Взаимодействие галогеноводородов с металлами

Обновлено: 22.01.2025

Галогены (греч. hals - соль + genes - рождающий) - химические элементы VIIa группы: F, Cl, Br, I, At. Реагируют с большинством других элементов и органических соединений.

Галогены широко распространены в природе. Их химическая активность падает от фтора к астату.

Хлор

Общая характеристика элементов VIIa группы

От F к At (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Все галогены относятся к неметаллам, являются сильными окислителями.

Галогены

  • F - 2s 2 2p 5
  • Cl - 3s 2 3p 5
  • Br - 4s 2 4p 5
  • I - 5s 2 5p 5
  • At - 6s 2 6p 5

Основное и возбужденное состояние атома хлора

Природные соединения
  • NaCl - галит (каменная соль)
  • CaF2 - флюорит, плавиковый шпат
  • NaCl*KCl - сильвинит
  • 3Ca3(PO4)2*CaF2 - фторапатит
  • MgCl2*6H2O - бишофит
  • KCl*MgCl2*6H2O - карналлит

Галит, флюорит, сильвинит и карналлит

Простые вещества - F2, Cl2, Br2, I2

Галогены в чистом виде можно получить путем электролиза водных растворов и расплавов их солей. Например, хлор в промышленности получают электролизом водного раствора хлорида натрия.

Электролизом расплава гидрофторида калия KHF2 в безводной плавиковой кислоте - HF - был впервые получен фтор.

Более активные галогены способны вытеснять менее активные. Активность галогенов убывает: F → Cl → Br → I.

Йод

В лабораторных условиях галогены могут быть получены следующими реакциями.

    Реакции с металлами

Для галогенов характерна высокая реакционная способность. Фтор реагирует со всеми металлами без исключения, некоторые из них в атмосфере фтора самовоспламеняются.

Хлор, как и фтор, химически весьма активен. Не реагирует только с кислородом, азотом и благородными газами.

Горение водорода в хлоре

F2 + H2 → HF (в темноте со взрывом)

Галогены вступают в реакцию друг с другом. Чтобы определить степени окисления в получающихся соединениях, вспомните электроотрицательность ;)

Br2 + F2 → BrF (фтор более электроотрицателен, чем бром - F - )

Br2 + I2 → IBr3 (бром более электроотрицателен, чем йод - Br - )

Реакция фтора с водой протекает очень энергично, носит взрывной характер.

Хлор реагирует с водой обратимо, образуя хлорную воду - смесь хлорноватистой и соляной кислоты. Бром вступает в те же реакции, что и хлор.

Бром

Замечу, что активность йода существенно ниже, чем у остальных галогенов. С неметаллами йод почти не реагирует, а с металлами - только при нагревании.

Cl2 + NaOH → NaCl + NaClO + H2O

Галогены способны вытеснять друг друга из солей. Более активные вытесняют менее активные.

KBr + I2 ⇸ (реакция не идет, так как йод менее активен, чем бром)

Галогеноводороды
  • HF - фтороводород (газ), фтороводородная (плавиковая) кислота (жидкость)
  • HCl - хлороводород (газ), соляная кислота (жидкость)
  • HBr - бромоводород, бромоводородная кислота
  • HI - йодоводород, йодоводородная кислота
  • HAt - астатоводород, астатоводородная кислота

При н.у. HCl, HBr, HI - газы, хорошо растворимые в воде.

В промышленности применяют получение прямым методом: реакцией водорода с галогенами.

В лабораторных условиях галогеноводороды можно получить в реакциях обмена между галогенсодержащими солями и сильными кислотами.

HF - является слабой кислотой, HCl, HBr, HI - сильные кислоты. Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.

Цинк и соляная кислота

Галогеноводороды реагируют с основными, амфотерными оксидами и основаниями с образованием соответствующих солей.

KOH + HCl → KCl + H2O (реакция нейтрализации)

Реакция нейтрализации

Реакции протекают в тех случаях, если в результате выпадает осадок, выделяется газ или образуется слабый электролит (вода).

В некоторых реакциях проявляют себя как сильные восстановители, особенно HI.

Йодоводород

В целом взаимодействие галогеноводородов с оксидами неметаллов нехарактерно. В этой связи важно выделить реакцию SiO2 с плавиковой кислотой.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Кислородсодержащие соединения галогенов

Галогены образуют ряд соединений с кислородом, которые неустойчивы и могут быть получены только косвенным путем, так как кислород не взаимодействует с галогенами. Наиболее устойчивы из их соединений соли, наименее - оксиды и кислоты.

Названия кислородсодержащих кислот и их кислотных остатков вы можете найти в таблице ниже. Заметьте, все они применимы и к брому, и к йоду. Так например HBrO - бромноватистая кислота (соли гипобромиты), HIO - иодноватистая кислота (соли гипоиодиты).

Кислородсодержащие кислоты хлора

HIO3 - иодноватая кислота (соли иодаты), HBrO3 - бромноватая кислота (соли броматы). По аналогии несложно составлять подобные названия. Мы будем изучать данную тему на примере соединений хлора.

Получение кислот

Хлорноватистую кислоту можно получить в реакции хлора с водой, соли хлорноватистой кислоты (гипохлорита) с более слабой кислотой.

В реакции хлорной извести с диоксидом углерода и водой также выделяется хлорноватистая кислота.

Хлорная известь, хлорка

Хлористая кислота может быть получена из собственных солей - хлоритов, а также в реакции с оксидом хлора IV.

Хлорноватую кислоту получают взаимодействием разбавленной серной кислоты и хлората бария.

Самая сильная кислота в природе - хлорная кислота - может быть получена реакцией перхлората калия или натрия с концентрированной серной кислотой.

Хлорная кислота

Химические свойства

Хлорноватистая и хлористая кислоты относятся к слабым, хлорноватая и хлорная - к сильным. Кислоты образуют соли в реакциях c основными оксидами и основаниями.

HClO + LiOH → LiClO + H2O

И кислоты, и их соли разлагаются схожим образом.

Хлорат калия, бертолетова соль

KI + HClO → KIO3 + HCl

Соли этих кислот образуются в результате реакции диспропорционирования, происходящей между щелочью и галогеном.

Едкий кали

Блиц-опрос по теме Кислородсодержащие соединения галогенов

Бромоводородная кислота, сильная Бромная кислота, сильная Бромистая кислота, слабая Бромноватистая, слабая

HBrO2 - бромистая кислота, слабая

Хлорная кислота, сильная Хлорноватая кислота, сильная Хлористая кислота, слабая Хлорноватистая кислота, слабая

2.3.1. Химические свойства водорода и галогенов.

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

2.3.1. Химические свойства водорода и галогенов.

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:

Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal2.

Галоген
Физические свойства

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке. Возгонкой, называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:

Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром вытесняет серу из растворов сульфидов и сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду:

Галогены

Читайте также: