Вывод основных законов электрического тока в классической теории проводимости металлов
1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью Е=const. Co стороны поля заряд е испытывает действие силы F=eE и приобретает ускорение а=F/m=еЕ/т. Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость
где t>—среднее время между двумя последовательными соударениями электрона с ионами решетки.
Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона
Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время t> свободного пробега определяется средней длиной свободного пробега l> и средней скоростью движения электронов относительно кристаллической решетки проводника, равной +(v) (u>—средняя скорость теплового движения электронов). В §102 было показано, что (v)<< , поэтому
Подставив значение t> в формулу (103.1), получим
Плотность тока в металлическом проводнике, по (96.1),
откуда видно, что плотность тока пропорциональна напряженности поля,
т. е. получили закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональности между j и Е есть не что иное, как удельная проводимость материала
которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.
2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию
При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.
За единицу времени электрон испытывает с узлами решетки в среднем столкновений:
Если n — концентрация электронов, то в единицу времени происходит n столкновений и решетке передается энергия
которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,
Величина w называется удельной тепловой мощностью тока (см. §99). Коэффициент пропорциональности между w и Е 2 по (103.2) есть удельная проводимость ; следовательно, выражение (103.6) —закон Джоуля — Ленца в дифференциальной форме (ср. с (99.7)).
3. Закон Видемана — Франца. Металлы обладают как большой электропроводностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы — свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического теплового движения, т. е. осуществляют перенос теплоты.
Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности () к удельной проводимости () для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально термодинамической температуре:
где — постоянная, не зависящая от рода металла.
Элементарная классическая теория электропроводности металлов позволила найти значение : =3(k/e) 2 , где k — постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил =2(k/e) 2 , что привело к резкому расхождению теории с опытом.
Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опытных данных. Рассмотрим некоторые из них.
Температурная зависимость сопротивления. Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональная , должна возрастать пропорционально T (в (103.2) n и l> от температуры не зависят, а u>~Т). Этот вывод электронной теории противоречит опытным данным, согласно которым R~T (см. §98).
Оценка средней длины свободного пробега электронов в металлах. Чтобы по формуле (103.2) получить , совпадающие с опытными значениями, надо принимать l> значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.
Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти (см. §73), теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоемкость одноатомного электронного газа равна 3 /2R. Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.
Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.
Вывод основных законов электрического тока в классической теории электропроводности металлов
1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью E = const . Co стороны поля заряд е испытывает действие силы F = eE и приобретает ускорение a = F / m = eE / m . Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость
где á t ñ — среднее время между двумя последовательными соударениями электрона с ионами решетки.
Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона
Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время á t ñ свободного пробега определяется средней длиной свободного пробега á l ñ и средней скоростью движения электронов относительно кристаллической решетки проводника, равной á u ñ + á v ñ ( á u ñ — средняя скорость теплового движения электронов). Ранее нами было показано, что á v ñ u ñ , поэтому
Подставив значение á t ñ в формулу (103.1), получим
Плотность тока в металлическом проводнике, по (96.1),
откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получили закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональности между j и E есть не что иное, как удельная проводимость материала
которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.
2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию
За единицу времени электрон испытывает с узлами решетки в среднем á z ñ столкновений:
Если n — концентрация электронов, то в единицу времени происходит п á z ñ столкновений и решетке передается энергия
которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,
Величина w является удельной тепловой мощностью тока. Коэффициент пропорциональности между w и E 2 по (103.2) есть удельная проводимость g ; следовательно, выражение (103.6)—закон Джоуля—Ленца в дифференциальной форме (ср. с (99.7)).
3. Закон Видемана — Франца. Металлы обладают как большой электропроводностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы — свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т. е. осуществляют перенос теплоты.
Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности ( l ) к удельной проводимости ( g ) для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально термодинамической температуре:
где b — постоянная, не зависящая от рода металла.
Элементарная классическая теория электропроводности металлов позволила найти значение b : b =3( k / e ) 2 , где k — постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил b =2( k / e ) 2 , что привело к резкому расхождению теории с опытом.
Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опытных данных. Рассмотрим некоторые из них.
Температурная зависимость сопротивления. Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональная g , должна возрастать пропорционально (в (103.2) п и á l ñ от температуры не зависят, а á u ñ ~ ). Этот вывод электронной теории противоречит опытным данным, согласно которым R ~ T (см. § 98).
Оценка средней длины свободного пробега электронов в металлах. Чтобы по формуле (103.2) получить g , совпадающие с опытными значениями, надо принимать á l ñ значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.
Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти, теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоемкость одноатомного электронного газа равна 3 /2R. Тогда атомная теплоемкость металлов должна быть близка к 4,5 R . Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.
Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.
Элементарная классическая теория электропроводности металлов
Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости металлов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследствии нидерландским физиком X. Лоренцем.
По теории Друде — Лоренца, электроны обладают такой же энергией теплового движения, как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории, можно найти среднюю скорость теплового движения электронов
которая для Т=300 К равна 1,1 · 105 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.
Вывод основных законов электрического тока в классической теории электропроводности металлов.
1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью Е=const. Co стороны поля заряд е испытывает действие силы приобретает ускорение . Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость
где t> — среднее время между двумя последовательными соударениями электрона с ионами решетки.
Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время t> свободного пробега определяется средней длиной свободного пробега l> и средней скоростью движения электронов относительно кристаллической решетки проводника, равной ( — средняя скорость теплового движения электронов). В § 102 было показано, что , поэтому
Подставив значение (t) в формулу (103.1), получим
Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.
откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получили закон Ома в дифференциальной форме. Коэффициент пропорциональности между j и Е есть не что иное, как удельная проводимость материала
2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием: поля приобретает дополнительную кинетическую энергию
За единицу времени электрон испытывает с узлами решетки в среднем столкновений:
Если n — концентрация электронов, то в единицу времени происходит столкновений и решетке передается энергия
которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника зш. единицу времени,
Величина w является удельной тепловой мощностью тока. Коэффициент пропорциональности между w и Е2 по (103.2) есть удельная проводимость ; следовательно, выражение (103.6) — закон Джоуля — Ленца в дифференциальной форме.
§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
1. Закон Ома.Пусть в металлическом проводнике существует электрическое поле напряженностью E=const. Coстороны поля зарядеиспытывает действие силы F = eE и приобретает ускорение a=F/m=eE/m.Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость
где t— среднее время между двумя последовательными соударениями электрона с ионами решетки.
Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона
Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время tсвободного пробега определяется средней длиной свободного пробегаlи средней скоростью движения электронов относительно кристаллической решетки проводника, равной u +v (u —средняя скорость теплового движения электронов). В § 102 было показано, что vu, поэтому
Подставив значение tв формулу (103.1), получим
откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получили закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональности между j и Eесть не что иное, как удельная проводимость материала
2. Закон Джоуля — Ленца.К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию
За единицу времени электрон испытывает с узлами решетки в среднем zстолкновений:
Если n— концентрация электронов, то в единицу времени происходитпz столкновений и решетке передается энергия
Величина wявляется удельной тепловой мощностью тока (см. § 99). Коэффициент пропорциональности междуwи E 2 по (103.2) есть удельная проводимость; следовательно, выражение (103.6)—закон Джоуля—Ленца в дифференциальной форме (ср. с (99.7)).
3. Закон Видемана —Франца.Металлы обладают как большой электропроводностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы—свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т. е. осуществляют перенос теплоты.
Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности () к удельной проводимости () для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально термодинамической температуре:
где —постоянная, не зависящая от рода металла.
Элементарная классическая теория электропроводности металлов позволила найти значение :=3(k/e) 2 ,где k—постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил =2(k/e) 2 ,что привело к резкому расхождению теории с опытом.
Температурная зависимость сопротивления.Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональная, должна возрастать пропорционально (в (103.2)пиlот температуры не зависят, аu~ ). Этот вывод электронной теории противоречит опытным данным, согласно которым R~T(см. § 98).
Оценка средней длины свободного пробега электронов в металлах.Чтобы по формуле (103.2) получить, совпадающие с опытными значениями, надо приниматьlзначительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.
Теплоемкость металлов.Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти (см. § 73), теплоемкость одноатомного кристалла равна 3R.Учтем, что теплоемкость одноатомного электронного газа равна 3 /2R.Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.
Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.
Читайте также: