Вытеснение металла из соли

Обновлено: 22.01.2025

Наиболее распространенные методы разделе­ния и выделения металлов и их соединений из растворов — осаждение (электролиз, це­ментация, перевод в нерастворимые соедине­ния, кристаллизация), сорбция, экстракция. Выбор наиболее рационального метода дол­жен производиться в каждом отдельном слу­чае с учетом ряда факторов, из которых первостепенное значение имеют состав по­ступающего на осаждение раствора и тре­бования, предъявляемые к чистоте конечной продукции. Например, в медной промышлен­ности применяют электролиз для переработки богатых растворов и цементацию меди — для осаждения меди при концентрации менее 15 г/л [20, 76].

Осаждение металлов производят электролизом, цементацией, восстановлением соединений до металла водородом, разложе­нием комплексных солей.

Электролиз используют для извлечения металлов из очищенных растворов после выщелачивания (электроосаждение) и для получения чистых металлов из черновых продуктов (электрорафинирование). Этот метод получил широкое применение в гидрометаллургии меди, цинка, кадмия и марганца.

При цементации вытеснение ионов одного металла из растворов его солей производя ионами другого металла, расположенного выше в ряду напряжений (более электроотрицательного). Медь цементируют железом; или чугунной стружкой, железным скрапом губчатым железом, обезоловяненными консервными банками; золото — цинковой стружкой, цинковой и алюминиевой пылью; кадмий — цинковой пылью, никель —

кобальтовым порошком. Цементацию металлов производят в различных. аппаратах периодического или непрерывного действия (конусах барабанах, желобах, чанах, ваннах, аппаратах кипящего слоя).

Кроме того, никель, кобальт и медь осаждают из аммиачных растворов восстановлением их до металла водородом под давлением 3,5—5 МПа.

Осаждение меди или никеля из аммиачных растворов производят также разложением образовавшихся при выщелачивании комп­лексных углеаммониевых солей этих металлов. Медь осаждается в виде черной окиси меди, а никель — в виде карбоната. В результате дистилляции получают газообразный амиак и углекислоту, которые улавливают и вновь используют в процессе.

Часто металлы осаждаются в виде нерастворимых соединений: гидроокисей, сульфидов, ксантогенатов, карбонатов, вольфраматов, молибдатов и др. При оптимальном рН среды можно практически полностью отделить молибден от вольфрама в виде сульфида из растворов, содержащих вольфрамат натрия тиосоединения молибдена. Большое распространение в гидрометаллургических процeccax получил гидролиз, при котором возможно селективное осаждение некоторых металлов в виде гидроокисей иди основных шей.

При кристаллизации значительная часть извлекаемого металла осаждается в результате упарки и охлаждения раствора или изменения рН среды. Таким образом выделяют из раствора сульфат натрия при хлорирующем обжиге пиритных огарков и сульфат марганца при сернокислотном выщелачивании марганцевых руд. В вольфрамовой и молибденовой промышленности кристаллизацию применяют для получения чистых вольфрамата и молибдата аммония, содержание вредных примесей в которых не должно превышать тысячных долей процента.

В некоторых случаях, особенно при получении полупроводниковых соединений редких металлов, требуется, чтобы суммарное содержание всех примесей не превышало 0,05—0,1%. Поэтому полученные соединения перечищают (растворяют или разлагают их, затем повторно осаждают, часто завершающей стадией осаждения является электролиз, кристаллизация или восстановление до металла водородом).

Сорбционные и экстракционные методы извлечения металлов из растворов для значительного повышения концентрации их и очистки от вредных приме­сей получили широкое распространение в тех­нологии урановых, золотосодержащих, воль­фрамовых, молибденовых, медных и редко-метальных руд [20, 46, 92].

В качестве сорбентов применяют иониты— вещества, способные к обмену ионами с окру­жающим раствором и практически не раство­римые в применяемых в гидрометаллургии растворителях. В зависимости от характера обмениваемых ионов эти вещества делят на катиониты и аниониты.

Наибольшее распространение получила сорбция осветленных растворов в колонках с неподвижным слоем ионита. Однако в урановой и золотодобывающей промышленности успешно внедрена сорбция металла ионитами из жидкой фазы пульпы — бесфильтрационная сорбция. Возможность применения та­кого способа определяется значительной раз­ницей в крупности ионита и выщелачиваемого материала, что позволяет отделить ионит пропусканием пульпы через сито с отвер­стиями соответствующего размера. При осу­ществлении такого варианта ионообменного процесса значительно упрощается и делается более экономичной технологическая схема вследствие исключения операций предвари­тельного фильтрования пульпы. Весьма эф­фективно совмещение йоннообменной сорб­ции с выщелачиванием из руды полезных компонентов (ионообменное выщелачивание), позволяющее значительно повысить технико-экономические показатели гидрометаллурги­ческого процесса.

Для последующей десорбции металлов из ионитов (элюирование) применяют растворы различных реагентов — нитрата аммоний или натрия, хлористого натрия, аммиака, едкого натра, углекислого натрия, минеральных кис­лот и др.

Во многих случаях сорбция металлов ха­рактеризуется высокими технологическими показателями. Так, емкость анионита по урану составляет 30—50 кг/м 3 смолы в на­бухшем состоянии, извлечение металла из раствора достигает 98—99,8 %, На 1 м 3 загруженной смолы сорбируется 12—23 кг урана в сутки. Еще более высокая емкость получена по вольфраму и молибдену — до 160 кг/м 3 анионита.

Продолжительность использования ионо­обменных сорбентов во многих случаях опре­деляется постепенным снижением их емкости вследствие частичного «отравления» ионитов, образования инертных пленок и разрушения обменных групп. Кроме того, неизбежны механические потери ионитов. Например, после двух лет работы опытной установки, на которой уран извлекался непосредственно из пульпы, общие потери ионита вследствие истирания составили 23 %, а емкость умень­шилась на 10 %. Скорость поглощения и элюирования осталась прежней.

В качестве сорбента применяют также активированный уголь, главным образом для сорбции золота и серебра из цианистых растворов.

Очистка растворов от мышьяка и сурьмы, коллоидальной серы и некоторых других вредных примесей осуществляется сорбцией их гидратом окиси железа.

Все большее значение в гидрометаллургии приобретают экстракционные процессы, при которых водный раствор солей металлов вступает в контакт с несмешивающейся с во­дой органической жидкостью, извлекающей определенные металлы из исходного раствора в виде комплексных соединений. Эффектив­ность экстракционного процесса количест­венно характеризуется коэффициентом рас­пределения извлекаемого металла

где Y — концентрация металла в органиче­ской фазе; X — то же, в водной фазе.

Практически процесс экстракции может быть реализован при коэффициенте распре­деления металла не менее 0,3—0,5. Высокое извлечение или практически полное разделе­ние металлов достигается при условии противоточного осуществления процесса, когда операция экстракции повторяется много­кратно.

В ряде случаев при экстракции достигается высокая селекция металлов из растворов, позволяющая осуществить разделение весьма близких по химическим свойствам элементов.

В качестве экстрагентов используют амины, кетоны, карбоновые кислоты, спирты, эфиры, фосфорсодержащие соединения.. В качестве растворителей экстрагентов (разбавителей) применяют углеводороды и их хлорпроизводные.

После отделения органической фазы от водной производится реэкстракцкя металла обработкой органической фазы щелочным или кислым раствором, а иногда только водой. В реэкстракте можно получить концентра­цию извлекаемых элементов во много раз выше, чем в исходном растворе.

Экстракцию широко применяют в урановой промышленности. В настоящее время значи­тельные успехи по экстракции достигнуты также в технологии извлечения и очистки многих редких и некоторых цветных метал­лов — меди, никеля, кобальта, тантала, нио­бия, вольфрама, молибдена, рения, индия, германия, гафния и др.

В промышленности для экстракции при­меняют смесители, отстойники, колонны с насадкой, тарельчатые колонны с пульса­цией, центробежные экстракторы и т. д.

Химические свойства металлов

Металлы занимают в Периодической таблице левый нижний угол. Металлы относятся к семействам s-элементов, d-элементов, f-элементов и частично – р-элементов.

Самым типичным свойством металлов является их способность отдавать электроны и переходить в положительно заряженные ионы. Причём металлы могут проявлять только положительную степень окисления.

1. Взаимодействие металлов с неметаллами.

а) Взаимодействие металлов с водородом.

С водородом непосредственно реагируют щелочные и щелочноземельные металлы, образуя гидриды.

Например:

Образуются нестехиометрические соединения с ионной кристаллической структурой.

б) Взаимодействие металлов с кислородом.

Все металлы за исключением Au, Ag, Pt окисляются кислородом воздуха.

Пример:

в) Взаимодействие металлов с галогенами.

Все металлы реагируют с галогенами с образованием галогенидов.

Пример:

В основном это ионные соединения: MeHaln

г) Взаимодействие металлов с азотом.

С азотом взаимодействуют щелочные и щелочноземельные металлы.

д) Взаимодействие металлов с углеродом.

Соединения металлов и углерода – карбиды. Они образуются при взаимодействии расплавов с углеродом. Активные металлы образуют с углеродом стехиометрические соединения:

Металлы – d-элементы образуют соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC – используются для получения сверхтвёрдых сталей.

2. Взаимодействие металлов с водой.

С водой реагируют металлы, имеющие более отрицательный потенциал, чем окислительно-восстановительный потенциал воды.

Активные металлы более активно реагируют с водой, разлагая воду с выделением водорода.

Менее активные металлы медленно разлагают воду и процесс тормозится из-за образования нерастворимых веществ.

3. Взаимодействие металлов с растворами солей.

Такая реакция возможна, если реагирующий металл активнее, чем находящийся в соли:

Металл, обладающий более отрицательным или менее положительным стандартным электродным потенциалом, вытесняет другой металл из раствора его соли.

4. Взаимодействие металлов с растворами щелочей.

Со щелочами могут взаимодействовать металлы, дающие амфотерные гидрооксиды или обладающие высокими степенями окисления в присутствии сильных окислителей. При взаимодействии металлов с растворами щелочей, окислителем является вода.

1 Zn 0 + 4OH – – 2e = [Zn(OH)4] 2– окисление

Zn 0 – восстановитель

1 2H2O + 2e = H2 + 2OH – восстановление

Металлы, обладающие высокими степенями окисления, могут взаимодействовать со щелочами при сплавлении:

5. Взаимодействие металлов с кислотами.

Это сложные реакции, продукты взаимодействия зависят от активности металла, от вида и концентрации кислоты и от температуры.

По активности металлы условно делятся на активные, средней активности и малоактивные.

Кислоты условно делятся на 2 группы:

I группа – кислоты, обладающие невысокой окислительной способностью: HCl, HI, HBr, H2SO4(разб.), H3PO4, H2S, окислитель здесь H + . При взаимодействии с металлами выделяется кислород (H2↑). С кислотами первой группы реагируют металлы, обладающие отрицательным электродным потенциалом.

II группа – кислоты, обладающие высокой окислительной способностью: H2SO4(конц.), HNO3(разб.), HNO3(конц.). В этих кислотах окислителями являются анионы кислоты: . Продукты восстановления аниона могут быть самыми разнообразными и зависят от активности металла.

H2S↑ – c активными металлами

H2SO4 +6е S 0 ↓ – с металлами средней активности

SO2↑ – c малоактивными металлами

HNO3 +4,5e N2O, N2 – с металлами средней активности

NO – c малоактивными металлами

HNO3(конц.) – NO2↑ – c металлами любой активности.

Если металлы обладают переменной валентностью, то с кислотами I группы металлы приобретают низшую положительную степень окисления: Fe → Fe 2+ , Cr → Cr 2+ . При взаимодействии с кислотами II группы – степень окисления +3: Fe → Fe 3+ , Cr → Cr 3+ , при этом никогда не выделяется водород.

Некоторые металлы (Fe, Cr, Al, Ti, Ni и др.) в растворах сильных кислот, окисляясь, покрываются плотной оксидной плёнкой, которая защищает металл от дальнейшего растворения (пассивация), но при нагревании оксидная плёнка растворяется, и реакция идёт.

Малорастворимые металлы, обладающие положительным электродным потенциалом, могут растворяться в кислотах I группы, в присутствии сильных окислителей.

Металлы в растворе собственной соли.


Количество ионов, которые будут взаимодействовать с раствором соли, будет меньше, т.к. соль уже содержит некоторое количество ионов этого металла.

Т.е. имеет большое значение какой металл и какая концентрация металла в соли, поведение металла.

Например: медь из раствора соли перейдет в электрод, т.е. имеются в виду положительные ионы.

Гальванический элемент – любое устройство, позволяющее получать электрический ток, за счет протекания химических реакций.

Гальваническая цепь – последовательная совокупность скачков потенциала на границе раздела фаз.

Максимальная разность потенциалов, отвечающая обратимому протеканию химической реакции – ЭДС (Е)


Каждые два металла, будучи погруженными в растворы их солей, которые сообщаются между собой посредством сифона, заполненного электролитом, образуют гальванический элемент. Пластинки металлов, погруженные в растворы, называются электродами элемента.

Если соединить наружные концы электродов (полюсы элемента) проволокой, то от металла, у которого величина потенциала меньше, начинают перемещаться электроны к металлу, у которого она больше (например, от Zn к Pb). Уход электронов нарушает равновесие, существующее между металлом и его ионами в растворе, и вызывает переход в раствор нового количества ионов – металл постепенно растворяется. В то же время электроны, переходящие к другому металлу, разряжают у его поверхности находящиеся в растворе ионы - металл выделяется из раствора.

Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом.

В свинцово-цинковом элементе цинковый электрод является анодом, а свинцовый – катодом.

Таким образом, в замкнутом гальваническом элементе происходит взаимодействие между металлом и раствором соли другого металла, не соприкасающимися непосредственно друг с другом. Атомы первого металла, отдавая электроны, превращаются в ионы, а ионы второго металла, присоединяя электроны, превращаются в атомы. Первый металл вытесняет второй из раствора его соли. Например, при работе гальванического элемента, составленного из цинка и свинца, погруженных соответственно в растворы Zn(NO3)2 и Pb(NO3)2 у электродов происходят следующие процессы:

Суммируя оба процесса, получаем уравнение Zn + Pb 2+ ↔ Pb + Zn 2+ , выражающее происходящую в элементе реакцию в ионной форме. Молекулярное уравнение той же реакции будет иметь вид:

Электродвижущая сила гальванического элемента равна разности потенциалов двух его электродов. При определении его всегда вычитают из большего потенциала меньший. Например, электродвижущая сила (Э.д.с.) рассмотренного элемента равна:

Э.д.с. = -0,13 (-0,76) = 0,63 v
EPb EZn

Такую величину она будет иметь при условии, что металлы погружены в растворы, в которых концентрация ионов равна 1 г-ион/л. При других концентрациях растворов величины электродных потенциалов будут несколько иные. Их можно вычислить по формуле:

E = E 0 + (0,058 / n) • lgC уравнение Нернста

или E = E 0 + • lgC

где E - искомый потенциал металла (в вольтах)

E 0 - его нормальный потенциал

n - валентность металла (зарядность иона)

С - концентрация ионов в растворе (г-ион/л)

F – число Фарадея

R – универсальная газовая постоянная

Т – температура по абсолютной шкале

Пример:

Найти электродвижущую силу элемента (э. д. с.) образованного цинковым электродом, опущенным в 0,1 М раствор Zn(NO3)2 и свинцовым электродом, опущенным в 2 М раствор Pb(NO3)2.

Решение:

Вычисляем потенциал цинкового электрода:

EZn = -0,76 + (0,058 / 2) lg 0,1 = -0,76 + 0,029 • (-1) = -0,79 v

Вычисляем потенциал свинцового электрода:

EPb = -0,13 + (0,058 / 2) lg 2 = -0,13 + 0,029 • 0,3010 = -0,12 v

Находим электродвижущую силу элемента:

Э. д. с. = -0,12 – (-0,79) = 0,67 v

Электролиз

Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

Сущность электролиза заключается в том, что при пропускании тока через раствор электролита (или расплавленный электролит) положительно заряженные ионы перемещаются к катоду, а отрицательно заряженные – к аноду. Достигнув электродов, ионы разряжаются, в результате чего у электродов выделяются составные части растворенного электролита или водород и кислород из воды.

Для перевода различных ионов в нейтральные атомы или группы атомов требуется различное напряжение электрического тока. Одни ионы легче теряют свои заряды, другие труднее. Степень легкости, с которой разряжаются (присоединяют электроны) ионы металлов, определяется положением металлов в ряду напряжений.

На катоде источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является “восстановителем”. На аноде происходит отдача электронов анионами, поэтому анод является “окислителем”.

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса:

на аноде окисление анионов и гидроксид-ионов,

на катоде восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются:

на аноде окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода;

на катоде восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода.

При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. При использовании инертных электродов используют следующие правила:

1. На аноде могут образовываться следующие продукты:

а) при электролизе растворов, содержащих в своем составе анионы F - , SO4 2- , NО3 - , РО4 3- (если электролизу подвергается соль кислородсодержащей кислоты или сама кислота, то разряжаются гидроксильные ионы, а не ионы кислородных остатков), а также растворов щелочей выделяется кислород Образующиеся при разряде гидроксильных ионов нейтральные группы ОН - тотчас же разлагаются по уравнению:

4OH- ® 2H2O + O2В результате у анода выделяется кислород.

б) при окислении анионов Сl - , Вr - , I - выделяются соответственно хлор, бром, иод;

в) при окислении анионов органических кислот происходит процесс:

2. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl 3+ , на катоде выделяется водород; если ион расположен в ряду напряжений правее водорода, то на катоде выделяется металл. Чем левее стоит металл в ряду напряжений, чем больше его отрицательный потенциал (или меньше положительный потенциал), тем труднее при прочих равных условиях разряжаются его ионы (легче всего разряжаются ионы Аu 3+ , Ag + ; труднее всегоLi + , Rb + , K + ).

Если в растворе одновременно находятся ионы нескольких металлов, то в первую очередь разряжаются ионы того металла, у которого отрицательный потенциал меньше (или положительный – больше). Например, из раствора, содержащего ионы Zn 2+ и Cu 2+ , сперва выделяется металлическая медь. Но величина потенциала металла зависит также и от концентрации его ионов в растворе; точно также изменяется и легкость разряда ионов каждого металла в зависимости от их концентрации: увеличение концентрации облегчает разряд ионов, уменьшение – затрудняет. Поэтому при электролизе раствора, содержащего ионы нескольких металлов может случиться, что выделение более активного металла будет происходить раньше, чем выделение менее активного (если концентрация ионов первого металла значительна, а второго – очень мала).

3. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между Al + и Н + , на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода. Только при электролизе солей натрия, кальция и других металлов до алюминия включительно разряжаются ионы водорода и выделяется водород.

Рассмотрим в качестве примера электролиз водного раствора хлорида меди на инертных электродах. В растворе находятся ионы Сu 2+ и 2Сl - , которые под действием электрического тока направляются к соответствующим электродам:

На катоде выделяется металлическая медь, на аноде — газообразный хлор.

Если в рассмотренном примере электролиза раствора CuCl2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов Сl - и выделения хлора протекает окисление анода (меди). В этом случае происходит растворение самого анода, и в виде ионов Си он переходит в раствор. Электролиз CuCl2 с растворимым анодом можно записать так:

Электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.

Электролиз раствора хлорида никеля NiCl2

Раствор содержит ионы Ni 2+ и Cl - , а также в ничтожной концентрации ионы Н + и ОН - . При пропускании тока ионы Ni 2+ перемещаются к катоду, а ионы Cl - – к аноду. Принимая от катода по два электрона, ионы Ni 2+ превращаются в нейтральные атомы, выделяющиеся из раствора. Катод постепенно покрывается никелем.

Ионы хлора,достигая анода, отдают ему электроны и превращаются в атомы хлора, которые, соединяясь попарно, образуют молекулы хлора. У анода выделяется хлор.

Таким образом, у катода происходит процесс восстановления, у анода – процесс окисления.


Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Взаимодействие с кислотами

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Взаимодействие с солями

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Таблица «Химические свойства металлов»

Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb

Cu, Hg, Ag, Pt, Au

Восстановительная способность металлов в свободном состоянии

Возрастает справа налево

Взаимодействие металлов с кислородом

Быстро окисляются при обычной температуре

Медленно окисляются при обычной температуре или при нагревании

Взаимодействие с водой

Выделяется водород и образуется гидроксид

При нагревании выделяется водород и образуются оксиды

Водород из воды не вытесняют

Взаимодействие с кислотами

Вытесняют водород из разбавленных кислот (кроме HNO3)

Не вытесняют водород из разбавленных кислот

Реагируют с концентрированными азотной и серной кислотами

С кислотами не реагируют, растворяются в царской водке

Взаимодействие с солями

Не могут вытеснять металлы из солей

Более активные металлы (кроме щелочных и щелочноземельных) вытесняют менее активные из их солей

Взаимодействие с оксидами

Для металлов (при высокой температуре) характерно восстановление неметаллов или менее активных металлов из их оксидов

Химические свойства солей


Впервые школьники знакомятся с химическими свойствами солей в 8 классе, и для понимания дальнейшего материала без этой темы никуда. Наша статья поможет освежить знания перед контрольной или экзаменом: вспомним, какие бывают соли и как они образуются, рассмотрим типичные реакции с ними.

Соли — это сложные вещества, в состав которых входят катионы металла и анионы кислотного остатка. Иногда в состав солей входят водород или гидроксид-ион.

Классификация и номенклатура солей

Так как соли — это продукт полного или частичного замещения металлом атома водорода в кислоте, по составу их можно классифицировать следующим образом.

Кислые соли

Образованы неполным замещением атомов водорода на металл в кислоте.

В наименованиях кислых солей указывают количество водорода приставками «гидро-» или «дигидро-», название кислотного остатка и название металла. Если металл имеет переменную валентность, то в скобках указывают валентность.

Примеры кислых солей и их наименования:

LiHCO3 — гидрокарбонат лития,

NaHSO4 — гидросульфат натрия,

NaH2PO4 — дигидрофосфат натрия.

Средние соли

Образованы полным замещением атомов водорода в кислоте на металл.

Наименования средних солей складываются из названий кислотного остатка и металла. При необходимости указывают валентность.

Примеры средних солей с названиями:

CuSO4 — сульфат меди (II),

CaCl2 — хлорид кальция.

Основные соли

Продукт неполного замещения гидроксогрупп на кислотный остаток.

В наименованиях основных солей указывают количество гидроксид-ионов приставкой «гидроксо-» или «дигидроксо-», название кислотного остатка и название металла с указанием валентности.

Пример: Mg(OH)Cl — гидроксохлорид магния.

Двойные соли

В состав входят два разных металла и один кислотный остаток.

Наименование складывается из названия аниона кислотного остатка и названий металлов с указанием валентности (если металл имеет переменную валентность).

Примеры двойных солей и их наименования:

KNaSO4 — сульфат калия-натрия,

Смешанные соли

Содержат один металл и два разных кислотных остатка.

Наименования смешанных солей складываются из названия кислотных остатков (по усложнению) и названия металла с указанием валентности (при необходимости).

Примеры смешанных солей с наименованиями:

CaClOCl — хлорид-гиполхорит кальция,

PbFCl — фторид-хлорид свинца (II).

Комплексные соли

Образованы комплексным катионом или анионом, связанным с несколькими лигандами.

Называют комплексные соли по схеме: координационное число + лиганд с окончанием «-о» + комплексообразователь с окончанием «-ат» и указанием валентности + внешняя сфера, простой ион в родительном падеже.

Пример: K[Al(OH)4] — тетрагидроксоалюминат калия.

Гидратные соли

В состав входит молекула кристаллизационной воды.

Число молекул воды указывают численной приставкой к слову «гидрат» и добавляют название соли.

Пример: СuSO4∙5H2O — пентагидрат сульфата меди (II).

Получение солей

Получение средних солей

Средние соли можно образовать в ходе следующих реакций:

Так получают только соли бескислородных кислот.

Металл, стоящий левее H2 в ряду активности, с раствором кислоты:

Mg + 2HCl = MgCl2 + H2

Металл с раствором соли менее активного металла:

Основный оксид + кислотный оксид:

Основный оксид и кислота:

Основание с кислотным оксидом:

Основание с кислотой (реакция нейтрализации):

Взаимодействие соли с кислотой:

Взаимодействие возможно, если одним из продуктов реакции будет нерастворимая соль, вода или газ.

Реакция раствора основания с раствором соли:

Взаимодействие растворов двух солей с образованием новых солей:

Получение кислых солей

Кислые соли образуются при взаимодействии:

Кислот с металлами:

Кислот с оксидами металлов:

Гидроксидов металлов с кислотами:

Кислот с солями:

Аммиака с кислотами:

Получение кислых солей возможно, если кислота в избытке.

Также кислые соли образуются в ходе реакции основания с избытком кислотного оксида:

Получение основных солей

Взаимодействие кислоты с избытком основания:

Добавление (по каплям) небольших количеств щелочей к растворам средних солей металлов:

Взаимодействие солей слабых кислот со средними солями:

Получение комплексных солей

Реакции солей с лигандами:

Получение двойных солей

Двойные соли получают совместной кристаллизацией двух солей:

Химические свойства средних солей

Растворимые соли являются электролитами, следовательно, могут распадаться на ионы. Средние соли диссоциируют сразу:

Нитраты разлагаются в зависимости от активности металла соли:

Металл Левее Mg, кроме Li От Mg до Cu Правее Cu
Продукты MeNO3 + O2 MexOy + NO2 + O2 Me + NO2 + O2
Пример 2NaNO3 = 2NaNO2 + O2 2Cu(NO3)2 = 2CuO + 4NO2 + O2 2AgNO3= 2Ag + 2NO2 + O2

Соли аммония разлагаются с выделением азота или оксида азота (I), если в составе анион, проявляет окислительные свойства. В остальных случаях разложение солей аммония сопровождается выделением аммиака:

Взаимодействие солей с металлами:

Более активные металлы вытесняют менее активные металлы из растворов солей.

Некоторые соли подвержены гидролизу:

Обменные реакции соли и кислоты, соли с основаниями и взаимодействие солей с солями:

Окислительно-восстановительные реакции, обусловленные свойствами катиона или аниона:

Химические свойства кислых солей

Диссоциация. Кислые соли диссоциируют ступенчато:

Термическое разложение с образованием средней соли:

Взаимодействие солей со щелочью. В результате образуется средняя соль:

Химические свойства основных солей

Реакции солей с кислотами — образование средней соли:

Диссоциация — так же как и кислые соли, основные соли диссоциируют ступенчато.

Химические свойства комплексных солей

Избыток сильной кислоты приводит к разрушению комплекса и образованию двух средних солей и воды:

Недостаток сильной кислоты приводит к образованию средней соли активного металла, амфотерного гидроксида и воды:

Взаимодействие слабой кислоты с солью образует кислую соль активного металла, амфотерный гидроксид и воду:

При действии углекислого или сернистого газа получаются кислая соль активного металла и амфотерный гидроксид:

Реакция солей, образованных сильными кислотами с катионами Fe3+, Al3+ и Cr3+, приводит к взаимному усилению гидролиза. Продукты реакции — два амфотерных гидроксида и соль активного металла:

Разлагаются при нагревании:

Вопросы для самопроверки

С чем взаимодействуют средние соли?

Назовите типичные реакции солей.

Из предложенного списка солей выберите те, которые не реагируют с цинком: нитрит калия, бромид железа, карбонат цезия, сульфат меди.

Читайте также: