат начинает диссоциировать уже выше 30° С. При очень быстром нагревании он плавится при 101,5° С. Безводная кислота в виде ромбических октаэдров может быть получена кристаллизацией из 70%-ной серной кислоты, а также высушиванием при осторожном нагревании (лучше — в вакууме). При возгонке щавелевая кислота получается в двух кристаллических формах: при низких температурах в вакууме — иглы, при более высоких — октаэдры. Безводная кислота плавится при 180° С с разложением.

На этом основано применение щавелевой кислоты и ее солей как восстановителей, а также использование ее в анализе для установления титра растворов перманганата.

При нагревании щавелевая кислота разлагается (особенно легко в присутствии концентрированной серной кислоты) на окись углерода, углекислоту и воду:

Таким образом, теоретически возможный ангидрид щавелевой кислоты оказывается неспособным к существованию.

Щавелевая кислота как двухосновная дает кислые и средние соли (оксалаты). Известны также и молекулярные соединения кислых оксалатов со щавелевой кислотой («тетраоксалаты»), как, например, кисличная соль КНС2О4 ∙ Н2С2О4 ∙ 2Н2О, употребляемая для выведения чернильных пятен.

Из солей щавелевой кислоты растворимы в воде лишь соли щелочных металлов. Щавелевокислый кальций нерастворим в воде и уксусной кислоте, но растворим в соляной кислоте; эти его свойства используются в качественном и количественном анализе для определения кальция. При обыкновенной температуре он кристаллизуется с одной молекулой воды, при более низких температурах — с тремя молекулами воды.

Щавелевая кислота легко дает комплексные соли, например K2[Fe(C2O4)2] и K3[Fe(C2O4)3]. В растворах этих солей содержатся комплексные ионы — двухзарядный ион Fe(C2O4)2 2– и трехзарядный ион Fe(C2O4)3 3– . Растворы первой из указанных солей имеют желтый цвет; эта соль применяется в качестве проявителя в фотографии.

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH - РРРРРМНМНННННННН--ННН
F - РМРРРМННММНННРРРРР-НРР
Cl - РРРРРРРРРРРРРРРРРНРМРР
Br - РРРРРРРРРРРРРРРРРНММРР
I - РРРРРРРРРР?Р?РРРРНННМ?
S 2- МРРРР---Н--Н-ННННННННН
HS - РРРРРРРРР?????Н???????
SO3 2- РРРРРННМН?-Н?НН?ММ-Н??
HSO3 - Р?РРРРРРР?????????????
SO4 2- РРРРРНМРНРРРРРРРРМ-НРР
HSO4 - РРРРРРРР-??????????Н??
NO3 - РРРРРРРРРРРРРРРРРРРР-Р
NO2 - РРРРРРРРР????РМ??М????
PO4 3- РНРР-ННННННННННННННННН
CO3 2- РРРРРНННН??Н?ННННН?Н?Н
CH3COO - РРРРРРРРР-РР-РРРРРРР-Р
SiO3 2- ННРР?НННН??Н???НН??Н??
Растворимые (>1%)Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:


Скопируйте эту ссылку, чтобы разместить результат запроса " " на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Внимание, если вы не нашли в базе сайта нужную реакцию, вы можете добавить ее самостоятельно.

На данный момент доступна упрощенная авторизация через VK.
В будущем добавлю авторизацию через Гугл и Яндекс.

Здесь вы можете выбрать параметры отображения органических соединений.

Эти параметры действуют только для верхнего изображения вещества и не применяются в реакциях.

Размер шрифта
Отображение гетероатомов

Корректная работа сайта обеспечена на всех браузерах, кроме Internet Explorer.

Если вы пользуетесь Internet Explorer, смените браузер.

На сайте есть сноски двух типов:

Подсказки - помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация - такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Строение этиленгликоля

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Поэтому этиленгликоль – жидкость с относительно высокой температурой кипения.

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Химические свойства этиленгликоля

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этиленгликоля с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этиленгликоль не взаимодействует с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этиленгликоль взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этиленгликоль взаимодействует с калием с образованием гликолята калия и водорода .

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии этиленгликоля с галогеноводородами группы ОН замещаются на галоген и образуются дигалогеналкан.

Например, этиленгликоль реагирует с бромоводородом.

2.2. Этерификация (образование сложных эфиров)

Многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этиленгликоль реагирует с уксусной кислотой с образованием эфира:


2.4. Взаимодействие с кислотами-гидроксидами

Этиленгликоль взаимодействует и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этиленгликоля с азотной кислотой образуется нитроэтиленгликоль :


3. Дегидратация

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. При высокой температуре (180 о С) протекает внутримолекулярная дегидратация этиленгликоля и образуется соответствующий ацетальдегид.


4. Окисление этиленгликоля

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Этиленгликоль можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.


4.2. Окисление кислородом в присутствии катализатора

Этиленгликоль можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).


4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) этиленгликоль окисляется до щавелевой кислоты.

Например, при взаимодействии этиленгликоля с перманганатом калия в серной кислоте образуется щавелевая кислота

4.4. Горение этиленгликоля

При сгорании этиленгликоля образуется углекислый газ и вода и выделяется большое количество теплоты.

5. Дегидрирование этаниленгликоля

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.

Например, при дегидрировании этиленгликоля образуется этандиаль

Получение этиленгликоля

1. Щелочной гидролиз дигалогеналканов

При взаимодействии дигалогеналканов с водным раствором щелочей образуются двухатомные спирты. Атомы галогенов в дигалогеналканах замещаются на гидроксогруппы.

Например, при нагревании 1,2-дихлорэтана с водным раствором гидроксида натрия образуется этиленгликоль

2. Гидрирование карбонильных соединений

Например, при гидрировании этандиаля образуется этиленгликоль

О=CН-CH=O + 2H2 → CH2(OH)-CH2OH

3. Гидролиз сложных эфиров

При гидролизе сложных эфиров этиленгликоля и карбоновых кислот образуются этиленгликоль и карбоновая кислота.

4. Мягкое окисление алкенов

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

Читайте также: