Взаимодействие металлов со смесями кислот и щелочи в присутствии окислителя

Обновлено: 04.01.2025

ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ

Чаще всего в химической практике используются такие сильные кислоты как серная H 2 SO 4 , соляная HCl и азотная HNO 3 . Далее рассмотрим отношение различных металлов к перечисленным кислотам.

Соляная кислота ( HCl )

Соляная кислота – это техническое название хлороводородной кислоты. Получают ее путем растворения в воде газообразного хлороводорода – HCl . Ввиду невысокой его растворимости в воде, концентрация соляной кислоты при обычных условиях не превышает 38%. Поэтому независимо от концентрации соляной кислоты процесс диссоциации ее молекул в водном растворе протекает активно:

Образующиеся в этом процессе ионы водорода H + выполняют роль окислителя, окисляя металлы, расположенные в ряду активности левее водорода. Взаимодействие протекает по схеме:

Me + HCl соль + H 2

При этом соль представляет собой хлорид металла ( NiCl 2 , CaCl 2 , AlCl 3 ), в котором число хлорид-ионов соответствует степени окисления металла.

Соляная кислота является слабым окислителем, поэтому металлы с переменной валентностью окисляются ей до низших положительных степеней окисления:

Fe 0Fe 2+

Co 0Co 2+

Ni 0Ni 2+

Cr 0Cr 2+

Mn 0Mn 2+ и др .

2 Al + 6 HCl → 2 AlCl 3 + 3 H 2

2│ Al 0 – 3 e - → Al 3+ - окисление

3│2 H + + 2 e - → H 2 – восстановление

Соляная кислота пассивирует свинец ( Pb ). Пассивация свинца обусловлена образованием на его поверхности трудно растворимого в воде хлорида свинца ( II ), который защищает металл от дальнейшего воздействия кислоты:

Pb + 2 HCl → PbCl 2 ↓ + H 2

Серная кислота ( H 2 SO 4 )

В промышленности получают серную кислоту очень высокой концентрации (до 98%). Следует учитывать различие окислительных свойств разбавленного раствора и концентрированной серной кислоты по отношению к металлам.

Разбавленная серная кислота

В разбавленном водном растворе серной кислоты большинство ее молекул диссоциируют:

Образующиеся ионы Н + выполняют функцию окислителя.

Как и соляная кислота, разбавленный раствор серной кислоты взаимодействует только с металлами активными и средней активности (расположенными в ряду активности до водорода).

Химическая реакция протекает по схеме:

1│2Al 0 – 6e - → 2Al 3+ - окисление

Металлы с переменной валентностью окисляются разбавленным раствором серной кислоты до низших положительных степеней окисления:

Mn 0Mn 2+ и др .

Свинец ( Pb ) не растворяется в серной кислоте (если ее концентрация ниже 80%) , так как образующаяся соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.

Концентрированная серная кислота

В концентрированном растворе серной кислоты (выше 68%) большинство молекул находятся в недиссоциированном состоянии, поэтому функцию окислителя выполняет сера, находящаяся в высшей степени окисления ( S +6 ). Концентрированная H 2 SO 4 окисляет все металлы, стандартный электродный потенциал которых меньше потенциала окислителя – сульфат-иона SO 4 2- (0,36 В). В связи с этим, с концентрированной серной кислотой реагируют и некоторые малоактивные металлы.

Процесс взаимодействия металлов с концентрированной серной кислотой в большинстве случаев протекает по схеме:

Me + H 2 SO 4 (конц.) соль + вода + продукт восстановления H 2 SO 4

Продуктами восстановления серной кислоты могут быть следующие соединения серы:

Практика показала, что при взаимодействии металла с концентрированной серной кислотой выделяется смесь продуктов восстановления, состоящая из H 2 S , S и SO 2. Однако, один из этих продуктов образуется в преобладающем количестве. Природа основного продукта определяется активностью металла: чем выше активность, тем глубже процесс восстановления серы в серной кислоте.

Взаимодействие металлов различной активности с концентрированной серной кислотой можно представить схемой:


Алюминий ( Al ) и железо ( Fe ) не реагируют с холодной концентрированной H 2 SO 4 , покрываясь плотными оксидными пленками, однако при нагревании реакция протекает.

Ag , Au , Ru , Os , Rh , Ir , Pt не реагируют с серной кислотой.

Концентрированная серная кислота является сильным окислителем, поэтому при взаимодействии с ней металлов, обладающих переменной валентностью, последние окисляются до более высоких степеней окисления, чем в случае с разбавленным раствором кислоты:

Fe 0 → Fe 3+ ,

Cr 0 → Cr 3+ ,

Mn 0 → Mn 4+ ,

Sn 0 → Sn 4+

Свинец ( Pb ) окисляется до двухвалентного состояния с образованием растворимого гидросульфата свинца Pb ( HSO 4 )2 .

Химические свойства металлов

Металлы занимают в Периодической таблице левый нижний угол. Металлы относятся к семействам s-элементов, d-элементов, f-элементов и частично – р-элементов.

Самым типичным свойством металлов является их способность отдавать электроны и переходить в положительно заряженные ионы. Причём металлы могут проявлять только положительную степень окисления.

1. Взаимодействие металлов с неметаллами.

а) Взаимодействие металлов с водородом.

С водородом непосредственно реагируют щелочные и щелочноземельные металлы, образуя гидриды.

Например:

Образуются нестехиометрические соединения с ионной кристаллической структурой.

б) Взаимодействие металлов с кислородом.

Все металлы за исключением Au, Ag, Pt окисляются кислородом воздуха.

Пример:

в) Взаимодействие металлов с галогенами.

Все металлы реагируют с галогенами с образованием галогенидов.

Пример:

В основном это ионные соединения: MeHaln

г) Взаимодействие металлов с азотом.

С азотом взаимодействуют щелочные и щелочноземельные металлы.

д) Взаимодействие металлов с углеродом.

Соединения металлов и углерода – карбиды. Они образуются при взаимодействии расплавов с углеродом. Активные металлы образуют с углеродом стехиометрические соединения:

Металлы – d-элементы образуют соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC – используются для получения сверхтвёрдых сталей.

2. Взаимодействие металлов с водой.

С водой реагируют металлы, имеющие более отрицательный потенциал, чем окислительно-восстановительный потенциал воды.

Активные металлы более активно реагируют с водой, разлагая воду с выделением водорода.

Менее активные металлы медленно разлагают воду и процесс тормозится из-за образования нерастворимых веществ.

3. Взаимодействие металлов с растворами солей.

Такая реакция возможна, если реагирующий металл активнее, чем находящийся в соли:

Металл, обладающий более отрицательным или менее положительным стандартным электродным потенциалом, вытесняет другой металл из раствора его соли.

4. Взаимодействие металлов с растворами щелочей.

Со щелочами могут взаимодействовать металлы, дающие амфотерные гидрооксиды или обладающие высокими степенями окисления в присутствии сильных окислителей. При взаимодействии металлов с растворами щелочей, окислителем является вода.

1 Zn 0 + 4OH – – 2e = [Zn(OH)4] 2– окисление

Zn 0 – восстановитель

1 2H2O + 2e = H2 + 2OH – восстановление

Металлы, обладающие высокими степенями окисления, могут взаимодействовать со щелочами при сплавлении:

5. Взаимодействие металлов с кислотами.

Это сложные реакции, продукты взаимодействия зависят от активности металла, от вида и концентрации кислоты и от температуры.

По активности металлы условно делятся на активные, средней активности и малоактивные.

Кислоты условно делятся на 2 группы:

I группа – кислоты, обладающие невысокой окислительной способностью: HCl, HI, HBr, H2SO4(разб.), H3PO4, H2S, окислитель здесь H + . При взаимодействии с металлами выделяется кислород (H2↑). С кислотами первой группы реагируют металлы, обладающие отрицательным электродным потенциалом.

II группа – кислоты, обладающие высокой окислительной способностью: H2SO4(конц.), HNO3(разб.), HNO3(конц.). В этих кислотах окислителями являются анионы кислоты: . Продукты восстановления аниона могут быть самыми разнообразными и зависят от активности металла.

H2S↑ – c активными металлами

H2SO4 +6е S 0 ↓ – с металлами средней активности

SO2↑ – c малоактивными металлами

HNO3 +4,5e N2O, N2 – с металлами средней активности

NO – c малоактивными металлами

HNO3(конц.) – NO2↑ – c металлами любой активности.

Если металлы обладают переменной валентностью, то с кислотами I группы металлы приобретают низшую положительную степень окисления: Fe → Fe 2+ , Cr → Cr 2+ . При взаимодействии с кислотами II группы – степень окисления +3: Fe → Fe 3+ , Cr → Cr 3+ , при этом никогда не выделяется водород.

Некоторые металлы (Fe, Cr, Al, Ti, Ni и др.) в растворах сильных кислот, окисляясь, покрываются плотной оксидной плёнкой, которая защищает металл от дальнейшего растворения (пассивация), но при нагревании оксидная плёнка растворяется, и реакция идёт.

Малорастворимые металлы, обладающие положительным электродным потенциалом, могут растворяться в кислотах I группы, в присутствии сильных окислителей.

Взаимодействие металлов с кислородсодержащими кислотами

Кислородсодержащие кислоты: серная (H2SO4), азотная (HNO3), фосфорная (H3PO4), хлорная (HClO4) и другие.

Если в кислотах атомы неметаллов, их образующие, будут иметь высокие степени окисления, то металлы могут восстанавливать кислоты до различных степеней окисления, сами при этом окисляясь до ионного состояния.

9.4.4. Взаимодействие металлов с серной кислотой. Серная кислота может восстанавливаться или до S 2- или, чаще, до S(IV). Степень восстановления серы зависит от активности металла, концентрации кислоты и температуры.

Окислители: могут быть ионы водорода либо ионы серы (VI).

А) р а з б а в л е н н а я

Если серная кислота разбавлена, то диполи воды притягиваются к молекуле H2SO4, выделяется энергия гидратации, которая затрачивается на отрыв ионов водорода, в результате ионы водорода получают по сравнению с серой (VI), окруженной отрицательными ионами кислорода, преимущество. Поэтому выделяется водород и образуется сульфат металла.

Мe z + + zē= Мe 0 j 0 вос = j 0 Me z + /Me,

2Н + + 2ē = Н2 0 j 0 ок = j H + / H = – 0,059·pH

Вероятность осуществления реакции рассчитывается аналогично варианту взаимодействия металлов с бескислородными кислотами. Водород вытесняют из разбавленной серной кислоты те металлы, электродный потенциал которых меньше потенциала водородного электрода с учетом перенапряжения ( ).

Б) к о н ц е н т р и р о в а н н а я

Если серная кислота концентрированная, то число диссоциированных молекул мало и ионы водорода теряют свое преимущество. К тому же потенциалы восстановления S(VI) немного, но все-таки более положительны, чем водорода, поэтому восстанавливается сера. Общая схема взаимодействия выглядит следующим образом:

Какое соединение серы образуется при взаимодействии, зависит от активности металла. Сульфат-ион может восстанавливаться до соединений серы, где степень окисления серы понижается («+4» в SO2; «0» в S; «–2» – в H2S). Чем активнее металл, т.е. меньше величина электродного потенциала, тем полнее происходит восстановление сульфат-иона.

Сильноактивные металлы:

SO + 10H + + 8ē = H2S + 4H2O, j = +0,311 B;

Среднеактивные металлы:

HSO + 7H + + 6ē = S + 4H2O, j = +0,351 B;

Слабоактивные металлы:

H2SO4 + 2H + + 2ē = SO2 + 2H2O, j 0 = +0,438 B.

Концентрированная серная кислота с малой концентрацией ионов Н + может при нагревании окислять металлы, которые в ряду активности не могут вытеснять водород. Металлы, склонные к пассивации (Fe, Cr, Al, Ti), при взаимодействии с концентрированной серной кислотой, покрываются оксидной пленкой (Al2O3, Ti2O3), выделяется немного SO2, и далее не растворяются.

9.4.5. Взаимодействие металлов с азотной кислотой. Азотная кислота является сильнейшим окислителем, как и её соли. Атом азота N 2s 2 2p 3 не может иметь степень окисления «+5», так как он не имеет свободных орбиталей на валентном уровне, но s-электроны атома азота могут образовать неустойчивую связь еще с одним атомом кислорода, и в этом состоянии азот проявляет себя как очень сильный окислитель. Продуктами восстановления соединений, соответствующих оксиду N2O5 (азотный ангидрид), могут быть диоксид азота NO2, азотистый ангидрид N2O3, монооксид азота NO, закись азота N2O, азот N2, аммиак NH3.

Отметим при этом, что N2O3 неустойчив и при небольшом нагревании диспропорционирует на NO и NO2. «бурый газ» (NO2) – устойчивое соединение, и NOлегко переходит в него, окисляясь кислородом воздуха. За исключением N2O («веселящего газа»), все оксиды азота ядовиты.

Азотная кислота растворяет практически все металлы, за исключением золота и группы платиновых металлов, так как она является сильным окислителем и все ее соли (нитраты) хорошо растворимы в воде.

Взаимодействие металлов с таким сильным окислителем, как азотная кислота, может приводить к образованию продуктов с разными степенями окисления азота: «+4» в NO2, «+3» в HNO2, «+2» в NO, «0» в N2, «–3» в NH3.

При взаимодействии металлов с азотной кислотой металл – восстановитель, окислителем всегда является нитрат-ион. Поскольку потенциал восстановления N(V) гораздо более положителен, чем водорода, то водород никогда не выделяется при взаимодействии металлов с азотной кислотой.

А) к о н ц е н т р и р о в а н н а я HNO3

Взаимодействие с к о н ц е н т р и р о в а н н о й азотной кислотой протекает по схеме:

Me 0 - zē → Me z+ j 0 вос = j 0 Me z+ /Me,

(N +5 O3) - + 2H + + ē →N +4 O2+ H2O j 0 ок = +0,78 В.

Термодинамическую возможность реакции оцениваем по формуле ΔG 0 = –zFE 0 = – zF(φ 0 ок – φ 0 вос).

В концентрированной HNO3 пассивируются Fe, Cr, Al.

Б) р а з б а в л е н н а я

Если азотная кислота разбавленная, то молекул кислоты в растворе меньше, поэтому каждой молекуле достается разное количество электронов. Степень окисления N(V) меняется значительнее, все зависит от активности металла:

Me 0 + HNO3(разб) → Me(NO3)z + H2O + соединения азота.

Me – zē → Me z + ;

NO + 4H + + 3ē → N +2 O + 2H2O, φ = 0,96 В;

NO + 6H + + 5ē → ½N2 + 3H2O, φ = 1,24 В;

NO + 9H + + 8ē → N -3 H3 + 3H2O, φ = 0,87 В.

Активные металлы восстанавливают азот до NH3 и его комплексного иона – аммония, слабоактивные – до NO.

Обычно при взаимодействии металлов с азотной кислотой продуктами реакции являются несколько оксидов, но чаще всего они выделяются совместно и преобладание одного из оксидов определяется концентрацией азотной кислоты и температурой процесса.

9.4.6. Взаимодействие металлов со смесями кислот. Многие металлы с положительным электродным потенциалом, образующие устойчивые оксидные пленки, не растворяются в какой-либо отдельной кислоте, а растворяются и травятся в смесях кислот. Такие смеси состоят из кислоты, обладающей ярко выраженными окислительными свойствами (HNO3, H2SO4, H2SeO4, HClO3, HClO4), и кислоты, анион которой образует устойчивые комплексные ионы с катионом металла (HCl, HF и т.д.).

Взаимодействие металла со смесями кислот происходит по реакции

Me + HF + HNO3 → Hm-z[Me z + Fm] + NO + H2O.

Металл окисляется, анион окислительной кислоты восстанавливается.

Например, палладий растворяется в смеси кислот по реакции:

Аналогично в смесях кислот ведут себя золото, платиновые металлы, ниобий, тантал.

КОНТРОЛЬНЫЕ ВОПРОСЫ

9.1. Какую роль играют металлы в окислительно-восстановительных процессах?

9.2. Какими параметрами можно оценить химическую активность металла как элемента и простого вещества?

9.3. Какими свойствами обладают оксиды металлов в разных степенях окисления?

9.4. Как оценить термодинамическую вероятность взаимодействия металлов с водой, кислотами, диссоциирующими с образованием Н + и растворами щелочей?

9.5. Какие продукты реакции следует ожидать при взаимодействии различных металлов с азотной кислотой и почему? Как влияет на это концентрация раствора?

9.6. Какие продукты следует ожидать при взаимодействии металлов с разбавленной и концентрированной серной кислотой? Прокомментируйте ответ.

9.7. Какие ионы окисляют металлы при растворении их:

а) в разбавленной и концентрированной серной кислоте;

б) в водных растворах щелочей;

в) в разбавленной и концентрированной азотной кислоте?


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

Взаимодействие металла с кислотой-окислителем

Схема процесса взаимодействия металла с кислотой-окислителем:

Ме 0 + HxЭОу → соль + продукт восстановления + H2O

К кислотам-окислителям (окислительные свойства проявляет анион кислотного остатка) относятся НСlO4, HClO3, HNO3, Н2SO4 (только концентрированная), царская водка (смесь соляной и азотной кислот). Для определения термодинамической возможности растворения металлов в подобных кислотах необходимо вычислить ЭДС реакции как разность между стандартными окислительно-восстановительными потенциалами для процессов восстановления ее анионов (или недиссоциированных молекул) и окисления металла.

Продуктами восстановления сульфат-ионов SO4 2- могут быть оксид серы (IV) SO2, нейтральная сера S или сероводород H2S, а нитрат-ионов NO3 — – оксид азота (IV) NO2, оксид азота (II) NO, оксид азота (I) NO, молекулярный азот N2, аммиак NH3 или нитрат аммония NH4NO3. Состав продукта восстановления зависит от условий протекания реакции: от концентрации кислоты, степени чистоты металла, однородности его структуры, наличии примесей и т.п.

Как правило, для учебных целей, применяют следующие допущения:

Название кислоты Активность металла Продукты восстановления
H2SO4 (концентр.) Активные металлы (Е 0 Ме/Ме H2S
Средней активности металлы (-1,7ВМе/Ме <0) S
Малоактивные металлы (Е 0 Ме/Ме>0 В) SO2
HNO3 (разбавленная) Активные металлы (Е 0 Ме/Ме NH3, (NH4NO3)
Средней активности металлы (-1,7ВМе/Ме <0) N2
Малоактивные металлы (Е 0 Ме/Ме>0 В) N2O (NO)
HNO3 (концентр.) Активные металлы (Е 0 Ме/Ме NO (N2O)
Средней активности металлы (-1,7ВМе/Ме <0)
Малоактивные металлы (Е 0 Ме/Ме>0 В) NO2

Однако практическая возможность любого процесса определяется не только термодинамическим фактором, но и растворимостью продуктов реакции. Так гетерогенные процессы окисления металла в агрессивных средах могут тормозиться за счет образования на поверхности металла нерастворимой пленки продукта этого взаимодействия (пассивация), препятствующей проникновению частиц окислителя к поверхности металла. Концентрированные серная и азотная кислоты пассивируют железо , кобальт, никель, алюминий, хром, титан.

ПРИМЕР 7: Оцените термодинамическую возможность взаимодействия в системе МЕДЬ И АЗОТНАЯ КИСЛОТА КОНЦЕНТРИРОВАННАЯ. Проанализируйте практическую возможность взаимодействия в стандартных условиях, учитывая растворимость продукта реакции. Если реакция практически возможна, составьте уравнение реакции.

Решение. Окислительное действие азотной кислоты (кислота-окислитель) осуществляется за счет нитрат-ионов NO3 − . Состав продуктов восстановления кислоты зависит от активности металла и концентрации кислоты (см. таблицу 2). В рассматриваемом случае взаимодействия малоактивного металла меди с концентрированной азотной кислотой продуктом восстановления будет оксид азота (IV) NO2. Стандартный окислительно-восстановительный потенциал Е 0 (NO3 − / NO2) = +0,78B. Стандартный окислительно-восстановительный потенциал восстановителя Е 0 (Сu 2+ /Cu) = +0,34В.

ЭДС больше нуля, значит, с термодинамической точки зрения реакция взаимодействия меди с концентрированной азотной кислотой при обычных условиях осуществима.

Однако реальная возможность любого процесса определяется не только термодинамическим факторам, но и образованием растворимых или нерастворимых продуктов взаимодействия. При действии конц. азотной кислоты на медь продуктами реакции будут Cu(NO3)2, NO2 и H2O. В связи с хорошей растворимостью нитрата меди, пассивации поверхности металла не происходит, и реакция реально осуществима:

восстановитель 2 |Cu – 2e = Cu 2+ процесс окисления

окислитель 1|NO3 − + 2H + + e → NO2 + H2O процесс восстановления

Взаимодействие металлов со смесями кислот

Многие металлы с положительным электродным потенциалом, образующие устойчивые оксидные пленки, не растворяются в какой-либо кислоте, а растворяются и травятся в смесях кислот. Данные смеси состоят из кислоты, обладающей ярко выраженными окислительными свойствами (HNO3, H2SO4, H2SeO4, HClO3, HClO4), и кислоты, анион которой образует устойчивые комплексные ионы с ионом металла (HCl, HF и т.д.).

Me + HF + HNO3 → Hm-z[Me z + Fm] + NO + H2O. (4.25)

Золото, платиновые металлы, ниобий, тантал растворяют или травят в смесях кислот. Рассмотрим на примере палладия:

7.1.5. Взаимодействие металлов с растворами щелочей. Взаимодействие металлов с растворами щелочей происходит по реакции

Me - z → Me z + ; (4.28)

Данная реакция возможна, если электродный потенциал металла (φ ) меньше потенциала водородного электрода в щелочной среде (φ = –0,82 B) и оксид и гидроксид металла амфотерны.

Взаимодействуют с растворами щелочей амфотерные металлы, электродные потенциалы которых меньше –0,82 В. К таким металлам относятся Zn, Al, Be, которые взаимодействуют с щелочными растворами по реакции:

Магний и титан не образуют комплексных соединений с гидроксид-ионом. При взаимодействии магния со щелочами продуктом реакции, кроме водорода, является Mg(OH)2, а титана – TiO (см. диаграмму Пурбе).

Взаимодействие металлов с окислителями в расплавах

Щелочей

Ряд металлов, оксиды и гидроксиды которых амфотерны или обладают кислотными свойствами (Re, Mo, W, Ru, Os) взаимодействуют с окислителями в расплавах щелочей. В качестве окислителей используются соли (нитраты, хлораты, перхлораты, пероксиды). При взаимодействии металлов с такими смесями металл переходит в расплав в виде аниона соли щелочного металла.

Например, платиновые металлы (Ru, Os) окисляются в расплавленной окислительно-щелочной смеси смеси КОН и KNO3 по реакции

В данной реакции окислитель KNO3 восстанавливается до низшей степени окисления (N ). Рутений окисляется и связывается в анионы типа K [MeOx] y - , которые растворимы и не мешают дальнейшему окислению металла.

Коррозия – необратимое самопроизвольное разрушение металлов и сплавов вследствие химического или электрохи-мического воздействия среды. Закономерности химической и электрохимической коррозии металлов и основные методы защиты представлены на рис. 4.1 – 4.3.

Химическая стойкость металла характеризуется показателями скорости его коррозии – массовым, объемным, глубинным.

Массовый показатель Km определяется соотношением

где m0и m1 – массы образующегося металла до и после коррозии в течение времени τ; S0 – площадь образца до коррозии. Размерность Кm – г/м 2 ·ч.

где d – плотность металла. Размерность Кг – мм/год.

По (4.34) оценивают баллы коррозионной стойкости (см. табл. П 2.1).

По механизму протекания различают химическую и электрохи-мическую коррозию.

Химическая или газовая коррозия наблюдается при взаимодействии металлов с сухими газами, органическими веществами в отсутствие электролитов:

Для оценки термодинамической вероятности реакции (4.35) определяют значение ΔG при данном значении парциального давления окислителя

ΔG = 4,57·Т (lg К+ lg ), (4.36)

где К – константа диссоциации оксида.

Коррозия наблюдается, если

Кинетика химической коррозии зависит от свойств оксидной пленки, образующейся на поверхности металла. К поверхности пленки подходит молекулярный кислород, происходят его адсорбция и атомизация. От поверхности металла атомы кислорода перемещаются вглубь пленки оксида, а им навстречу – ионы металла и электроны. В пленке в одном акте происходит ионизация кислорода и образование химического соединения с металлом.

Для характеристики защитной способности образующейся оксидной пленки применяется коэффициент α

где Vокс., VMe – мольные объемы; Мокс. – молекулярная масса оксида; АMe – атомная масса металла; dMe, dокс. – плотности; z – число атомов металла в молекуле оксида.

Широко применяемый метод защиты от газовой коррозии – жаростойкое легирование – исходит из того, что сродство к кислоро-ду у легирующего элемента должно быть больше, чем у защищае-мого:

а радиус атома – меньше: rлегир < ri . В этом случае на поверхности формируются защитные оксиды, например, ВеО при добавлении
в медь 1 % бериллия (Ве).

Химическую коррозию предотвращают, насыщая поверхност-ный слой диффузионным покрытием, например, алюминиевым (алитирование), а также плакированием, нанесением жаростойких эмалей, тугоплавких карбидов, смешанных соединений покрытия
с основой – шпинелей типа NiСг2O4, NiFe2O4.

Детали, работающие при высоких температурах, можно защищать специальной защитной атмосферой: Н2 + N2 + H2O;

Для уменьшения газовой коррозии применяют сжигание топлива с недостатком воздуха, используют защитные обмазки и др.

Электрохимическая коррозия протекает при наличии на поверхности металла слоя электролита (растворов солей, кислот или щелочей, атмосферной влаги в почве и т. п.). Сущность электро-химической коррозии заключается в том, что процесс окисления сопровождается полным удалением валентных электронов его атома и передачей их другой частице – деполяризатору (Н + , О2). Термо-динамическая возможность электрохимической коррозии опреде-ляется соотношением

ΔG 0 = – zF·ЭДС < 0, (4.39)

Процессы окисления металла (анодный) и восстановления деполяризатора (катодный) могут протекать на одном и том же участке детали, но в различные моменты времени.

Hапpимер, при атмосферной коррозии с кислородной деполяризацией происходит анодное окисление железа

Fe – 2 = Fe 2+ (4.40)

и катодное восстановление кислорода

Последний процесс протекает преимущественно на участках с минимальным перенапряжением кислорода, например, на включениях углерода и никеля в стали, и его скорость зависит от возможностей для диффузии кислорода через пленку электролита.

В растворах электролитов в роли окислителя при коррозии может выступать ион водорода или вода:

Для реакций (4.43), (4.44) механизм процесса определяется преимущественно стадией присоединения электрона к иону Н + .

Для защиты от электрохимической коррозии используют различные методы, например, рациональное конструирование, заключающееся в подборе коррозионностойких материалов, а для случая контакта двух металлов необходимо предусмотреть, чтобы их электродные потенциалы не различались значительно.

Кроме того, конструкция деталей не должна допускать участков, где может скапливаться влага.

Другой метод – электрохимическая защита; в случае одной из ее распространенных разновидностей – протекторной защиты – вместо анодного участка создают как бы новый, введя в контакт с защищаемым металлом более отрицательный металл, по сравнению с которым прежний анод становится катодом. Этой же цели добиваются, подключив защищаемую деталь к отрицательному полюсу внешнего источника тока. Для нержавеющих сталей в кислотах применяют положительную поляризацию в области потенциалов, отвечающих пассивации.

Для уменьшения скорости электрохимической коррозии целесообразно проводить обработку среды путем уменьшения концентрации деполяризатора за счет нейтрализации кислых сред или удаления кислорода, например, по реакции

Замедлители коррозии – ингибиторы вводят в коррозионную среду, например, при сернокислотном дотравливании окалины (после предварительной обработки в расплаве 80 % NaOH + 20 % NaNO3 при 723 К в течение 20 мин с последующим охлаждением в воде) с нержавеющих сталей типа Х18Н9 добавка 5-10 кг/м 3 NaCl в травильный раствор (18 % H2SO4 при 343 К) ускоряет удаление окалины, уменьшает коррозионные потери стали и улучшает качество поверхности протравленного металла.

Галоидные ионы, адсорбируясь на поверхности металла, образуют хемосорбционный слой, тормозящий протекание и катодного и анодного процессов в равной степени. Однако повышение концентрации этих ионов сверх указанных выше пределов может способствовать ускорению процесса растворения металла.

Анодные замедлители коррозии, в первую очередь окислители, большей частью обладают пассивирующими свойствами. Принцип торможения коррозии сводится к тому, что они уменьшают скорость перехода ионов металла в раствор или уменьшают анодные участки за счет изоляции их нерастворимыми пленками, часто оксидными. Однако поскольку анодные замедлители коррозии – окислители, в некоторых случаях они могут усиливать коррозию, являясь катодными ускорителями коррозии, что учитывается при выборе как ингибиторов, так и условий их применения.

Хроматы и бихроматы тормозят преимущественно анодный процесс и незначительно катодный, в значительной мере пассивируют Fe, Al, Zn, Cu. Добавка в водопроводную воду 0,1 % K2Cr2O7 резко снижает скорость коррозии углеродистой стали и алюминия. В присутствии в воде сильных активаторов коррозии, например, хлористых солей, концентрацию K2Cr2O7 следует увеличить до 2-3 %. К анодным замедлителям относят также NaNO3, NaNO2, Na2SiO3. Нитрит натрия значительно уменьшает скорость коррозии стали и некоторых цветных металлов в растворах ряда солей, в том числе, и в морской воде. Действие нитрита натрия сказывается в том, что ион NO окисляет продукты коррозии металлов – соединения Fe 2+ или Sn 2+ – в оксидные соединения, которые осаждаются на поверхности металла. Добавка NaNO2 2 кг/м 3 существенно уменьшает коррозию стали в растворе 7,5 кг/м 3 NaCl. При длительном хранении стальных деталей, в том числе с хромовыми и никелевыми покрытиями, их рекомендуется упаковывать в бумагу, пропитанную 10-15 % раствором NaNO2.

Защитное действие Na2SiO3 проявляется при коррозии стали в нейтральных водных растворах и обусловлено образованием на поверхности металла защитной пленки.

Известны также анодные замедлители вторичного действия, образующие на анодных участках нерастворимые продукты коррозии. Например, фосфатные соли образуют нерастворимые фосфаты железа.

Некоторые ингибиторы избирательно тормозят катодный процесс по одному из следующих путей: 1) торможением отдельных стадий катодного процесса; 2) сокращением площади катодных участков. В процессах коррозии металлов, протекающих с водород-ной деполяризацией, торможение катодной реакции восстановления водорода достигается путем повышения перенапряжения водорода добавкой в раствор солей AsCl3, Bi2(SO4)3, катионы которых восстанавливаются на микрокатодах и повышают перенапряжение водорода. Сокращение площади катодных участков с целью уменьшения скорости коррозии достигается добавлением Са(НСО3)2 в подщелоченную среду (у катодных участков корродирующей поверхности металлов), в результате чего образуется нерастворимое соединение СаСО3, осаждающееся и изолирующее часть поверхности от действия электролита. Катодные ингибиторы совершенно безопасны, так как никогда не приводят к увеличению интенсивности коррозии.

Наиболее эффективными ингибиторами в нейтральных и щелочных средах являются неорганические вещества, в кислых агрессивных средах – органические, например, амины, альдегиды, гетероциклические соединения. Механизм их действия в основном сводится к адсорбции на катодных участках и повышению перенапряжения водорода; некоторые органические вещества адсорбируются на анодных участках и затормаживают протекание процесса коррозии. Соли аминов и спиртов используют и как летучие ингибиторы коррозии, парами которых насыщается воздух в складских помещениях, контейнерах.

Наиболее распространенный метод защиты от коррозии в машиностроении – применение защитных покрытий.

Металлические покрытия подразделяются на катодные и анодные. В случае катодного покрытия, например, для стали – Au, Ag, Cu, Ni; и при повреждении покрытия коррозия основы ускоряется. Для анодных покрытий (Zn, A1, Mg), например, в случае цинка: , при повреждении покрытия коррозия основы не происходит и обеспечивается не только механическая, но и химическая защита.

Наряду с металлическими покрытиями применяют формирование покрытий химическими соединениями металлов – оксидирование алюминия, получение фосфатных пленок FeHPO4, нанесение органических покрытий – лаками, смолами, неоргани-ческих – эмалями.

По условию и назначению методы лабораторных испытаний материала на коррозионную стойкость в среде электролита подразделяют на общие, специальные и электрохимические.

Общие методы основаны преимущественно на гравиметрии (на убыли веса испытуемого образца с определенной площадью), объемных методах (на измерениях объемов выделившихся при коррозии газов).

При использовании электрохимических методов измеряются величины электродных потенциалов металла или сплавов без тока, а для полной характеристики кинетики процесса коррозии данного материала в электролите необходимо снимать поляризационные кривые гальваностатическим методом.

При измерении потенциалов без тока в электролите необходимо собрать электрохимическую систему, где исследуемый материал в виде электрода с определенной площадью соединяется проводником первого рoда с электродом сравнения. Значения стационарного потенциала позволяют судить о влиянии природы и концентрации электролита на активацию, пассивацию металла.

ОТВЕТИТЬ НА КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какую роль играют металлы в окислительно-восстано-вительных процессах?

2. Какими параметрами можно оценить химическую активность металла как элемента и простого вещества?

3. Какими свойствами обладают оксиды металлов в разных степенях окисления?

4. Оксиды какого металла (никеля, хрома, меди) имеют большую прочность? Используйте значения DН (табл. П 1.7).

5. Как оценить термодинамическую вероятность взаимодействия металлов с водой, кислотами, диссоциирующими с образованием Н + (Н3О) + и растворами щелочей?

6. Какие продукты реакции следует ожидать при взаимодействии различных металлов с азотной кислотой и почему? Как влияет на это концентрация раствора?

7. Какие продукты следует ожидать при взаимодействии металлов с разбавленной и концентрированной серной кислотой? Объясните ответ.

8. Какой процесс называют коррозией металлов?

9. Дайте характеристику показателям скорости коррозии металлов – массовому, объемному, глубинному.

10. Какие виды коррозии различают по механизму протекания?

11. В каких средах наблюдается химическая коррозия?

12. Как оценивается термодинамическая вероятность химической коррозии?

13. Как характеризует защитную способность образующейся
на поверхности металла оксидной пленки коэффициент α?

14. Расположите заданные металлы в порядке уменьшения стойкости против газовой коррозии, рассчитав коэффициент «α»
по данным табл. П 2.4:

l) Ag, Fe, W – для студентов по списку группы №1-4;

4) Ва, Со, Pd – №12-14;

5) Са, Cd, Ni - №15-17;

7) Са, Cu, Mg - №21-23;

8) Ва, Cr, Li - №24-26;

9) Ве, Са, К - №27-29;

10) W, Ti, Al - №30-32;

11) Pt, Ni, Ag - №33-36;

12) Рb, W, Ве - №37-40.

15. Опишите методы защиты металлов от химической коррозии.

16. Опишите механизм электрохимической коррозии металлов.

17. Как определяется термодинамическая вероятность электро-химической коррозии?

18. Какие процессы протекают при коррозии металла с кисло-родной деполяризацией?

19. Опишите особенности коррозии металла с водородной деполяризацией.

20. Дайте характеристику методам защиты металлов от электро-химической коррозии.

21. Какие из конструктивных решений (а, б) удачны в антикоррозионном отношении? Ответ подтвердите примерами возможных коррозионных процессов (рис. 4.11).



Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Читайте также: