Все металлы твердые тела
Да, металлы могут быть газами, в зависимости от того, насколько высока их температура кипения. Но действительно ли газообразные металлы считаются металлами?
Закройте на мгновение глаза и позвольте слову "металл" всплыть в вашей голове. А теперь ответьте: какой первый образ приходит вам на ум, когда вы думаете о "металле"?
Большинство из вас увидят твердый, блестящий твердый предмет - может быть, блестящий меч, гладкую машину или чистую посуду?
Слово "металл" ассоциируется у нас с твердыми объектами, потому что большинство металлов вокруг нас - это твердые тела. Но ограничиваются ли металлы только твердым телом? Могут ли они быть газом?
Может ли металл быть газом?
Да, конечно! Хотя металлы обычно находятся в твердом состоянии при комнатной температуре (вероятно, поэтому мы ассоциируем слово "металл" с твердыми объектами), металлы также могут быть газами.
Дело в том, что состояния вещества универсальны: металл может быть твердым, жидким или газообразным. Но это состояние определяется на основе правильных условий температуры и давления.
Например, металл, скажем, свинец, имеет температуру кипения 1740 градусов по Цельсию. Теперь вы знаете, что свинец в своем «естественном состоянии» представляет собой твердое вещество. Но когда вы начнете его нагревать, он сначала превратится в жидкость при 327 градусах Цельсия, а если вы продолжите подавать больше тепла, он превратится в газ при 1740 градусах Цельсия.
Свинец превращается в пар при 1740 градусах Цельсия.
Другой отличный пример - ртуть. Фактически, это металл с самой низкой температурой кипения (356,7 °C), что означает, что из всех металлов он превращается в газ при относительно более низкой температуре.
Но учтите, что пары ртути очень вредны. По данным Всемирной организации здравоохранения, "вдыхание паров ртути может оказывать вредное воздействие на нервную, пищеварительную и иммунную системы, легкие и почки и может быть фатальным. Неорганические соли ртути разъедают кожу, глаза и желудочно-кишечный тракт, а при попадании внутрь могут вызывать токсическое воздействие на почки".
Ртуть весьма примечательна - это металл, который существует в жидком виде при комнатной температуре, а затем закипает при небольшой температуре.
А теперь давайте обсудим еще один аспект этой саги о превращении металла в газ.
Остается ли металл металлом, когда он превращается в газ?
Мы установили, что металлы могут превращаться в газы, если их нагреть до точки кипения. Но если металл нагревается до точки кипения и становится газом, остается ли он металлом? Другими словами, может ли металл находиться в газообразном состоянии и при этом оставаться металлом?
Газообразные металлы не сохраняют свойств своих твердых аналогов, включая металлические связи, металлическую проводимость, пластичность, блеск или другие металлические свойства. Вот почему металлы больше не считаются металлами, когда они переходят в газообразное состояние - это просто газ с определенными характерными свойствами "родительского" элемента. (тогда чем же они считаются? - В ЭТОЙ ТОЧКЕ ОНИ ЯВЛЯЮТСЯ ПРОСТО ГАЗОМ. РТУТЬ ЯВЛЯЕТСЯ МЕТАЛЛОМ, НО КОГДА ОНА КИПИТСЯ, ЕЕ ПАР НАЗЫВАЕТСЯ РТУТНЫМ ГАЗОМ/ПАРАМИ)
Но почему металлы твердые? Что в них такого особенного, что делает их твердыми?
Почему металлы вообще твердые?
Металлы твердые при комнатной температуре из-за того, как их последовательные атомы упаковываются внутри.
Видите ли, вся материя состоит из атомов. Состояние вещества зависит от того, насколько близко или далеко друг от друга находятся эти атомы.
Если составляющие атомы вещества находятся далеко друг от друга, то это вещество будет существовать в виде газа при комнатной температуре. Атомы в жидком состоянии относительно ближе друг к другу, но в твердых телах атомы упакованы вместе в плотные кристаллы.
Из-за сильных сил, которые удерживают эти атомы близко друг к другу, твердые тела жесткие и имеют определенную форму и размер (в отличие от жидкости и газа).
Металлы твердые при комнатной температуре, потому что входящие в их состав атомы металлов упаковываются близко друг к другу, придавая им жесткий или "затвердевший" внешний вид. Это также является причиной того, что металлы имеют высокую температуру плавления и не существуют в жидком состоянии при комнатной температуре.
В целом, металлы могут превращаться в газ, но как только они превращаются в газ, они не сохраняют своих металлических свойств.
14 различных типов металлов
Термин "металл" происходит от греческого слова "metalléuō", что означает выкапываю или добываю из земли. Наша планета содержит много металла. На самом деле из 118 элементов периодической системы порядка 95 являются металлами.
Это число не является точным, потому что граница между металлами и неметаллами довольно расплывчата: нет стандартного определения металлоида, как нет и полного согласия относительно элементов, соответствующим образом классифицированных как таковые.
Сегодня мы используем различные виды металлов, даже не замечая их. Начиная с зажимов в сантехнике и заканчивая устройством, которое вы используете для чтения этой статьи, все они сделаны из определенных металлов. Фактически, некоторые металлические элементы необходимы для биологических функций, таких как приток кислорода и передача нервных импульсов. Некоторые из них также широко используются в медицине в виде антацидов.
Все металлы в периодической таблице можно классифицировать по их химическим или физическим свойствам. Ниже мы перечислили некоторые различные типы металлов вместе с их реальным применением.
Классификация по физическим свойствам
14. Легкие металлы
Сплав титана 6AL-4V
Примеры: Алюминий, титан, магний
Легкие металлы имеют относительно низкую плотность. Формального определения или критериев для идентификации этих металлов нет, но твердые элементы с плотностью ниже 5 г/см³ обычно считаются легкими металлами.
Металлургия легких металлов была впервые развита в середине 19 века. Хотя большинство из них происходит естественным путем, значительная их часть образуется при электротермии и электролизе плавленых солей.
Их сплавы широко используются в авиационной промышленности благодаря их низкой плотности и достаточным механическим свойствам. Например, сплав титана 6AL-4V составляет почти 50 процентов всех сплавов, используемых в авиастроении. Он используется для изготовления роторов, лопастей компрессоров, мотогондол, компонентов гидравлических систем.
13. Тяжелые металлы
Окисленные свинцовые конкреции и кубик размером 1 см3
Примеры: железо, медь, кобальт, галлий, олово, золото, платина.
Тяжелые металлы - это элементы с относительно высокой плотностью (обычно более 5 г/см³) и атомным весом. Они, как правило, менее реактивны и содержат гораздо меньше растворимых сульфидов и гидроксидов, чем более легкие металлы.
Эти металлы редки в земной коре, но они присутствуют в различных аспектах современной жизни. Они используются в солнечных батареях, сотовых телефонах, транспортных средствах, антисептиках и ускорителях частиц.
Тяжелые металлы часто смешиваются в окружающей среде из-за промышленной деятельности, ухудшая качество почвы, воды и воздуха, а затем вызывая проблемы со здоровьем у животных и растений. Выбросы транспортных средств, горнодобывающие и промышленные отходы, удобрения, свинцово-кислотные батареи и микропластики, плавающие в океанах, являются одними из наиболее распространенных источников тяжелых металлов в этом контексте.
12. Белый металл
Подшипники из белого металла
Примеры: Обычно изготавливается из олова, свинца, висмута, сурьмы, кадмия, цинка.
Белые металлы - это различные светлые сплавы, используемые в качестве основы для украшений или изделий из серебра. Например, многие сплавы на основе олова или свинца используются в ювелирных изделиях и подшипниках.
Белый металлический сплав изготавливается путем объединения определенных металлов в фиксированных пропорциях в соответствии с требованиями конечного продукта. Основной металл для ювелирных изделий, например, формуется, охлаждается, экстрагируется, а затем полируется, чтобы придать ему точную форму и блестящий вид.
Они также используются для изготовления тяжелых подшипников общего назначения, подшипников внутреннего сгорания среднего размера и электрических машин.
11. Хрупкий металл
Хрупкое разрушение чугуна
Примеры: сплавы углеродистой стали, чугуна и инструментальной стали.
Металл считается хрупким, если он твердый, но не может противостоять ударам или вибрации под нагрузкой. Такие металлы под воздействием напряжения ломаются без заметной пластической деформации. Они имеют низкую прочность на разрыв и часто издают щелкающий звук при поломке.
Многие стальные сплавы становятся хрупкими при низких температурах, в зависимости от их обработки и состава. Чугун, например, твердый, но хрупкий из-за высокого содержания углерода. Напротив, керамика и стекло гораздо более хрупки, чем металлы, из-за их ионных связей.
Галлий, висмут, хром, марганец и бериллий также хрупки. Они часто используются в различных гражданских и военных целях, связанных с высокими деформационными нагрузками. Чугун, устойчивый к повреждениям в результате окисления, используется в машинах, трубах и деталях автомобильной промышленности, таких как корпуса коробок передач и головки цилиндров.
10. Тугоплавкий металл
Микроскопическое изображение вольфрамовой нити в лампе накаливания
Примеры: молибден, вольфрам, тантал, рений, ниобий.
Тугоплавкие металлы имеют чрезвычайно высокие температуры плавления (более 2000 °С) и устойчивы к износу, деформации и коррозии. Они являются хорошими проводниками тепла и электричества и имеют высокую плотность.
Другой ключевой характеристикой является их термостойкость: они не расширяются и не растрескиваются при многократном нагревании и охлаждении. Однако они могут деформироваться при высоких нагрузках и окисляться при высоких температурах.
Благодаря своей прочности и твердости они идеально подходят для сверления и резки. Карбиды и сплавы тугоплавких металлов используются почти во всех отраслях промышленности, включая горнодобывающую, автомобильную, аэрокосмическую, химическую и ядерную.
Металлический вольфрам, например, используется в ламповых нитях. Сплавы рения используются в гироскопах и ядерных реакторах. А ниобиевые сплавы используются для форсунок жидкостных ракетных двигателей.
9. Черные и цветные металлы
Валы-шестерни из (черной) нержавеющей стали
Черные металлы: Сталь, чугун, сплавы железа.
Цветные металлы: Медь, алюминий, свинец, цинк, серебро, золото.
Термин "железо" происходит от латинского слова "Ferrum", что переводится как "железо". Таким образом, термин "черный металл" обычно означает "содержащий железо", тогда как "цветной металл" означает металлы и сплавы, которые не содержат достаточного количества железа.
Поскольку черные металлы могут иметь широкий спектр легирующих элементов, которые значительно изменяют их характеристики, очень трудно поместить свойства всех черных металлов под один зонт. Тем не менее некоторые обобщения могут быть сделаны, например, большинство черных металлов являются твердыми и магнитными.
Черные металлы используются для применения с высокой нагрузкой и низкой скоростью, в то время как цветные металлы предпочтительны для применения с высокой скоростью и нулевой нагрузкой для применения с низкой нагрузкой.
Сталь является наиболее распространенным черным металлом. Она составляет около 80% всего металлического материала благодаря своей доступности, высокой прочности, низкой стоимости, простоте изготовления и широкому спектру свойств. Она широко используется в строительстве и обрабатывающей промышленности. Фактически, рост производства стали показывает общее развитие промышленного мира.
8. Цветные и благородные металлы
Ассортимент благородных металлов
Цветные металлы: медь, алюминий, олово, никель, цинк
Благородные металлы: родий, ртуть, серебро, рутений, осмий, иридий
Цветные металлы - это обычные и недорогие металлы, которые корродируют, окисляются или тускнеют быстрее, чем другие металлы, когда подвергаются воздействию воздуха или влаги. Они в изобилии встречаются в природе и легко добываются.
Они широко используются в промышленных и коммерческих целях и имеют неоценимое значение для мировой экономики благодаря своей полезности и повсеместности. Некоторые цветные металлы обладают отличительными характеристиками, которые не могут быть продублированы другими металлами. Например, цинк используется для гальванизации стали, чтобы защитить ее от коррозии, а никель - для изготовления нержавеющей стали.
Благородные металлы, с другой стороны, устойчивы к окислению и коррозии во влажном воздухе. Согласно атомной физике, благородные металлы имеют заполненный электрон d-диапазона. В соответствии с этим строгим определением, медь, серебро и золото являются благородными металлами.
Они находят применение в таких областях, как орнамент, металлургия и высокие технологии. Их точное использование варьируется от одного элемента к другому. Некоторые благородные металлы, такие как родий, используются в качестве катализаторов в химической и автомобильной промышленности.
7. Драгоценные металлы
Родий: 1 грамм порошка, 1 грамм прессованного цилиндра и 1 г аргонодуговой переплавленной гранулы
Примеры: палладий, золото, платина, серебро, родий.
Драгоценные металлы считаются редкими и имеют высокую экономическую ценность. Химически они менее реакционноспособны, чем большинство элементов (включая благородные металлы). Они также пластичны и имеют высокий блеск.
Несколько веков назад эти металлы использовались в качестве валюты. Но сейчас они в основном рассматриваются как промышленные товары и инвестиции. Многие инвесторы покупают драгоценные металлы (в основном золото), чтобы диверсифицировать свои портфели или победить инфляцию.
Серебро - второй по популярности драгоценный металл для ювелирных изделий (после золота). Однако его значение выходит далеко за рамки красоты. Оно обладает исключительно высокой тепло- и электропроводностью и чрезвычайно низким контактным сопротивлением. Именно поэтому серебро широко используется в электронике, батареях и противомикробных препаратах.
Классификация по химическим свойствам
6. Щелочные металлы
Твердый металлический натрий
Примеры: натрий, калий, рубидий, литий, цезий и франций.
Щелочь относится к основной природе гидроксидов металлов. Когда эти металлы реагируют с водой, они образуют сильные основания, которые легко нейтрализуют кислоты.
Они настолько реактивны, что обычно встречаются в природе в слиянии с другими веществами. Карналлит (хлорид калия-магния) и сильвин (хлорид калия), например, растворимы в воде и, таким образом, легко извлекаются и очищаются. Нерастворимые в воде щелочи, такие, как фторид лития, также существуют в земной коре.
Одно из самых популярных применений щелочных металлов - использование цезия и рубидия в атомных часах, наиболее точных из известных эталонов времени и частоты. Литий используется в качестве анода в литиевых батареях, композиты калия используются в качестве удобрений, а ионы рубидия используются в фиолетовых фейерверках. Чистый металлический натрий широко используется в натриевых лампах, которые очень эффективно излучают свет.
5. Щелочноземельные металлы
Изумрудный кристалл, основной минерал бериллия.
Примеры: бериллий, кальций, магний, барий, стронций и радий.
Щелочноземельные металлы в стандартных условиях мягкие и серебристо-белые. Они имеют низкую плотность, температуру кипения и температуру плавления. Хотя они не так реакционноспособны, как щелочные металлы, они очень легко образуют связи с элементами. Как правило, они вступают в реакцию с галогенами, образуя галогениды щелочноземельных металлов.
Все они встречаются в земной коре, кроме радия, который является радиоактивным элементом. Радий уже распадался в ранней истории Земли из-за относительно короткого периода полураспада (1600 лет). Современные образцы поступают из цепочки распада урана и тория.
Щелочноземельные металлы имеют широкий спектр применения. Бериллий, например, используется в полупроводниках, теплопроводниках, электрических изоляторах и в военных целях. Магний часто сплавляют с цинком или алюминием для получения материалов со специфическими свойствами. Кальций в основном используется в качестве восстановителя, а барий используется в вакуумных трубках для удаления газов.
4. Переходные металлы
Примеры: титан, ванадий, хром, никель, серебро, вольфрам, платина, кобальт.
Большинство элементов используют электроны из своей внешней оболочки для связи с другими элементами. Переходные металлы, однако, могут использовать две крайние оболочки для соединения с другими элементами. Это химическая особенность, которая позволяет им связываться со многими различными элементами в различных формах.
Они занимают среднюю часть таблицы Менделеева, служа мостом между (или переходом) между двумя сторонами таблицы. Более конкретно, есть 38 переходных металлов в группах с 3 по 12 периодической таблицы. Все они являются пластичными, податливыми и хорошими проводниками тепла и электричества.
Многие из этих металлов, такие как медь, никель, железо и титан, используются в конструкциях и в электронике. Большинство из них образуют полезные сплавы друг с другом и с другими металлическими веществами. Некоторые из них, включая золото, серебро и платину, называются благородными металлами, потому что они крайне инертны и устойчивы к кислотам.
3. Постпереходные металлы
Висмут в виде синтетических кристаллов
Примеры: алюминий, галлий, олово, свинец, таллий, индий, висмут.
Постпереходные металлы в периодической таблице - это элементы, расположенные справа от переходных металлов и слева от металлоидов. Из-за своих свойств они также называются "бедными" или "другими" металлами.
Физически они хрупки (или мягки) и имеют более низкую температуру плавления и механическую прочность, чем переходные металлы. Их кристаллическая структура довольно сложна: они проявляют ковалентные или направленные эффекты связи.
Различные металлы этого семейства имеют различное применение. Алюминий, например, используется для изготовления оконных рам, кухонной посуды, банок, фольги, деталей автомобилей. Оловянные сплавы используются в мягких припоях, оловянных и сверхпроводящих магнитах.
Индиевые сплавы используются для изготовления плоских дисплеев и сенсорных экранов, а галлий - в топливных элементах и полупроводниках.
2. Лантаноиды
1-сантиметровый кусок чистого лантана
Примеры: лантан, церий, прометий, гадолиний, тербий, иттербий, лютеций.
Лантаноиды - это редкоземельные металлы с атомными номерами от 57 до 71. Впервые они были обнаружены в 1787 году в необычном черном минерале (гадолините), обнаруженном в Иттербю, Швеция. Позже минерал был разделен на различные элементы лантаноидов.
Лантаноиды - это металлы с высокой плотностью, плотность которых колеблется от 6,1 до 9,8 г/см³, и они, как правило, имеют очень высокие температуры кипения (1200-3500 °C) и очень высокие температуры плавления (800-1600 °C).
Сплавы лантаноидов используются в металлургии из-за их сильных восстановительных способностей. Около 15 000 тонн лантаноидов ежегодно расходуется в качестве катализаторов и при производстве стекол. Они также широко используются в лазерах и оптических усилителях.
Некоторые исследования показывают, что лантаноиды могут быть использованы в качестве противораковых средств. Лантан и церий, в частности, могут подавлять пролиферацию раковых клеток и способствовать цитотоксичности.
1. Актиниды
Металлический уран, высокообогащенный ураном-235
Примеры: актиний, уран, торий, плутоний, фермий, нобелий, лоренций
Подобно лантаноидам, актиниды образуют семейство редкоземельных элементов с аналогичными свойствами. Они представляют собой серию из 15 последовательных химических элементов в периодической системе от атомных номеров 89 до 103.
Все они радиоактивны по своей природе. Синтетически произведенный плутоний, а также природные уран и торий являются наиболее распространенными актинидами на Земле. Первым актинидом, который был открыт в 1789 году, был уран. И большая часть существующих продуктов актинидов была произведена в 20 веке.
Их свойства, такие как излучение радиоактивности, пирофорность, токсичность и ядерная критичность, делают их опасными для обращения. Сегодня значительная часть (кратковременных) актинидов производится ускорителями частиц в исследовательских целях.
Некоторые актиниды нашли применение в повседневной жизни, например, газовые баллоны (торий) и детекторы дыма (америций), большинство из них используются в качестве топлива в ядерных реакторах и для изготовления ядерного оружия. Уран-235 является наиболее важным изотопом для применения в ядерной энергетике, который широко используется в тепловых реакторах.
Твёрдое тело
Твёрдое тело — это одно из четырёх агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около положений равновесия [1] .
Содержание
Описание
Схематическое изображение атомной структуры неупорядоченного аморфного (слева) и упорядоченного кристаллического (справа) твёрдого тела.
Различают кристаллические и аморфные твёрдые тела (см. дальний и ближний порядок). Кристаллы характеризуются пространственною периодичностью в расположении равновесных положений атомов. В аморфных телах атомы колеблются вокруг хаотически расположенных точек [1] . Согласно классическим представлениям, устойчивым состоянием (с минимумом потенциальной энергии) твёрдого тела является кристаллическое. Аморфное тело находится в метастабильном состоянии и с течением времени должно перейти в кристаллическое состояние, однако время кристаллизации часто столь велико, что метастабильность вовсе не проявляется.
- и молекулы, составляющие твёрдое тело, плотно упакованы вместе. Другими словами, молекулы твёрдого тела практически сохраняют своё взаимное положение относительно других молекул [2] и удерживаются между собой межмолекулярным взаимодействием.
- Многие твёрдые тела содержат в себе кристаллические структуры. В минералогии и кристаллографии под кристаллической структурой подразумевается определённый порядок атомов в кристалле. Кристаллическая структура состоит из элементарных ячеек, набора атомов расположенных в особенном порядке, который периодически повторяется во всех направлениях пространственной решётки. Расстояния между элементами этой решётки в различных направлениях называют параметром этой решётки. Кристаллическая структура и симметричность играют роль в определении множества свойств, таких как спайность кристалла, электронная зонная структура и оптические свойства.
- При применении достаточной силы любое из этих свойств может быть нарушено, вызывая остаточную деформацию.
Раздел физики, изучающий твёрдые тела называется физикой твёрдого тела (подраздел физики конденсированных сред), развитие которого стимулируется потребностями техники. В свою очередь, физика твёрдого тела разделилась на ряд областей, обособление которых происходит путём выделения либо объекта исследования (физика металлов, физика полупроводников, физика магнетиков и других), либо метода исследования (рентгеновский структурный анализ, радиоспектроскопия и тому подобное), либо определенных свойств (механических, тепловых и так ) [1] .
Материаловедение главным образом рассматривает вопросы, связанные со свойствами твёрдых тел, такими как твёрдость, предел прочности, сопротивление материала нагрузкам, а также фазовые превращения. Это значительным образом совпадает с вопросами, изучаемыми физикой твёрдого тела. Химия твёрдого состояния перекрывает вопросы, рассматриваемые обоими этими разделами знаний, но особенно затрагивает вопросы синтезирования новых материалов.
Исследования свойств твердых тел объединились в большую область — физику твердого тела, развитие которой стимулируется потребностями техники. В свою очередь, физика твердого тела разделилась на ряд областей, обособление которых происходит путем выделения либо объекта исследования (физика металлов, физика полупроводников, физика магнетиков и др.), либо метода исследования (рентгеновский структурный анализ, радиоспектроскопия и т. п.), либо определенных свойств (механических, тепловых и т. д.).
Легчайшим известным твёрдым материалом является аэрогель. Некоторые виды аэрогеля имеют плотность 1.9 мг/см³ или 1.9 кг/м³ (1/530 плотности воды).
Классификация твёрдых тел
Выделяют твёрдые тела с ионной, ковалентной, металлической и другими типами связи между атомами. Электрические и некоторые другие свойства твердых тел, в основном, определяются характером движения внешних электронов его атомов [1] .
- проводники — зона проводимости и валентная зона перекрываются, таким образом электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твердому телу разности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы.
- полупроводники — зоны не перекрываются и расстояние между ними составляет менее 4эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.
- диэлектрики — зоны не перекрываются и расстояние между ними составляет более 4эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.
По магнитным свойствам твёрдые тела делятся на диамагнетики, парамагнетики и тела с упорядоченной магнитной структурой [1] .
Историческая справка
Несмотря на то, что твердые тела (металлы, минералы) исследовались давно, всестороннее изучение и систематизация информации об их свойствах началось с 17 века. Начиная с этого времени был открыт ряд эмпирических законов, которые описывали влияние на твердое тело механических сил, изменения температуры, света, электромагнитных полей и т. д. Были сформулированы:
Уже в первой половине 19 в. были сформулированы основные положения теории упругости, для которой характерно представление о твердое тело как о сплошной среде.
Целостное представление о кристаллической структуре твердых тел, как совокупности атомов, упорядоченное размещение которых в пространстве обеспечивается силами взаимодействия было сформировано Огюстом Браве в 1848 году, хотя первые идеи такого рода высказывались в трактатах Николасом Стено (англ. Nicolas Steno, дан. Niels Stensen) (1669), Рене-Жуст Аюи (Гаюи) (фр. René Just Haüy) (1784), Исааком Ньютоном в работе «Математические начала натуральной философии» (1686), в которой рассчитана скорость звука в цепочке упруго связанных частиц, Даниэлем Бернулли (1727), Огюстеном-Луи Коши (1830) и др.
Фазовые переходы
При повышении температуры твердые тела переходят в жидкое или газообразное состояние. Переход твердого тела в жидкость называется плавлением, а переход в газообразное состояние, минуя жидкое, — сублимацией. Переход к твердому телу (при понижении температуры) — кристаллизация, к аморфной фазе — стеклование.
Существуют также фазовые переходы между твердотельными фазами, при которых изменяется внутренняя структура твердых тел, становясь упорядоченной при понижении температуры.
Физические свойства
Под физическими свойствами твердых тел понимается их специфическое поведение при воздействии определенных сил и полей. Существует три основных способа воздействия на твердые тела, соответствующие трем основным видам энергии: механический, термический и электромагнитный. Соответственно выделяют три основные группы физических свойств.
Механические свойства связывают механические напряжения и деформации тела, согласно результатам широких исследований механических и реологических свойств твердых тел, выполненных школой академика П. А. Ребиндера, можно разделить на упругие, прочностные, реологические и технологические. Кроме того, при воздействии на твердые тела жидкостей или газов оказываются их гидравлические и газодинамические свойства.
К термическим относят свойства, которые оказываются под воздействием тепловых полей. В электромагнитные свойства условно можно отнести радиационные, проявляющиеся при воздействии на твердое тело потоков микрочастиц или электромагнитных волн значительной жесткости (рентгеновских, гамма-лучи).
Механические свойства
В покое твёрдые тела сохраняю форму, но деформируются под воздействием внешних сил. В зависимости от величины приложенной силы деформация может быть упругой, пластической или разрушительной. При упругой деформации тело возвращает себе первоначальную форму после снятия приложенных сил. Отзыв твердого тела на прилагаемое усилие описывается модулями упругости. Отличительной особенностью твердого тела по сравнению с жидкостями и газами является то, что оно сопротивляется не только растяжении и сжатию, а также сдвигу, изгибу и кручению.
При пластической деформации начальная форма не сохраняется. Характер деформации зависит также от времени, в течение которого действует внешняя сила. Твердое тело может деформироваться упруго при мгновенном действии, но пластически, если внешние силы действуют длительное время. Такое поведение называется ползучестью. Одной из характеристик деформации является твердость тела — способность сопротивляться проникновению в него других тел.
Каждое твердое тело имеет присущий ему порог деформации, после которой наступает разрушение. Свойство твердого тела сопротивляться разрушению характеризуется прочностью. При разрушении в твердом теле появляются и распространяются трещины, которые в конце концов приводят к разлому.
К механическим свойствам твердого тела принадлежит также его способность проводить звук, который является волной, переносящий локальную деформацию с одного места в другое. В отличие от жидкостей и газов в твердом теле могут распространяться не только продольные звуковые волны, но и поперечные, что связано с сопротивлением твердого тела деформации сдвига. Скорость звука в твердых телах в целом выше, чем в газах, в частности в воздухе, поскольку межатомное взаимодействие гораздо сильнее. Скорость звука в кристаллических твердых телах характеризуется анизотропией, то есть зависимости от направления распространения.
Тепловые свойства
Важнейшим тепловым свойством твердого тела является температура плавления — температура, при которой происходит переход в жидкое состояние. Другой важной характеристикой плавления является скрытая теплота плавления. В отличие от кристаллов, в аморфных твердых тел переход до жидкого состояния с повышением температуры происходит постепенно. Его характеризуют температурой стеклования — температурой, выше которой материал почти полностью теряет упругость и становится очень пластичным.
Изменение температуры вызывает деформацию твердого тела, в основном повышение температуры приводит к расширению. Количественно она характеризуется коэффициентом теплового расширения. Теплоемкость твердого тела зависит от температуры, особенно при низких температурах, однако в области комнатных температур и выше, множество твердых тел имеют примерно постоянную теплоемкость (закон Дюлонга — Пти). Переход к устойчивой зависимости теплоемкости от температуры происходит при характерной для каждого материала температуре Дебая. От температуры зависят также другие характеристики твердотельных материалов, в частности механические: пластичность, текучесть, прочность, твердость.
Электрические и магнитные свойства
В зависимости от величины удельного сопротивления твердые тела разделяются на проводники и диэлектрики, промежуточное положение между которыми занимают полупроводники. Полупроводники имеют малую электропроводность, однако для них характерно ее рост с температурой. Электрические свойства твердых тел связаны с их электронной структурой. Для диэлектриков свойственна щель в энергетическом спектре электронов, которую в случае кристаллических твердых тел называют запрещенной зоной. Это область значений энергии, которую электроны в твердом теле не могут иметь. В диэлектриках все электронные состояния, ниже щели заполнены, и благодаря принципу Паули электроны не могут переходить из одного состояния в другое, чем обусловлено отсутствие проводимости. Проводимость полупроводников очень сильно зависит от примесей — акцепторов и доноров.
Существует определенный класс твердых тел, для которых характерна ионная проводимость. Эти материалы называют супериониками. В основном это ионные кристаллы, в которых ионы одного сорта могут достаточно свободно двигаться между незыблемой решеткой ионов другого сорта.
При низких температурах для некоторых твердых тел свойственна сверхпроводимость — способность проводить электрический ток без сопротивления.
Существует класс твердых тел, которые могут иметь спонтанную поляризацию — пироэлектрики. Если это свойство характерно только для одной из фаз, что существует в определенном промежутке температур, то такие материалы называются сегнетоэлектриками. Для пьезоэлектриков характерена сильная связь между поляризацией и механической деформацией.
Оптические свойства твердых тел очень разнообразны. Металлы в основном имеют высокий коэффициент отражения света в видимой области спектра, много диэлектриков прозрачные, как, например, стекло. Часто цвет того или другого твердого тела обусловлен поглощающими свет примесями. Для полупроводников и диэлектриков характерна фотопроводимость — увеличение электропроводности при освещении.
Идеализации твердого тела в науках
Твердые тела, встречающиеся в природе, характеризуются бесконечным множеством разнообразных свойств, которая постоянно пополняются. В зависимости от поставленных перед определенной наукой задач важны лишь отдельные свойства твердого тела, другие — несущественные. Например, при исследовании прочности стали её магнитные свойства практически роли не играют.
Для простоты изучения реальное тело заменяют идеальным, выделяя лишь важнейшие свойства для рассматриваемого случая. Такой подход, практикуемый многими науками, называется абстрагированием. После выделения идеализированного тела с определенным перечнем существенных свойств, строится теория. Достоверность такой теории зависит от того насколько удачно принятая идеализация отражает существенные характеристики объекта. Оценку этому можно дать при сравнении результатов исследований, полученных теоретически на основе идеализированной модели и экспериментально.
В теоретической механике
В теоретической механике идеализированной схемой реального твердого тела является абсолютно твердое тело, то есть такое, в котором при любых обстоятельствах расстояния между любыми точками являются постоянными — не изменяются ни размеры, ни форма тела.
В теории упругости
В теории упругости и её прикладном применению сопромату также рассматриваются модели, которые учитывают и абсолютизируют отдельные свойства твердого тела. К этим свойствам Принятие условий однородности и сплошности при малых деформациях позволяет применить методы анализа бесконечно малых величин, что существенно упрощает построение теории сопротивления материалов.
Считается также, что зависимость между напряжениями и деформациями является линейной (см. Закон Гука).
В теории пластичности
В теории пластичности модели твердого тела основаны на идеализации свойств деформационного упрочнения или свойств текучести твердых тел в напряженно-деформированном состоянии.
В математике
В математике (геометрии) объектом рассмотрения является мнимое твердое тело, в котором сохраняются лишь форма и размеры при полном абстрагировании от всех других свойств. В отличие от реальных предметов геометрические тела, как и всякие геометрические фигуры, является мнимыми объектами.
Читайте также: