Взаимодействие хлороводородной кислоты с металлами

Обновлено: 22.01.2025

Кислоты можно классифицировать исходя из разных критериев:

1) Наличие атомов кислорода в кислоте

Кислородсодержащие Бескислородные
H3PO4,HNO3,HNO2,H2SO4,H3PO4,H2CO3,H2CO3, HClO4 все органические кислоты (HCOOH, CH3COOH и т.д.) HF, HCl, HBr, HI, H2S

2) Основность кислоты

Основностью кислоты называют число «подвижных» атомов водорода в ее молекуле, способных при диссоциации отщепляться от молекулы кислоты в виде катионов водорода H + , а также замещаться на атомы металла:

3) Летучесть

Кислоты обладают различной способностью улетучиваться из водных растворов.

4) Растворимость

Растворимые Нерастворимые
HF, HCl, HBr, HI, H2S, H2SO3, H2SO4, HNO3, HNO2, H3PO4, H2CO3, CH3COOH, HCOOH H2SiO3, высшие карбоновые кислоты

5) Устойчивость

Устойчивые Неустойчивые
H2SO4, H3PO4, HCl, HBr, HF H2CO3, H2SO3

6) Способность к диссоциации

хорошо диссоциирующие (сильные)

7) Окисляющие свойства

(проявляют окислительные свойства за счет катионов водорода H + )

(проявляют окислительные свойства за счет кислотообразующего элемента)

практически все кислоты кроме HNO3 и H2SO4 (конц.)

Химические свойства кислот

1. Способность к диссоциации

Кислоты диссоциируют в водных растворах на катионы водорода и кислотные остатки. Как уже было сказано, кислоты делятся на хорошо диссоциирующие (сильные) и малодиссоциирующие (слабые). При записи уравнения диссоциации сильных одноосновных кислот используется либо одна направленная вправо стрелка (), либо знак равенства (=), что показывает фактически необратимость такой диссоциации. Например, уравнение диссоциации сильной соляной кислоты может быть записано двояко:

либо в таком виде: HCl = H + + Cl —

либо в таком: HCl → H + + Cl —

По сути направление стрелки говорит нам о том, что обратный процесс объединения катионов водорода с кислотными остатками (ассоциация) у сильных кислот практически не протекает.

В случае, если мы захотим написать уравнение диссоциации слабой одноосновной кислоты, мы должны использовать в уравнении вместо знака две стрелки . Такой знак отражает обратимость диссоциации слабых кислот — в их случае сильно выражен обратный процесс объединения катионов водорода с кислотными остатками:

Многоосновные кислоты диссоциируют ступенчато, т.е. катионы водорода от их молекул отрываются не одновременно, а по очереди. По этой причине диссоциация таких кислот выражается не одним, а несколькими уравнениями, количество которых равно основности кислоты. Например, диссоциация трехосновной фосфорной кислоты протекает в три ступени с поочередным отрывом катионов H + :

Следует отметить, что каждая следующая ступень диссоциации протекает в меньшей степени, чем предыдущая. То есть, молекулы H3PO4 диссоциируют лучше (в большей степени), чем ионы H2PO4 — , которые, в свою очередь, диссоциируют лучше, чем ионы HPO4 2- . Связано такое явление с увеличением заряда кислотных остатков, вследствие чего возрастает прочность связи между ними и положительными ионами H + .

Из многоосновных кислот исключением является серная кислота. Поскольку данная кислота хорошо диссоциирует по обоим ступеням, допустимо записывать уравнение ее диссоциации в одну стадию:

2. Взаимодействие кислот с металлами

Седьмым пунктом в классификации кислот мы указали их окислительные свойства. Было указано, что кислоты бывают слабыми окислителями и сильными окислителями. Подавляющее большинство кислот (практически все кроме H2SO4(конц.) и HNO3) являются слабыми окислителями, так как могут проявлять свою окисляющую способность только за счет катионов водорода. Такие кислоты могут окислить из металлов только те, которые находятся в ряду активности левее водорода, при этом в качестве продуктов образуется соль соответствующего металла и водород. Например:

Что касается кислот-сильных окислителей, т.е. H2SO4 (конц.) и HNO3, то список металлов, на которые они действуют, намного шире, и в него входят как все металлы до водорода в ряду активности, так и практически все после. То есть концентрированная серная кислота и азотная кислота любой концентрации, например, будут окислять даже такие малоактивные металлы, как медь, ртуть, серебро. Более подробно взаимодействие азотной кислоты и серной концентрированной с металлами, а также некоторыми другими веществами из-за их специфичности будет рассмотрено отдельно в конце данной главы.

3. Взаимодействие кислот с основными и амфотерными оксидами

Кислоты реагируют с основными и амфотерными оксидами. Кремниевая кислота, поскольку является нерастворимой, в реакцию с малоактивными основными оксидами и амфотерными оксидами не вступает:

4. Взаимодействие кислот с основаниями и амфотерными гидроксидами

HCl + NaOH H2O + NaCl

5. Взаимодействие кислот с солями

Данная реакция протекает в случае, если образуется осадок, газ либо существенно более слабая кислота, чем та, которая вступает в реакцию. Например:

HCOONa + HCl HCOOH + NaCl

6. Специфические окислительные свойства азотной и концентрированной серной кислот

Как уже было сказано выше, азотная кислота в любой концентрации, а также серная кислота исключительно в концентрированном состоянии являются очень сильными окислителями. В частности, в отличие от остальных кислот они окисляют не только металлы, которые находятся до водорода в ряду активности, но и практически все металлы после него (кроме платины и золота).

Так, например, они способны окислить медь, серебро и ртуть. Следует однако твердо усвоить тот факт, что ряд металлов (Fe, Cr, Al) несмотря на то, что являются довольно активными (находятся до водорода), тем не менее, не реагируют с концентрированной HNO3 и концентрированной H2SO4 без нагревания по причине явления пассивации — на поверхности таких металлов образуется защитная пленка из твердых продуктов окисления, которая не позволяет молекулами концентрированной серной и концентрированной азотной кислот проникать вглубь металла для протекания реакции. Однако, при сильном нагревании реакция все таки протекает.

В случае взаимодействия с металлами обязательными продуктами всегда являются соль соответствующего метала и используемой кислоты, а также вода. Также всегда выделяется третий продукт, формула которого зависит от многих факторов, в частности, таких, как активность металлов, а также концентрация кислот и температура проведения реакций.

Высокая окислительная способность концентрированной серной и концентрированной азотной кислот позволяет им реагировать не только практическим со всеми металлами ряда активности, но даже со многими твердыми неметаллами, в частности, с фосфором, серой, углеродом. Ниже в таблице наглядно представлены продукты взаимодействия серной и азотной кислот с металлами и неметаллами в зависимости от концентрации:

7. Восстановительные свойства бескислородных кислот

Все бескислородные кислоты (кроме HF) могут проявлять восстановительные свойства за счет химического элемента, входящего в состав аниона, при действии различных окислителей. Так, например, все галогеноводородные кислоты (кроме HF) окисляются диоксидом марганца, перманганатом калия, дихроматом калия. При этом галогенид-ионы окисляются до свободных галогенов:

Среди всех галогеноводородных кислот наибольшей восстановительной активностью обладает иодоводородная кислота. В отличие от других галогеноводородных кислот ее могут окислить даже оксид и соли трехвалентного железа.

Высокой восстановительной активностью обладает также и сероводородная кислота H2S. Ее может окислить даже такой окислитель, как диоксид серы:

Характеристика азотной кислоты, что входит в состав

Азотная кислота H N O 3 —является сильной одноосновной кислотой-окислителем.

Соединение хорошо растворимо в воде. Концентрированный раствор дымит на воздухе. При обычных условиях вещество не имеет цвета.

Азот в соединении обладает валентностью, равной IV, по причине отсутствия валентности V у азота. Степень окисления азота при этом равна +5. Такая ситуация объясняется образованием атомом азота трех обменных связей и одной донорно-акцепторной. Атом азота играет роль донора электронной пары. В связи с этим, молекула азотной кислоты обладает строением, которое можно описать резонансными структурами:

Если нарисовать дополнительные связи, соединяющие азот и кислород, пунктирной линией, то она будет обозначать делокализованные электроны. Таким образом, формула примет вид:

Физические и химические свойства

Водные растворы H N O 3 :

  • «дымящая азотная кислота» обладает массовой долей 0,95 — 0,98;
  • концентрированная азотная кислота характеризуется массовой долей 0,6 — 0,7.

В водной среде образуется азеотропная смесь. В процессе кристаллизации азотной кислоты из водных растворов формируются кристаллогидраты:

  • моногидрат H N O 3 · H 2 O с температурой плавления −37,62 °C;
  • тригидрат H N O 3 · 3 H 2 O с температурой плавления −18,47 °C.

Азотная кислота в твердом агрегатном состоянии способна образовывать следующие кристаллические модификации:

Водные растворы азотной кислоты обладают определенной плотностью, которая является функцией ее концентрации и определяется с помощью уравнения:

d ( c ) = 0 , 9952 + 0 , 564 c + 0 , 3005 c 2 - 0 , 359 c 3 , d ( c ) = 0 , 9952 + 0 , 564 c + 0 , 3005 c 2 - 0 , 359 c 3 ,

где d — плотность в г / с м 3 , c — массовая доля кислоты.

В том случае, когда требуется описать изменение плотности при концентрации азотной кислоты выше 97%, точность расчетов по данной формуле значительно снижается.

Физические свойства азотной кислоты:

  • жидкое агрегатное состояние при нормальных условиях;
  • малярная масса 63 , 012 г / м о л ь ;
  • плотность 1 , 513 г / с м 3 ;
  • температура плавления − 41 , 59 ° C ;
  • температура кипения 82 , 6 ° C .

Высококонцентрированная H N O 3 в большинстве случаев обладает бурой окраской. Цвет обусловлен процессом разложения, который протекает на свету:

4 H N O 3 ⟶ 4 N O 2 ↑ + 2 H 2 O + O 2 ↑

В процессе повышения температуры вещество распадается аналогично записанному уравнению. Исключить разложение при перегонке азотной кислоты можно, если создать среду с пониженным давлением. Частичное разложение азотной кислоты происходит в процессе кипения или под действием света.

H N O 3 , являясь сильной одноосновной кислотой, вступает в химические реакции с основными и амфотерными оксидами:

C u O + 2 H N O 3 ⟶ C u ( N O 3 ) 2 + H 2 O

Z n O + 2 H N O 3 ⟶ Z n ( N O 3 ) 2 + H 2 O

Азотная кислота взаимодействует с основаниями:

K O H + H N O 3 ⟶ K N O 3 + H 2 O

Азотная кислота способна вытеснять слабые кислоты из их солей:

C a C O 3 + 2 H N O 3 ⟶ C a ( N O 3 ) 2 + H 2 O + C O 2 ↑

При любой концентрации азотная кислота играет роль кислоты-окислителя. В процессе происходит восстановление азота до степени окисления от +5 до −3. То, насколько глубоко протекает восстановление, определяется по большей степени природой восстановителя и концентрацией азотной кислоты.

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте. Другие металлы вступают в химические реакции с азотной кислотой. Ход такого взаимодействия зависит от концентрации кислоты. При взаимодействии металлов с азотной кислотой водород не выделяется.

Являясь кислотой-окислителем, H N O 3 вступает в химические реакции с металлами, которые расположены в ряду напряжений правее водорода. В случае концентрированной азотной кислоты уравнение реакции примет вид:

C u + 4 H N O 3 ( 60 % ) ⟶ C u ( N O 3 ) 2 + 2 N O 2 ↑ + 2 H 2 O

В том случае, когда в данной реакции участвует разбавленная кислота, процесс будет реализован по следующей схеме:

3 C u + 8 H N O 3 ( 30 % ) ⟶ 3 C u ( N O 3 ) 2 + 2 N O ↑ + 4 H 2 O

Азотная кислота взаимодействует с металлами, которые расположены в ряду напряжений левее водорода:

Z n + 4 H N O 3 ( 60 % ) ⟶ Z n ( N O 3 ) 2 + 2 N O 2 ↑ + 2 H 2 O

3 Z n + 8 H N O 3 ( 30 % ) ⟶ 3 Z n ( N O 3 ) 2 + 2 N O ↑ + 4 H 2 O

4 Z n + 10 H N O 3 ( 20 % ) ⟶ 4 Z n ( N O 3 ) 2 + N 2 O ↑ + 5 H 2 O

5 Z n + 12 H N O 3 ( 10 % ) ⟶ 5 Z n ( N O 3 ) 2 + N 2 ↑ + 6 H 2 O

4 Z n + 10 H N O 3 ( 3 % ) ⟶ 4 Z n ( N O 3 ) 2 + N H 4 N O 3 + 3 H 2 O

Записанные уравнения основаны лишь на доминирующем продукте реакции. Это объясняется тем, что при созданных условиях продуктов данной реакции больше, чем продуктов других реакций. В качестве примера можно привести процесс химического взаимодействия цинка и азотной кислоты с массовой долей в растворе 30%. Продукты такой реакции содержат больше всего N O , в меньших количествах будут содержаться N O 2 , N 2 O , N 2 и N H 4 N O 3 .

Общую закономерность, которую можно наблюдать в процессе взаимодействия азотной кислоты с металлами, формулируют следующим образом: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:

увеличение концентрации кислоты ⇐ N O 2 , N O , N 2 O , N 2 , N H 4 N O 3 ⇒ ⇐ N O 2 , N O , N 2 O , N 2 , N H 4 N O 3 ⇒ увеличение активности металла

Некоторые из металлов, в том числе, железо, хром, алюминий, кобальт, никель, марганец, бериллий, вступают в химические реакции с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и сохраняют стабильность при ее воздействии. Азотная кислота в любой концентрации не вступает в химическое взаимодействие с такими металлами, как золото и платина. Железо, алюминий, хром холодной концентрированной азотной кислотой пассивируются.

Разбавленная азотная кислота вступает в реакцию с железом. В результате образуются продукты восстановления азота и окисления железа:

F e + 4 H N O 3 ( 25 % ) ⟶ F e ( N O 3 ) 3 + N O ↑ + 2 H 2 O

4 F e + 10 H N O 3 ( 2 % ) ⟶ 4 F e ( N O 3 ) 2 + N H 4 N O 3 + 3 H 2 O

Азотная кислота способна окислять неметаллы. В результате в большинстве случаев происходит восстановление азота до N O или N O 2 :

S + 6 H N O 3 ( 60 % ) ⟶ H 2 S O 4 + 6 N O 2 ↑ + 2 H 2 O

S + 2 H N O 3 ( 40 % ) ⟶ H 2 S O 4 + 2 N O ↑

P + 5 H N O 3 ( 60 % ) ⟶ H 3 P O 4 + 5 N O 2 ↑ + H 2 O

3 P + 5 H N O 3 ( 30 % ) + 2 H 2 O ⟶ 3 H 3 P O 4 + 5 N O ↑

Азотная кислота обладает свойством окислять сложные вещества:

F e S + 4 H N O 3 ( 30 % ) ⟶ F e ( N O 3 ) 3 + S + N O ↑ + 2 H 2 O

Определенные органические соединения, к примеру, амины и скипидар, могут самовозгораться в процессе реакции с концентрированной азотной кислотой.

Смесь, в которую входят азотная и серная кислоты, называют «меланж». Азотная кислота активно применяется в производстве нитросоединений.

В том случае, когда смешивают три объема соляной кислоты и один объем азотной кислоты, получается смесь под названием «царская водка». Этот продукт способен растворять большинство металлов, включая золото и платину. Свойства такого сильного окислителя объясняются формированием атомарного хлора и хлорида нитрозила:

3 H C l + H N O 3 → 150 o C N O C l + C l 2 ↑ + 2 H 2 O

Химические реакции концентрированных азотной и соляной кислот с благородными металлами:

A u + H N O 3 + 4 H C l ⟶ H [ A u C l 4 ] + N O ↑ + 2 H 2 O

3 P t + 4 H N O 3 + 18 H C l ⟶ 3 H 2 [ P t C l 6 ] + 4 N O ↑ + 8 H 2 O

Азотная кислота не вступает в химические реакции со стеклом и фторопластом-4.

Разложение солей азотной кислоты

Азотная кислота относится к типу сильных кислот. Соли кислоты называют нитратами. Данные продукты являются результатом взаимодействия азотной кислоты с металлами или их оксидами и гидроксидами. Каждый нитрат отличается высокой растворимостью в воде. Нитрат-ион в воде не гидролизуется.

Нагрев солей азотной кислоты приводит к их необратимому разложению. В результате образуются продукты реакции, состав которых зависит от катиона металла, входящего в состав данной соли.

Образование нитратов металлов, которые расположены в ряду напряжений с левой стороны от магния (за исключением лития):

2 K N O 3 → 450 o C 2 K N O 2 + O 2 ↑

Образование нитратов металлов, которые находятся в ряду напряжений между магнием и медью (и лития):

4 A l ( N O 3 ) 3 → 180 o C 2 A l 2 O 3 + 12 N O 2 ↑ + 3 O 2 ↑

Реакция нитратов металлов, находящихся в ряду напряжений с правой стороны от меди:

2 A g N O 3 → 400 o C 2 A g + 2 N O 2 ↑ + O 2 ↑

Реакция нитрата аммония:

N H 4 N O 3 → 240 o C N 2 O ↑ + 2 H 2 O

Нитраты в воде почти не проявляют окислительных свойств. С другой стороны, при высокой температуре, находясь в твердом агрегатном состоянии представляют собой сильные окислители. В качестве примера можно привести сплавления твердых веществ:

F e + 3 K N O 3 + 2 K O H → 420 o C K 2 F e O 4 + 3 K N O 2 + H 2 O

Цинк и алюминий в присутствии щелочного раствора способны восстанавливать нитраты до N H 3 :

3 K N O 3 + 8 A l + 5 K O H + 18 H 2 O → 3 N H 3 ↑ + 8 K [ A l ( O H ) 4 ]

Соли азотной кислоты в виде нитратов нашли применение в качестве удобрений. Почти все виды данных веществ характеризуются высокой степенью растворимости в водной среде. Это объясняет немногочисленность соединений в виде минералов, представленных в природном мире. В качестве исключения можно выделить чилийскую (натриевую) селитру и индийскую селитру (нитрат калия). Нитраты в большинстве своем синтезированы искусственным путем.

Промышленное производство, применение и действие на организм

Азотная кислота — самый крупнотоннажный продукт химической промышленности.

Современным способом синтеза этого вещества является каталитическое окисление синтетического аммиака с применением платино-родиевых катализаторов (процесс Оствальда) до смеси из оксидов азота (нитрозных газов), которые в дальнейшем поглощаются водой:

4 N H 3 + 5 O 2 → P t / R h 4 N O ↑ + 6 H 2 O

2 N O + O 2 → 2 N O 2 ↑

4 N O 2 + O 2 + 2 H 2 O → 4 H N O 3

Записанные реакции являются экзотермическими. Первый процесс носит необратимый характер, а следующие — обратимы. В том случае, когда азотная кислота получена данным методом, ее концентрация определяется технологическим регламентом процесса и соответствует интервалу от 45% до 58%. С целью получения концентрированной азотной кислоты требуется сместить равновесие в третьей реакции, повышая давление до 50 атмосфер.

Первым в истории химии методом получения азотной кислоты, который открыли алхимики, является нагрев смеси селитры и железного купороса:

4 K N O 3 + 2 F e S O 4 · 7 H 2 O → t o F e 2 O 3 + 2 K 2 S O 4 + 2 H N O 3 ↑ + 2 N O 2 ↑ + 6 H 2 O

Синтез чистой азотной кислоты заключается в воздействии концентрированной серной кислоты на селитру. Данный способ открыл Иоганн Рудольф Глаубер:

K N O 3 + H 2 S O 4 → t o K H S O 4 + H N O 3 ↑

«Дымящую азотную кислоту», которая почти не содержит воду, получают путем дальнейшей дистилляции.

Области применения азотной кислоты:

  1. Выпуск минеральных удобрений.
  2. Военная промышленность. «Дымящую азотную кислоту» используют для производства взрывчатки, окисления ракетного топлива. Разбавленную азотную кислоту применяют в синтезе разных веществ, включая соединения, обладающие отравляющими свойствами.
  3. В некоторых случаях азотную кислоту используют в фотографии. С помощью разбавленного раствора подкисляют определенные тонирующие составы.
  4. Станковая графика. Азотную кислоту применяют для травления печатных форм в виде офортных досок, цинкографических типографских форм и магниевых клише.
  5. Изготовление красящих составов и лекарственных препаратов, к примеру, нитроглицерина.
  6. Ювелирное дело. С помощью азотной кислоты выявляют наличие золота в сплавах.
  7. Основной органический синтез нитроалканов, анилина, нитроцеллюлозы, тротила и т.д.

Азотная кислота является ядовитым веществом. Степень воздействия соединения на организм отмечена третьим классом опасности. Пары азотной кислоты способны причинить существенный вред, в том числе, раздражение дыхательных путей. Азотная кислота при контакте с кожными покровами оставляет язвы, которые потом достаточно долго заживают.

На коже азотная кислота оставляет желтые следы, что является следствием ксантопротеиновой реакции. В процессе повышения температуры или при воздействии света происходит разложение азотной кислоты. В результате химического процесса образуется высокотоксичный диоксид азота N O 2 в газообразном агрегатном состоянии, имеющий бурую окраску. Максимально допустимая концентрация азотной кислоты в воздухе рабочей зоны по N O 2 2 м г / м 3 .

Химические свойства соляной кислоты и её применение

Соляная кислота (хлороводородная или хлористоводородная кислота) HCl — является раствором хлороводорода в воде, представляет собой сильную одноосновную кислоту.

Соляная кислота не имеет окраски, является прозрачной и едкой жидкостью, которая обладает способностью «дымить» в воздушной среде. По причине наличия примесей железа, растворенного хлора и прочих веществ для технической соляной кислоты характерен желтоватый оттенок. В концентрации около 0,5 % соляная кислота содержится в желудке человека. Соли соляной кислоты называют хлоридами.

Химическая формула хлороводорода:

Молярная масса хлороводорода составляет 36,46 г/моль. Соляная кислота является сильной кислотой: pKa = -7,1. Концентрированная соляная кислота содержит примерно 37 мас. % HCl.

Впервые хлороводород был получен алхимиком Василием Валентином. В результате нагревания гептагидрата сульфата железа и поваренной соли образовалось вещество «дух соли» (лат. spiritus salis). Иоганн Глаубер в XVII веке синтезировал соляную кислоту из поваренной соли и серной кислоты. В 1790 году британскому химику Гемфри Дэви удалось получить хлороводород из водорода и хлора, что позволило определить состав соединения.

Развитие производства соляной кислоты в промышленных масштабах связано с технологией получения карбоната натрия. На первом этапе данного процесса поваренную соль вводили в реакцию с серной кислотой. Результатом реакции являлось выделение хлороводорода. В 1863 году в Англии был принят закон «Alkali Act», который запрещал производить выбросы этого соединения в атмосферу. Полученное вещество пропускали через воду. Данное обстоятельство послужило триггером для развития производства соляной кислоты в промышленности. Дальнейшее совершенствование технологии объясняется изобретением промышленного способа синтеза гидроксида натрия и хлора с помощью электролиза растворов хлорида натрия.

Химические свойства, взаимодействие с солями и основаниями

На физические свойства соляной кислоты в большей степени оказывает влияние концентрация растворенного хлороводорода:

В условиях низкой температуры хлороводород с водой дает кристаллогидраты составов:

  • H C l . H 2 O (температура плавления −15,4 °С);
  • H C l . 2 H 2 O (температура плавления −18 °С);
  • H C l . 3 H 2 O (температура плавления −25 °С);
  • H C l . 6 H 2 O (температура плавления −70 °С).

При атмосферном давлении (101,3 кПа) хлороводород с водой образуют азеотропную смесь с температурой кипения 108,6 °С и содержанием HCl 20,4 мас. %. Соляная кислота является сильным электролитом и характеризуется химическими свойствами, которые являются общими для всех кислот.

Реакция соляной кислоты с металлами, которые расположены в ряду электрохимических потенциалов до водорода, приводит к образованию соли и выделению водорода в газообразном состоянии.

Соляная кислота взаимодействует с оксидами металлов, что сопровождается образованием растворимой соли и воды.

Соляная кислота взаимодействует с гидроксидами металлов. В результате образуется растворимая соль и вода, то есть протекает реакция нейтрализации.

Соляная кислота взаимодействует с солями более слабых кислот, к примеру, угольной.

Реакция соляной кислоты с сильными окислителями, в том числе, перманганатом калия, диоксидом марганца, приводит к выделению хлора в газообразном состоянии.

Соляная кислота вступает в химическую реакцию с аммиаком. В результате образуется густой белый дым, который состоит из микроскопических кристаллов хлорида аммония.

Качественная реакция на соляную кислоту и ее соли представляет собой взаимодействие с нитратом серебра. В результате образуется белый творожистый осадок хлорида серебра, который не растворяется в азотной кислоте.

Способы получения, техника безопасности

Получить соляную кислоту можно с помощью растворения газообразного хлороводорода в воде. Хлороводород синтезируют путем взаимодействия водорода с хлором. Кислота, которую получают данным методом, называется синтетической. Другим способом синтеза соляной кислоты является получение соединения из абгазов, которые представляют собой побочные газы, сформированные в разных химических процессах, к примеру, при хлорировании углеводородов. Хлороводород, входящий в состав этих газов, называют абгазным. Полученная рассмотренным методом кислота носит название «абгазная». В последние десятилетия доля абгазной соляной кислоты в объеме производства постепенно увеличивается, вытесняя кислоту, полученную сжиганием водорода в хлоре. С другой стороны, в соляной кислоте, полученной по традиционной технологии в реакции водорода с хлором, содержится меньшее количество примесей. Такую кислоту используют при необходимости высокой чистоты.

Получение хлороводорода в промышленности путем реакции горения водорода в хлоре:

Нагрев до температуры более 550 °C и наличие избытка поваренной соли являются условиями для протекания химической реакции по уравнению:

Перечисленные реакции не всегда протекают до конца и сопровождаются образованием основных хлоридов (оксихлоридов) переменного состава, к примеру:

Хлороводород отличается хорошей растворимостью в воде. Например, при 0 °C 1 объем воды способен поглотить 507 объемов HCl. В результате получают концентрированную 45 % кислоту. Следует отметить, что в условиях комнатной температуры характеристика растворимости HCl меньше, поэтому на практике обычно используют 36% соляную кислоту.

Соляную кислоту относят к веществам III класса опасности, согласно ГОСТ 12.1.007-76. Рекомендуемая ПДК в рабочей зоне составляет 5 мг / м 3 . Высококонцентрированная соляная кислота является едким веществом. При контакте соляной кислоты с кожей возникают сильные химические ожоги. С целью нейтрализации ожогов место поражения промывают большим количеством воды, затем обрабатывают 5% раствором соды (она нейтрализует кислоту). Максимально опасно попадание данного вещества в глаза (в значительном количестве).

В процессе открывания резервуаров с концентрированной соляной кислотой можно наблюдать выделение паров хлороводорода, которые, притягивая влагу из воздуха, образуют туман. Газообразное вещество способно раздражать глаза и дыхательные пути человека. Во время реакции с сильными окислителями в виде хлорной извести, диоксида марганца, перманганата калия соляная кислота образует хлор в газообразном состоянии с высокой степенью токсичности. На территории Российской Федерации ограничен оборот соляной кислоты концентрации 15 % и выше.

Применение соляной кислоты

Соляная кислота представляет собой одну из наиболее ценных кислот в химии. Ежегодно в мире производят миллионы тонн данного соединения. Соли соляной кислоты активно применяют в разных сферах хозяйственной деятельности. Краткий список областей использования соляной кислоты:

  • гидрометаллургия;
  • гальванопластика;
  • травление, декапирование и лужение металлических поверхностей;
  • пищевое производство (соляная кислота играет роль регулятора кислотности и является добавкой Е507);
  • медицина (вещество в смеси с ферментом пепсином характеризуется лечебным эффектом и применяется в качестве лекарственного препарата при недостаточной кислотности желудка).

Желудок человека каждый день обновляет свою поверхность взамен пострадавшей от желудочного сока, в котором содержится соляная кислота. Соляная кислота обеспечивает переваривание пищи в желудке и устраняет разнообразные болезнетворные бактерии. Желудочный сок человека является достаточно агрессивным составом. К примеру, жидкость полностью растворяет бритвенное лезвие в течение недели. Данное свойство желудочного сока объясняется как раз наличием в составе соляной кислоты.

Реакция металлов с соляной кислотой: признак взаимодействия цинка, железа и меди

Известно доказанный факт, что соляная кислота взаимодействует с активными металлами. При этом часть веществ способна реагировать на такое соединение, другая часть остается нетронутой.

Неактивные металлы не могут реагировать на вещество: к ним относят золото, серебро, ртуть.

Соляная кислота представляет собой соединение хлора и водорода. Путем растворения в воде газообразного вещества под названием хлороводород получается данное соединение.

Ионы водорода при таком уравнении исполняют роль окислителя, что вызывает реакцию у активных металлов.

Какие вещества вступают в реакцию с соляной кислотой

На вступительных экзаменах по химии часто можно встретить задание на определение веществ, которые способны реагировать на соляную кислоту.

Кроме того, задание «составьте уравнение» нередко вызывает страх в глазах выпускников.

Чтобы не путаться с химическими задачами, рекомендуется подробнее изучить информацию о взаимодействии с данным соединением.

Все существующие вещества можно поделить на металлы, вытесняющие водород из соединения, не вытесняющие водород, а также активные и неактивные металлы.

011

В реакцию с соляной кислотой вступают такие вещества:

    Химические основания. Соляная кислота способна нейтрализовать основания. Как известно, они состоят из атома металла, на который и воздействует кислота.

Кроме перечисленных веществ и соединений, HCl также способна реагировать на нитрат серебра – при таком взаимодействии образуется осадок белого цвета творожистого типа.

Признак взаимодействия с цинком, железом и другими металлами

Если курс школьной химии был успешно забыт, можно вспомнить о том, какие бывают признаки взаимодействия металлов, вступающих в реакцию с соляной кислотой.

Чтобы экспериментальные опыты не вызвали несчастного случая, рекомендуется заранее открыть все окна, вооружиться защитной одеждой, чтобы кожа рук была закрыта.

Также рекомендуется использовать перчатки и повязку на лицо.

Обратите внимание! Ниже будет рассказано о том, какие признаки говорят о вступлении в реакцию элементов с соединением.

Чтобы не проводить наглядные опыты, можно воспользоваться теоретической информацией.

022

Рассмотрим, что происходит, если добавить немного кислоты на определенный вид металла:

Металл Признак взаимодействия
Цинк Если опустить этот металл серебристого цвета в пробирку с указанным веществом, можно постепенно наблюдать выделение небольшого количества пузырьков и водорода.

Как составить уравнение реакции

Одно из самых распространенных заданий на экзаменах и в контрольных работах – составить уравнение на реакцию HCl, в данном случае – соляной, с другими веществами или соединениями.

033

Чтобы не запутаться в решении, предлагаем несколько советов и шпаргалок для легкого запоминания:

  • Запомните буквенное обозначение данного вещества – соляная кислота в химии обозначается как HCl: если вещество разбавленное, это указывается в скобках рядом.
  • Как уже было сказано выше, вещество способно реагировать с активными металлами, стоящими до водорода в электрохимическом ряду; кроме того, она реагирует на основания, оксиды, гидроксиды и карбонаты.
  • Химические основания обозначаются как OH, оксиды – O, гидроксиды – OH2, карбонаты – CO3.
  • Уравнение реакции всегда будет иметь знак +, потому как в процессе взаимодействия происходит соединение нескольких компонентов.
  • HCl может идти первым или вторым слагаемым, после прибавления металла, вещества идет знак =, после этого описывается реакция, где указаны продукты распада.
  • Например, при реакции кислоты серы с сульфатом магния получается такое уравнение: Mg+H2SO4 = MgSO4+H2.
  • Соляная кислота и гидроксид бария дают такое уравнение: 2HCl + Ba(OH)2 = BaCl2 + 2H2O.
  • При реакции соединения водорода, хлора и мела образуется хлорид кальция: СаСО3 + 2HCl = CaCl2 + СО2 + Н2О.
  • Раствор карбоната натрия с кислотой выглядит так: HCl+Na2CO3=2NaCl+H2O+CO2.

Составить уравнение несложно, важно изначально правильно обозначить буквенные символы каждого элемента или вещества.

Важно! Необходимо правильно определить коэффициенты атомов в уравнении – их количество до знака = должно быть таким же, как и после знака =.

Для правильного уравновешивания формулы пользуются правилами школьного курса химии, основанными на математическом принципе расстановки коэффициентов.

Читайте также: