Все металлы 3 а группы образуют щелочи

Обновлено: 22.01.2025

Атомы элементов IА–IIIА групп имеют сходство в строении электронных оболочек и закономерностях изменения свойств, что приводит к некоторому сходству их химических свойств и свойств их соединений.

Металлы IA (первой группы главной подгруппы) также называются «щелочные металлы«. К ним относятся литий, натрий, калий, рубидий, цезий. Франций – радиоактивный элемент, в природе практически не встречается. У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон:

… ns 1 — электронное строение внешнего энергетического уровня щелочных металлов

Металлы IA группы — s-элементы. В химических реакциях они отдают один валентный электрон, поэтому для них характерна постоянная степень окисления +1.

Рассмотрим характеристики элементов IA группы:

Все щелочные металлы — сильные восстановители. Это самые активные металлы, которые могут непосредственно взаимодействовать с неметаллами. С ростом порядкового номера и уменьшением энергии ионизации металлические свойства элементов усиливаются. Щелочные металлы образуют с кислородом оксиды Э2О. Оксиды щелочных металлов реагируют с водой с образованием основания (щелочи):

Водородные соединения щелочных металлов — это гидриды с общей формулой ЭН. Степень окисления водорода в гидридах равна -1.

Металлы IIA (второй группы главной подгруппы) — щелочноземельные. Раньше к щелочноземельным металлам относили только кальций, стронций, барий и радий, но по решению ИЮПАК бериллий и магний также называются щелочноземельными.

У щелочноземельных металлов на внешнем энергетическом уровне расположены два электрона. В основном состоянии это два спаренных электрона на s-подуровне:

… ns 2 — электронное строение внешнего энергетического уровня элементов IIA группы

Щелочноземельные металлы — s-элементы. Отдавая два валентных электрона, они проявляют постоянную степень окисления +2. Все элементы подгруппы бериллия — сильные восстановители, но восстановительные свойства выражены слабее, чем у щелочных металлов.

Характеристики элементов IIA группы:

Металлы подгруппы бериллия довольно активны. На воздухе они легко окисляются, образуя основные оксиды с общей формулой ЭО. Этим оксидам соответствуют гидроксиды Э(ОН)2.

Первый элемент IIA группы, бериллий, по большинству свойств гораздо ближе к алюминию (диагональное сходство). Это проявляется в свойствах бериллия. Например, он не взаимодействует с водой. Магний взаимодействует с водой только при нагревании. Кальций, стронций и барий — это типичные металлы. Они реагируют с водой при обычных условиях.

Элементам IIA группы соответствуют гидриды с общей формулой ЭН2.

Элементы IIIA (третьей группы главной подгруппы) — это бор, алюминий, галлий, индий, таллий и нихоний. В основном состоянии содержат на внешнем энергетическом уровне три электрона, которые распределены по s- и р-подуровням:

… ns 2 nр 1 — электронное строение внешнего энергетического уровня элементов IIIA группы

Все элементы подгруппы бора относятся к р-элементам. В химических соединениях проявляются степень окисления +3. Хотя для таллия более устойчивая степень окисления +1.

Металлические свойства у элементов подгруппы бора выражены слабее, чем у элементов IIA подгруппы. Элмент бор относится к неметаллам. Энергия ионизации атома у бора наибольшая среди элментов IIIA подгруппы. Алюминий относится к типичным металлам, но оксид и гидроксид алюминия проявляют амфотерные свойства. У таллия более сильно выражены металлические свойства, в степени окисления +1 он близок по свойствам к щелочным металлам. Наибольшее практическое значение среди элементов IIIA подгруппы имеет алюминий.

Все металлы 3 а группы образуют щелочи

Верны ли следующие суждения о соединениях металлов?

А. Степень окисления алюминия в высшем оксиде равна +3.

Б. Оснóвные свойства оксида натрия выражены сильнее, чем у оксида алюминия.

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

А. Степень окисления бериллия в высшем оксиде равна +2.

Б. Оснóвные свойства оксида магния выражены сильнее, чем у оксида алюминия.

Верны ли следующие суждения об элементах IIA группы?

А. Барий более активный металл, чем стронций.

Б. Основный характер оксидов в ряду ослабевает.

Верны ли следующие суждения о магнии и его соединениях?

А. Высшая степень окисления магния в соединениях равна +3.

Б. Гидроксид магния проявляет основные свойства.

А. Барий — более активный металл, чем бериллий.

Б. Основный характер оксидов в ряду возрастает.

Верны ли следующие суждения о соединениях магния и кальция?

А. Гидроксиды этих металлов являются щелочами.

Б. В соединениях эти металлы проявляют степень окисления +2.

Верны ли следующие суждения о свойствах щелочных металлов и их соединений?

А. Все щелочные металлы реагируют с кислородом только при повышенной температуре.

Б. Оксиды щелочных металлов проявляют амфотерные свойства.

Верны ли следующие суждения о металлах главных подгрупп?

А. Все металлы I-IIIA групп являются p-элементами.

Б. Химическая активность натрия выше, чем алюминия.

Верны ли следующие суждения об элементах IIIА группы?

А. Общая формула высших оксидов элементов IIIА группы .

Б. Все высшие оксиды элементов IIIА группы проявляют только основные свойства.

Верны ли следующие суждения о щелочноземельных металлах?

А. Для щелочноземельных металлов характерна степень окисления +1.

Б. Щелочноземельные металлы относятся к s-элементам.

Верны ли следующие суждения о строении атомов и свойствах щелочных металлов?

А. Атомы щелочных металлов в основном состоянии имеют электронную конфигурацию внешнего энергетического уровня ns 1 .

Б. Все щелочные металлы способны взаимодействовать с водой при обычной температуре.

Верны ли следующие суждения о металлах и их соединениях?

А. Восстановительные свойства у калия выражены сильнее, чем у магния.

Б. Высшие оксиды металлов IA группы имеют состав .

Верны ли следующие суждения о щелочных металлах и их соединениях?

А. Оксиды щелочных металлов проявляют основные свойства.

Б. Все щелочные металлы окисляются кислородом воздуха до оксидов.

Верны ли следующие суждения о металлах?

А. Все металлы IА и IIА групп образуют щёлочи.

Б. Все металлы IА–IIIА групп являются s-элементами.

А. Для металлов IIА группы характерны восстановительные свойства.

Б. Для оксидов металлов IА группы характерны основные свойства.

А. Высшие оксиды элементов IIA группы имеют состав .

Б. Восстановительные свойства у кальция выражены сильнее, чем у бария.

Верны ли следующие утверждения о щелочных металлах?

А. Все щелочные металлы реагируют с водой.

Б. Благодаря высокой химической активности щелочных металлов все их

соединения – сильные окислители.

3) верны оба утверждения

4) оба утверждения неверны

Верны ли следующие суждения о барии?

А. На внешнем электронном слое атома бария в основном состоянии находится два s-электрона.

Б. Барий относится к s-элементам.

В двух колбах находилась известковая вода. Через первый раствор длительное время пропускали газ Х, а через второй — газ Y. В обеих колбах выпал осадок, но в первой колбе он затем растворился. Из предложенного перечня выберите вещества X и Y, которые могут вступать в описанные реакции.

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Щелочи: определение, химические свойства, методы получения

Щелочи – это небольшая группа неорганических веществ, относящихся к основным гидроксидам или основаниям. Для начала разберемся, какие вещества можно называть основаниями. Основания – это вещества, содержащие гидроксо-группу (‒OH), которая в неорганической химии (в случае с основаниями) пишется в конце молекулы, например: NaOH, Fe(OH)2, Ba(OH)2, но это определение не точное, ведь Fe(OH)3 и Zn(OH)2 имеют сходную формулу, однако, основаниями не являются. Точнее будет сказать, что основания – это гидроксиды, в которых металл находится в степени окисления «+1» или «+2» (кроме цинка и бериллия, образующих в степени окисления «+2» амфотерные оксиды и гидроксиды).

Таблица 1. – Основания и амфотерные гидроксиды

Это НЕ основания:

Потому что содержат металл в степени окисления «+1» или «+2»

Так как в этой группе есть гидроксиды, имеющие металл в степени окисления «+3», и два исключения - Zn(OH)2 и Be(OH)2. Все приведенные выше вещества являются амфотерными гидроксидами, а не основаниями

Подробнее об отличиях понятий «гидроксиды» и «основания» можно прочитать в статье «Классификация гидроксидов и оснований»

Кроме отличий в степени окисления, основания и амфотерные гидроксиды отличаются так же по реакционной способности. Так, амфотерные гидроксиды могут реагировать как с кислотами, так и с основаниями, а основания могут реагировать с кислотами, но не могут реагировать с другими основаниями. Подробнее о химических свойствах амфотерных гидроксидов можно прочитать в статье «Амфотерные гидроксиды. Получение, химические свойства, образование средних и комплексных солей»

Чем отличаются щёлочи от остальных оснований?

Основания можно разделить на две группы: растворимые и нерастворимые. Растворимые иначе называют щелочами. То есть щелочи – это растворимые основания (растворимые основные гидроксиды).

Таблица 2. – Основания и щёлочи

Место щелочей в классификации гидроксидов

Как определить, является ли основание растворимым, то есть щелочью, если его нет в таблице растворимости?

В состав щелочей входят металлы IА-группы Периодической Системы Д. И. Менделеева, а также кальций, стронций и барий.

Полный список щелочей:

NaOH – гидроксид натрия, едкий натр, гидроокись натрия, каустическая сода

KOH – гидроксид натрия, едкое кали, гидроокись калия

LiOH – гидроксид лития, гидроокись лития

CsOH – гидроксид цезия, гидроокись цезия

FrOH – гидроксид франция, гидроокись франция

RbOH – гидроксид рубидия, гидроокись рубидия

Ba(OH)2 – гидроксид бария, едкий барий, баритовая вода

Ca(OH)2 – гидроксид кальция, гашеная известь, известковое молоко, известковая вода.

Sr(OH)2 – гидроксид стронция

Остальные основания считаем нерастворимыми (кроме аммиака, образующего гидрат аммония, являющегося хоть и растворимым, но нестойким соединением). Гидроксид аммония, образующийся при пропускании аммиака через воду, можно представить в виде формулы NH4OH (лучше NH3·H2O – гидрат аммония) является растворимым (раствор называют нашатырным спиртом), однако щелочью это вещество не является.

Гидроксид лития и гидроксид кальция растворяются не так хорошо, как другие основания, но все равно считаются щелочами.

Задание в формате ЕГЭ с ответом:

Установите соответствие между формулой вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. щелочь
  2. нерастворимое основание
  3. амфотерный гидроксид

Комментарий к заданию: Галлий, в представленном гидроксиде, имеет степень окисления +3, поэтому он относится к группе амфотерных гидроксидов. Гидроксид рубидия – щелочь, так как рубидий – элемент IА-группы. Гидроксид хрома – нерастворимое основание, так как хром в степени окисления +2 не является амфотерным, и не относится к щелочным или щелочноземельным металлам, поэтому не может образовать щелочь.

Пример задания из КИМ ЕГЭ:

Комментарий к заданию: Стронций является щелочноземельным металлом (металлы IIА-группы, кроме магния и бериллия, образуют растворимые гидроксиды), поэтому образует щелочь. Гидроксид цинка вместе с гидроксидом бериллия входят в группу исключений и, несмотря на вторую валентность, образуют амфотерные гидроксиды. Гидроксид железа нерастворим и не входит в группу амфотерных веществ, он является нерастворимым основанием.

Щёлочи, являясь сильными основаниями, диссоциируют в воде очень быстро, тогда как нерастворимые основания диссоциируют медленно, ступенчато:

Диссоциация щелочей

Диссоциация слабых оснований

Fe(OH)2 = FeOH + + OH ‒ (I ступень)

FeOH + = Fe 2+ + OH ‒ (II ступень)

Диссоциация настолько быстрая, что ступенчатостью процесса можно пренебречь

Диссоциация очень медленная, быстрее идет по первой ступени, по второй ступени практически не идёт

Физические свойства щелочей

Гидроксиды щелочных металлов (металлов IА-группы) – твердые бесцветные кристаллические вещества. Как уже было описано выше, большинство из них очень хорошо растворимы в воде. Гидроксиды щелочноземельных металлов хуже растворяются в воде.

Химические свойства щелочей

Основные свойства гидроксидов в Периодической системе возрастают справа налево и сверху вниз. Поэтому все щелочи, образованные металлами IА-группы сильнее щелочей, образованных металлами IIА-группы.

Щелочи окрашивают фенолфталеин в малиновый цвет.

Твёрдые щелочи и их концентрированные растворы разъедают живые ткани, поэтому работать с ними нужно в перчатках, а при растирании твёрдой щелочи в ступке необходимо надевать очки.

  1. Щелочи реагируют с кислотными оксидами, образуя либо соль и воду, либо кислую соль:

Щелочь + кислотный оксид = соль + вода

Щелочь + кислотный оксид = кислая соль

Рассмотрим эти реакции на примере образования карбонатов и гидрокарбонатов.

Для щелочей, содержащих одновалентный катион (катион в степени окисления «+1») справедлива общая схема реакции:

Для щелочей, содержащих двухвалентный металл (катион в степени окисления «+2») справедлива общая схема реакции:

Гидроксиды щелочных металлов (щелочи)


1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гид-ридов и некоторых других бинарных соединений с водой также образуют-ся щелочи.

Например , натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.

Например , карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:

Химические свойства

1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид калия с фосфорной кислотой реагирует с образова-нием фосфатов, гидрофосфатов или дигидрофосфатов:

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид натрия с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов:

Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:

А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:

3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например , гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

Еще пример : гидроксид натрия с гидроксидом алюминия в растворе образует также комплексную соль:

4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например : гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия:

5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется щелочами до силиката и водорода:

Фтор окисляет щелочи. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфор — диспропорционируют в щелочах:

Сера взаимодействует с щелочами только при нагревании:

6. Щелочи взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями .

С щелочами взаимодействуют соли тяжелых металлов.

Например , хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с щелочами взаимодействуют соли аммония.

Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксиды всех щелочных металлов плавятся без разложения , гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований . В воде практически нацело диссоциируют , образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na + + OH —

10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу . При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:

Щелочные металлы. Химия щелочных металлов и их соединений


Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Электронное строение щелочных металлов и основные свойства

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns 1 , на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрица-тельность .


Физические свойства

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.


Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.


Нахождение в природе

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы , в которых присутствуют щелочные металлы:

Поваренная соль, каменная соль, галит — NaCl — хлорид натрия


Сильвин KCl — хлорид калия


Сильвинит NaCl · KCl


Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия


Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:


Способы получения

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:

KCl + Na = K↑ + NaCl

KOH + Na = K↑ + NaOH

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl → 2Cs + CaCl2

В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.

Качественные реакции

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов .


Цвет пламени:
Li — карминно-красный
Na — жѐлтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный

1. Щелочные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами .

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K + I2 = 2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na + S = Na2S

1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:

3K + P = K3P

2Na + H2 = 2NaH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.

Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой . Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

Например , калий реагирует с водой очень бурно:

2K 0 + H2 + O = 2 K + OH + H2 0


Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например , натрий бурно реагирует с соляной кислотой :

2Na + 2HCl = 2NaCl + H2

2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например , при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):

С разбавленной азотной кислотой образуется молекулярный азот:

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами .

Например , при взаимодействии лития с аммиаком образуются амиды и водород:

Ацетилен с натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2

Фенол с натрием реагирует с образованием фенолята натрия и водорода:

Метанол с натрием образуют метилат натрия и водород:

Уксусная кислота с литием образует ацетат лития и водород:

2СH3COOH + 2Li → 2CH3COOLi + H2

Щелочные металлы реагируют с галогеналканами (реакция Вюрца).

Например , хлорметан с натрием образует этан и хлорид натрия:

2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями . Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например , натрий взаимодействует в расплаве с хлоридом алюминия :

3Na + AlCl3 → 3NaCl + Al

Оксиды щелочных металлов

Оксиды щелочных металлов (кроме лития) можно получить только к освенными методами : взаимодействием натрия с окислителями в расплаве:

1. О ксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:

2. Взаимодействием натрия с пероксидом натрия :

3. Взаимодействием натрия с расплавом щелочи :

2Na + 2NaOН → 2Na2O + Н2

4. Оксид лития можно получить разложением гидроксида лития :

2LiOН → Li2O + Н2O

Химические свойства

Оксиды щелочных металлов — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами :

Например , оксид натрия взаимодействует с оксидом фосфора (V):

Оксид натрия взаимодействует с амфотерным оксидом алюминия:

2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например , оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:

K2O + 2HCl → 2KCl + H2O

3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.

Например , оксид лития взаимодействует с водой с образованием гидроксида лития:

Li2O + H2O → 2LiOH

4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.

Пероксиды щелочных металлов

Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства.

1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:

При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:

2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами .

Например , пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода:

3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:

При нагревании пероксиды, опять-таки, диспропорционируют:

4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:

5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства.

Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия:

Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия:

6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.

Например , при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:

Гидроксиды щелочных металлов (щелочи)

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи.

Например , гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов:

Еще пример : гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:

4NaOH → 4Na + O2 + 2H2O

Соли щелочных металлов

Нитраты и нитриты щелочных металлов

Нитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород.

Например , нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:

Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.

Нитриты щелочных металлов могут быть окислителями или восстановителями.

В щелочной среде нитраты и нитриты — очень мощные окислители.

Например , нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:

Сильные окислители окисляют нитриты до нитратов.

Например , перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:

Читайте также: