Вреден ли металл титан

Обновлено: 22.01.2025

Отвечаю на самые распространённные высказывания-заблуждения относительно титата и изделий из него.

1. Титан — самый прочный и твердый материал.
Ничего подобного, самый прочный и твердый материал в мире — алмаз. Из распространенных жёстких материалов — очень твёрд карбид вольфрама и многие вольфрамо-молибдено-содержащие сплавы. Это — холодные и тяжелые материалы, практически не поддаются мехобработке точением и фрезерованием и для них применяются ещё более сложные и современные технологии обработки. Собственно говоря, подавляющее большинство самого крепкого металлорежущего инструмента изготавливается из разновидностей комбинаций вольфрама с другими твёрдыми элементами, в том числе инструмента для обработки титана. Вольфрамосодержащие сплавы относятся к твердосплавным материалам. Для изготовления ювелирки практически не применяются, лишь изредка, т.к. для изготовления сложных изделий из вольфрамосодержащих материалов требуются слишком огромные производственные мощности, оправданные только в машиностроении и металлопроизводстве, где такая ювелирка считается не слишком крутым бонусом к основному виду деятельности. Ниже — схема замера твёрдости интендером твердомера, в различных единицах.

Мифы о титане, фото № 1

2. Титан не царапается.
Царапается, еще как. Правда, различия в царапучести марок — достаточно выраженные и заметны даже простым глазом. На этот параметр влияет химический состав сплава и тип пост-обработки заготовки. Титаны топовых марок, изделия из которых служат во всей своей красе долго, стоят дорого и достать их чрезвычайно трудно. А дешевые марки лежат в продаже на любом складе металлобазы и стоят копейки, но изделия из них выходят и дешевые, но качеством блистать не будут. Однако, стоит отметить, что драгоценные металлы царапаются сильнее минимум вдвое, чем самая дешманская марка титана. Какой-то тип титанового сплава поцарапать легко, какой-то сложнее, какой-то ещё сложнее. В любом случае те, кто утверждают, что титан не царапается — врут. Однако, для улучшения твёрдости поверхности можно наносить на изделия спецпокрытия, которые значительно повысят износостойкость. Картинка «зацарапанной поверхности» прилагается.

Мифы о титане, фото № 2

3. Титан абсолютно биосовместим.
Почти правда. Однако, всего лишь почти. Существует несколько био-несовместимых (точнее, аллергенных) марок, содержащие вредные примеси (но эти марки достаточно редки и врядли мастеру попадутся именно они, но чем чёрт не шутит), также подобные примеси, вызывающие аллергию, некрозы или как минимум, неприятные ощущения могут встречаться и в дешевых марках из-за заниженного контроля качества состава на производстве («Зачем ведь, спрашивается, проверять эти образцы на биосовместимость, заморачиваться с идеальной очисткой, когда мы собираемся делать из них корпус для термостата космической станции, который к тому же будет находиться снаружи корабля?»). Поэтому перед изготовлением ювелирки и бижутерии порядочный мастер-ювелир всегда отнесёт образец материала на хим.анализ, и только потом предложит клиенту. Ниже- красивая картинка зубного импланта.

Мифы о титане, фото № 3

4. Изделия из титана должны стоить дешево, ведь титан — очень дешевый материал.
Самое распространённое заблуждение! Титан по сравннию с драгоценными металлами, конечно, стоит недорого, однако:

а) Есть очень большие проблемы в приобретении хороших марок в небольшом количестве, т.к. такой титан продаётся только большими промышленными партиями, а то и вообще не продаётся — дай-то Бог, чтобы вы смогли купить какой-нибудь обрезок из остатков «с барского стола» космической и военной промышленности, авось и повезёт. Самый дорогой титан в мире стоит около 1500 долларов за килограмм, самый дешёвый — около 1500 рублей за килограмм (по данным на 2019 год)

б) Самую большую часть стоимости изделий составляет именно обработка титана, так как она требует наличия уникального дорогостоящего инструмента и большого количества времени, а время — ресурс невосполняемый. Тем более, чем лучше титан, тем дороже инструмент и больше времени уходит на изготовление при соблюдении технологии изготовления изделий. Чтобы сделать качественно, с соблюдением всех допусков и параметров, технологию нарушать нельзя, иначе — брак и впустую потраченный материал. Ведь можно сделать хорошо, и тогда, изделие никак не будет дешёвым, а можно сделать как попало, без претензий на точность, ну или чтобы только создать иллюзию качества. А закрепка камней в титан — отдельная статья геморроя мастера, как выяснилось, разные марки титана требуют разного подхода к закрепке различных вставок, всё не так просто с ним — капризен, пружинит, и требует не совсем ювелирного (а более крутого) и дорогого инструмента при вставке и закрепке. Ниже — видео захватывающей работы пятикоординатного токарно-фрезерного станка — это одна из топовых технологий обработки металла, в том числе и титана. Использование подобных технологий для изготовления ювелирных изделий ну никак не может стоить дёшево. Смотрите.

Запомните, в производстве есть три волшебных слова, три составляющие, позволяющие комбинировать друг друга в различных позициях, однако всегда, всегда одно из слов будет лишним. Это «быстро», «качественно» и «недорого».

Мифы о титане, фото № 4

5. Чистый титан лучше всего.
Смотря для каких целей и задач. Относительно чистый титан российского и зарубежного реестра стоит дёшево, однако обладает прочностью и твердостью немногим выше золота и серебра, а низкий уровень этих параметров даст зацарапать идеально выведенную поверхность в течении первого дня эксплуатации. Если уж сильные претензии к чистоте материала и предъявляются, то существуют иодидный и аффинированные титаны, однако вы не обрадуетесь цене на них. Ну, а самый распространённый относительно чистый и «простенький» титан применяется, в основном для удешевления бижутерной продукциии, не претендующей на качество поверхности, при создании очень сложных геометрических форм, или в случае использования его в технологии литья или какой-либо другой, не слишком дорогостоящей технологии обработки.

Мифы о титане, фото № 5

Касательно преимуществ и уникальности титановых сплавов, то стоит однозначно отметить их стойкость к коррозии (какие-то больше, какие-то меньше, но в бьтовых средах титан, как правило, не корродирует), при их лёгкости, высокой прочности, относительно высокой, а иногда и очень высокой твердости и практически абсолютной биосовместимости (см. выше). Титан не темнеет, не тускнеет со временем, не окисляется в агрессивных моющих химикалиях, а хорошо изготовленные изделия из качественного титана выглядят великолепно, некоторые из них — действительно плохо царапаются и долго служат своим превосходным внешним видом.

Влияние диоксида титана на организм человека

Научный прогресс улучшает качество жизни, делает её более яркой, разнообразной, комфортной. Однако радикальные изменения привычного мира вокруг нас, вызывают у общества тревогу. Одна из потенциальных опасностей, которая беспокоит учёных и медицинских специалистов — широкое применение пищевых добавок. Так, недавние публикации о вреде диоксида титана для организма человека, породили множество вопросов.

Что это за вещество? Насколько хорошо изучен диоксид титана? Где он содержится и применяется? Почему учёное сообщество заговорило о нём именно сейчас? Есть ли риск навредить здоровью, используя продукты с его содержанием? Давайте разбираться.

Что такое диоксид титана – влияние на организм человека


Другие названия диоксида титана — оксид титана (IV), двуокись титана, титановые белила, титановый ангидрид, а также пищевой краситель E171. Это химическое соединение в виде мелкодисперсного кристаллического порошка белого цвета, не имеющего запаха. При нагревании диоксид титана меняет цвет на жёлтый. В воде, кислотах, щелочах не растворяется.

Формула диоксида титана — TiO2. В природе он находится в составе минералов — рутил, анатаз и брукит. На территории Российской Федерации самое крупное месторождение находится в Тамбовской области.

Физические свойства диоксида титана:

  • высокая способность отбеливания материалов различного происхождения;
  • влагостойкость, устойчивость к влиянию факторов внешней среды (ультрафиолету);
  • химическая стабильность соединения;
  • оптимальное взаимодействие с плёнкообразователями;
  • светорассеивающие свойства;
  • пожаровзрывобезопасный — не горит и не поддерживает огонь.

До недавнего времени специалисты оценивали токсичность диоксида титана как низкую. Инертность этого химического соединения препятствует выделению ядовитых веществ в окружающую среду, не оказывает вредного воздействия на человека при непосредственном контакте.

По степени влияния на организм диоксид титана относится к 4 классу опасности, то есть является малоопасным.

На основании приведённых данных, титановый ангидрид во всём мире используется в продукции, произведённой для людей, как безопасное соединение.

Влияние диоксид титана на организм человека


Российские эксперты оценивают вопрос об опасном влиянии диоксида титана на организм человека, как требующий более систематических научных изысканий. Они сходятся во мнении, что пока не существует многоцентровых рандомизированных исследований, доказывающих опасность диоксида титана как канцерогена, способного вызывать развитие рака.

Благодаря своей химической инертности вещество не вступает во взаимодействие с желудочным соком. То есть диоксид титана не подвергается процессу пищеварения и в неизмененном виде выводится из организма. Его способность к биоаккумуляции (накапливанию в тканях) оценивается как слабая.

Согласно ДСТУ ГОСТ 30333:2009, в данных паспорта безопасности диоксида титана, отмечается отсутствие у него патологического действия:

  • сенсибилизирующего — вызывающего аллергическую реакцию;
  • эмбриотоксического — оказывающего влияние на плод при беременности;
  • гонадотоксического — способствующего половой дисфункции;
  • тератогенного — нарушающего развитие эмбриона.

Канцерогенное действие считается недоказанным по причине недостаточного количества данных.

По мнению экспертов, вредное влияние диоксида титана на здоровье, может быть только у сотрудников, которые заняты на производстве с использованием его сырья. Например, при вдыхании пыли, содержащей TiO2, раздражается слизистая дыхательных путей, что проявляется кашлем. Медицинские специалисты расценивают этот факт не как токсическое действие, а в качестве защитной реакции организма.

На промышленных объектах предусмотрены меры профилактики отравлений диоксидом титана. Для предохранения органов дыхания применяют противопылевые респираторы, маски. При производстве продукта в обязательном порядке используют защитные костюмы, рукавицы, каски, обувь, очки. Проводится регулярный контроль опасного воздействия.

Применение диоксида титана в промышленности


О популярности применения диоксида титана говорит тот факт, что ежегодно в мире его производится более пяти миллионов тонн.

Применение диоксида титана в пищевой промышленности для организма человека

Международная классификации пищевых добавок определяет диоксид титана индексом E171; в России применение этих компонентов в производственном масштабе регламентируют Санитарно-эпидемиологические правила и нормативы СанПиН 2.3.2.1293–03 (с изменениями, внесёнными в 2010 году).

Для чего используется диоксид титана? В каких продуктах он содержится? Можно выделить несколько направлений.

Его применяют в качестве отбеливателя при изготовлении следующих блюд и компонентов:

  • продукты на основе молока — йогурт, кефир, сметана, майонез, сухое и сгущённое молоко, брынза, сыворотка, мороженое, молочные коктейли, смеси для детского питания;
  • сахар-рафинад;
  • джемы;
  • мука.

Из списка понятно, что диоксид титана активно используют в кулинарии. В кондитерской промышленности примером может служить сахарная глазурь, пудра, зефир, белый шоколад. Продолжают список:

  • жевательная резинка;
  • быстрые завтраки;
  • мясные продукты — курица, свиные и говяжьи языки, молочные поросята;
  • рыба и её полуфабрикаты — филе, фарш, тушки кальмаров, мясо криля, крабовые палочки, паштеты (сурими).

Е171 применяют как пищевой краситель. Для придания аппетитного цвета и вида его добавляют в мясной фарш. Жирорастворимый диоксид титана используют в качестве красителя для придания нужного оттенка шоколаду, глазури.

Кроме того, двуокись титана входит в состав упаковочной плёнки, которая защищает продукты от действия ультрафиолета. Это его качество называется укрывистость.

Е171 не привносит в состав продуктов полезные свойства. Назначение пищевой добавки — улучшить их внешний вид, сделать его более привлекательным, а значит востребованным.

Применение диоксида титана в производстве косметики для организма человека

В производстве косметики применяют высокоочищенный диоксид титана мелкодисперсной структуры. Раздроблённый до мельчайших частиц порошок используют для изготовления защитных кремов, тональных основ, пудры. Свойство светонепроницаемости позволяет защитить кожу от агрессивного действия солнечных лучей.

Важна и визуальная функция вещества. В качестве пигмента диоксид титана входит в состав помады, придавая ей густоту, вязкость, а также пудры, обеспечивая осветляющий эффект и игру оттенков.

Диоксид титана химически инертен и не влияет на здоровье кожи. Кремы для лица и тональные основы с его содержанием — гипоаллергенные. Но, преимущество двуокиси титана в виде мелкодисперсности, может стать причиной поражения кожи. При низком качестве косметического продукта мелкие частицы способны сыграть роль фотокатализатора. Вместо защиты, они усиливают действие ультрафиолета на кожу.

Интересный факт — после нанесения солнцезащитного средства, неприятный эффект липкости объясняется присутствием в составе диоксида титана. В более качественных косметических средствах этот эффект нейтрализуется его применением в размельчённом состоянии до наночастиц.

Важно знать, что у людей с жирной и проблемной кожей, средства с диоксидом титана могут вызывать высыпание прыщей.

В производстве мыла E171 применяют для достижения эффекта белоснежности. Мелкодисперсные частицы не проникают внутрь кожных покровов и не задерживаются на её поверхности.

Применение диоксида титана в зубной пасте для организма человека

Диоксид титана в составе зубной пасты выполняет несколько функций:

  • обеспечивает эффект белоснежных зубов, не проникая внутрь эмали;
  • оказывает отбеливающее действие за счёт удаления пигментов с поверхностных слоёв эмали, мягкого зубного налёта (например, в зубной пасте Lacalut White немецкого производства или отечественной Splat White Plus).

Какая зубная паста не содержит диоксид титана? Например, Rembrandt «Антитабак и кофе», специально созданная для курильщиков и людей, которые часто употребляют крепкий чай и кофе.

Применение диоксида титана в медицине для организма человека

Диоксид титана использует в медицинском производстве витаминов, микроэлементных комплексов, таблетированных средств, добавляют мелкодисперсный порошок в состав кремов, суппозиториев, паст. Ничтожно малое количество вещества не влияет на структуру препарата, при этом придаёт ему белизну и продлевает срок действия.

Если есть показания во время беременности медицинские специалисты назначают витаминные комплексы, в составе которых также есть диоксид титана.

Применение диоксида титана в других отраслях промышленности для организма человека

Двуокись титана называют чудо-материалом – его применяют в различных отраслях производства многих стран. Мировой рынок титанового ангидрида в последние годы оценивался приблизительно в 5 млн тонн.

Основные области применения, следующие.

  1. Около 60% производимого диоксида титана используется для изготовления краски, эмали, лака и покрытий на их основе. К этой категории товаров относятся фасадные покрытия, цветные водно-дисперсионные краски, ремонтные автоэмали, средства для аэрокосмической промышленности.
  2. В производстве пластика используют свойство диоксида титана придавать изделиям белизну, укрывистость, защищать от ультрафиолетового облучения и появления желтизны. Это важно для изготовления пластиковых окон, садовой мебели, предметов быта, деталей для автомобилей.
  3. Полиграфическая промышленность использует TiO2 для производства печатной краски, бумаги, картона.
  4. Изготовление синтетических волокон и тканей.
  5. Производство стекла и керамики.
  6. Успешно применяют при окрашивании бетона и тротуарной плитки.
  7. Диоксид титана марки ОСЧ используют как эталон чистоты в производстве оптически прозрачных стёкол, в волоконной оптике, радиоэлектронике, медицинского оборудования.
  8. Новое слово в применении — титаноксидные наносистемы. Актуальны в альтернативной энергетике (солнечные батареи), производстве огнеупорных, высокотехнологичных керамических и оптических материалов.

В последнее время на рынке появился новый продукт — цветные титановые пигменты. Они не содержат диоксида титана, при этом сохраняют конкурентоспособность.

Последние исследования свойств диоксида титана для организма человека


Стоит отметить, что исследования свойств в области токсичности пищевых добавок для организма человека, а именно в отношении E171 (диоскида титана), проводятся в США уже с 1969 года. Одно из последних опубликовано в выпуске EFSA Journal 28 июня 2016 г. Результат изучения подтвердил безопасность диоксида титана при текущем уровне потребления.

Однако есть и тревожные данные. Так, а 2015 году американские учёные опубликовали результаты экспериментов на лабораторных мышах — их поили специально приготовленной мелкодисперсной суспензией диоксида титана. Итоги опытов таковы — поражение митохондрий в клетках головного мозга. Основная функция митохондрий — выработка энергии для поддержания клеточных процессов. В результате — нарушения функций центральной нервной системы.

А также общественное мнение тревожно отреагировало на недавно опубликованные результаты опытов учёных INRA (Французский национальный институт сельскохозяйственных исследований). Изыскания проводились на трёх группах крыс и морских свинок, которые получали пищевой краситель в воде. Доза соответствовала суточному потреблению E171 человеком. Длился эксперимент 100 дней. Результаты исследования можно обобщить следующими фактами:

  • у крыс, имеющих предраковые заболевания кишечника, площадь поражения выросла на 20%;
  • у здоровых животных выявлены признаки озлокачествления в 40%;
  • в третьей группе, где животные не получали диоксида титана изменений не последовало.

Учёные на основании результатов сделали следующие выводы:

  • наночастицы E171 всасываются в кишечнике;
  • развивается поражение лимфатической системы с последующими нарушениями иммунной реакции;
  • образуются участки воспаления слизистой стенки кишечника с возможным озлокачествлением.

Ещё одно исследование — группа американских учёных из Калифорнийского университета в подобных опытах на крысах получили данные о деформации цепочек ДНК.

Токсикологи считают, что диоксид титана может оказывать канцерогенное действие, проникая через дыхательные пути. Особое беспокойство научного сообщества вызывает природа наночастиц. Учёные говорят о новом механизме проявления токсичности в виде физико-химической реакции. Это позволяет TiO2 накапливаться в различных тканях и вызывать окислительный стресс.

С другой стороны, статистические данные подтверждают быстрое увеличение темпов промышленности, основанной на применении наноразмерных систем. Предполагаемый рост расширения внутреннего рынка диоксида титана в ряде стран, в том числе и в России составляет от 4 до 9% ежегодно.

Какой можно сделать вывод? Диоксид титана — это химическое соединение, которое имеет уникальные свойства. Практически нет такой области, где бы вещество ни использовалось. Медицинские специалисты различных стран уже более 50 лет проводят исследования на предмет выявления канцерогенного действия на организм человека. И не только тех людей, кто занят на производстве с использованием диоксида титана. Ведь TiO2 входит в состав зубной пасты, косметических средств, лекарственных препаратов, используется как пищевая добавка E171. Однако пока нет однозначного вывода учёных о вреде этого химического соединения. Ведь результаты, полученные на крысах, нельзя однозначно экстраполировать на человека. Они лишь указывают направление для дальнейших многоцентровых рандомизированных исследований. Точные ответы на тревожные вопросы можно получить, лишь объединив усилия мирового сообщества.

Влияние титана на организм человека

Титан – один из загадочных, малоизученных макроэлементов в науке и жизни человека. Хотя его не зря называют «космическим» элементом, т.к. он активно применяется в передовых отраслях науки, техники, медицины и во многом другом – это элемент будущего.

Описание химического элемента титан – значение для человека


Титан описывается, как металл серебристо-серого цвета, не растворим в воде. Он у него небольшая химическая плотность, поэтому ему характерна легкость. В то же время он очень прочен и легко поддается обработке из-за своей плавкости и пластичности. Элемент химически инертен благодаря наличию на поверхности защитной пленки. Титан не горюч, но его пыль взрывоопасна.

Открытие этого химического элемента принадлежит большому любителю минералов англичанину Уильяму Мак-Грегору. Но своим названием титан обязан все же химику – Мартину Генриху Клапроту, который обнаружил его независимо от Мак-Грегора.

Предположения о причинах, по которым этот металл назвали «титаном» романтичны. По одной версии, название связано с древнегреческими богами Титанами, родителями которых являлись бог Уран и богиня Гея, а вот согласно второй, оно происходит от имени королевы фей – Титании.

Как бы там ни было, этот макроэлемент девятый по нахождению в природе. Он входит в состав тканей представителей флоры и фауны. Много его в морской воде (до 7%), а вот в почве его содержится всего 0,57%. Наиболее богат запасами титана Китай, за ним идет Россия.

Действие титана для организма человека


Действие макроэлемента титан на организм обусловлено его физико-химическими свойствами. Его частицы очень малы, они могут проникать в клеточную структуру и влиять на ее работу. Считается, что из-за своей инертности макроэлемент не взаимодействует химически с раздражителями, и поэтому не токсичен. Однако он вступает в связь с клетками тканей, органов, крови, лимфы посредством физического действия, что приводит к их механическому повреждению. Так, элемент может своим действием привести к повреждению одно- и двухцепочной ДНК, повредить хромосомы, что может привести к риску развития рака и сбоя в генетическом коде.

Выяснилось, что частицы макроэлемента не способны пройти через кожу. Поэтому попадают они внутрь человека только с едой, водой и воздухом.

Титан лучше усваивается через желудочно-кишечный тракт (1-3%), а вот через дыхательные пути всасывается только около 1%, однако содержание его в организме сконцентрировано как в легких (30%). С чем это связано? Проанализировав все вышеуказанные цифры, можно прийти к нескольким выводам. Во-первых, титан вообще плохо усваивается организмом. Во-вторых, через ЖКТ идет выведение титана через кал (0,52 мг) и мочу (0,33 мг), а вот в легких такой механизм слабый или вовсе отсутствует, так как с возрастом у человека концентрация титана в этом органе возрастает практически в 100 раз. Чем же обусловлена такая большая концентрация при таком слабом всасывании? Скорее всего, это связано с постоянной атакой на наш организм пыли, в которой всегда присутствует титановая составляющая. Кроме того в данном лучае нужно учитывать нашу экологию и наличие промышленных мощностей вблизи населенных пунктов.

По сравнению с легкими, в остальных органах, таких как селезенка, надпочечники, щитовидная железа, содержание макроэлемента на протяжении всей жизни остается неизменным. Также присутствие элемента наблюдается в лимфе, плаценте, головном мозге, женском грудном молоке, костях, ногтях, волосах, хрусталике глаза, тканях эпителия.

Находясь в костях, титан участвует в их срастании после переломов. Также положительное действие наблюдается в восстановительных процессах, происходящих в поврежденных подвижных соединениях костей при артритах и артрозах. Этот металл является сильным антиоксидантом. Ослабляя действие свободных радикалов на клетки кожи и крови, он защищает весь организм от преждевременного старения и изнашивания.

Концентрируясь в отделах мозга, отвечающих за зрение и слух, положительно влияет на их функционирование. Нахождение металла в надпочечниках и щитовидной железе подразумевает его участие в вырабатывании гормонов, участвующих в обмене веществ. Он также задействован в выработке гемоглобина, выработке эритроцитов. Снижая в крови содержание холестерина и мочевины, следит за ее нормальным составом.

Негативное действие титана на организм связано с тем, что он является тяжелым металлом. Попадая в организм, он не расщепляется и не разлагается, а оседает в органах и тканях человека, отравляя его и вмешиваясь в процессы жизнедеятельности. Он не подвержен коррозии и устойчив к действию щелочей и кислот, поэтому желудочный сок не способен на него воздействовать.

Соединения титана имеют способность не пропускать коротковолновое ультрафиолетовое излучение и не всасываются через кожу, поэтому их можно использовать для защиты кожи от ультрафиолета.

Доказано, что курение увеличивает поступление металла в легкие из воздуха во много раз. Это ли не повод бросить эту вредную привычку!

Суточная норма титана для организма человека


Суточная норма макроэлемента обусловлена тем, что в теле человека содержится примерно 20 мг титана, из них 2,4 мг – в легких. Каждый день с пищей организм приобретает 0,85 мг вещества, с водой – 0,002 мг, а с воздухом – 0,0007 мг. Суточная норма для титана очень условна, так как последствия его влияния на органы до конца не изучено. Приблизительно она равняется около 300-600 мкг в сутки. Нет никаких клинических данных о последствиях превышения этой нормы – все на стадии опытных исследований.

Недостаток титана в организме человека

Состояния, при которых бы наблюдался недостаток титана, не выявлены, поэтому ученые пришли к выводу, что их в природе не существует. Но его дефицит наблюдается при большинстве тяжелых заболеваний, что может ухудшить состояние больного. Этот недостаток можно убрать титаносодержащими препаратами.

Влияние избытка титана на организм человека

Избыток макроэлемента единоразового поступления титана в организм не выявлен. Если, предположим, человек проглотил титановый штифт, то, по всей видимости, об отравлении говорить не приходится. Скорее всего, из-за своей инертности элемент не вступит в контакт, а выведется естественным путем.

Большую опасность вызывает систематическое увеличение концентрации макроэлемента в органах дыхания. Это приводит к повреждению дыхательной и лимфатической систем. Также есть непосредственная связь между степенью протекания силикоза и содержанием элемента в органах дыхания. Чем больше его содержание, тем тяжелее протекает болезнь.

Избыток тяжелого металла наблюдается у людей, работающих на химических и металлургических предприятиях. Наиболее опасен хлорид титана – за 3 рабочих года начинается проявление тяжелых хронических заболеваний.

Такие заболевания лечат специальными препаратами и витаминами.

Каковы источники попадения титана в организм человека?

Титан попадает в организм человека основными источниками с пищей и водой. Больше всего его в бобовых (горох, фасоль, чечевица, бобы) и в злаковых (рожь, ячмень, гречка, овес). Выявлено его присутствие в молочных и мясных блюдах, а также в яйцах. В растениях сконцентрировано больше этого элемента, чем в животных. Особенно высоко его содержание в водоросли – кустистой кладофоре.

Во всех продуктах питания, где присутствует пищевой краситель Е171, содержится диоксид этого металла. Его применяют в изготовлении соусов и приправ. Вред этой добавки находится под вопросом, так как оксид титана практически не растворим в воде и желудочном соке.

Показания к применению титана для организма человека


Показания к применению титана, несмотря на то, что этот космический элемент еще мало изучен, есть, он активно применяется во всех сферах медицины. Из-за своей прочности, коррозионной стойкости и биологической инертности, он широко применяется в сферах протезирования для изготовления имплантантов. Его применяют в стоматологии, нейрохирургии, ортопедии. Благодаря долговечности из него изготавливают хирургические инструменты.

Диоксид этого вещества используют в лечении болезней кожи, таких как хейлит, герпес, угревая сыпь, воспаление слизистой рта. Им удаляют гемангиому лица.

Никелид металла задействован в устранении местно-распространенного рака гортани. Его используют для эндопротезирования гортани и трахеи. Также он применяется для лечения инфицированных ран в сочетании с растворами антибиотиков.

Аквакомплекс глицеросольвата макроэлемента способствует заживлению язвенных ран.

Для ученых по всему миру открыто много возможностей для изучения элемента будущего, так как его физико-химические свойства высоки и могут принести безграничную пользу для человечества.

Токсикологические свойства титана, титановых сплавов и биосовместимость

Титан при попадании в организм подвергается частичной коррозии, механизмы которой изучены плохо. Требуется более детально изучить кинетику пассивного растворения титана в различных средах для того, чтобы установить механизм, управляющий этим явлением.

Считается, что человеческий организм насыщен титаном, и, следовательно, дополнительно растворимый титан, проникающий в ткани при имплантации, не может стать активным. При этом чистый титан абсолютно не растворим, инертен и биосовместим (Мюллер и др., 1996). Окись титана в воде также не растворима, устойчива к действию растворов кислот и щелочей. В норме уровень титана в крови составляет 2,5 мкг%. Металл депонируется в костях и легких. При ингаляции окиси титана может развиваться пневмосклероз, разрастание соединительной ткани и фиброз в легких. Проявление аллергических и местно-раздражающих реакций при имплантации титановых сплавов животным были минимальными (Работников, 1977; Ikarashi et al., 1996). Как уже было сказано, чистый титан и его оксид относятся к группе биоинертных, нетоксичных материалов. У них высокая биосовместимость, благодаря которой в окружающих тканях не развиваются аллергические реакции, тромбозы и металлозы (Brown, Lemons, 1996; Ikarashi, 1996).

Концентрация электрического эквивалента электролита в различных средах

Вещество

Сыворотка (мэкв/л)

ПЭ (мэкв/л)

Сыворотка/ПЭ (мэкв/л)

ЭДТА (мэкв/л)

Примечание: ПЭ - полиэлектролит

Однако в эксперименте, по данным Р.В. Работникова (1997), введение металлической пыли крысам в дозе 50 мг титана или окиси титана приводит к умеренному утолщению межальвиолярных перегородок, усилению легочного рисунка, гиперплазии ткани вокруг фолликулов бронхов. У людей, длительно контактирующих с оксидом титана, также развивается незначительная легочная патология. Как правило, титан и его сплавы хорошо переносятся реципиентами в течение длительного периода жизни, и осложнения от них не сопоставимы с теми изменениями, которые характерны для нержавеющей стали и хром-молибденовых сплавов (Лойт, 1977). Как уже было отмечено, основным депо для Ti являются кости. За насыщение паренхиматозных органов титаном и, следовательно, за его токсическое действие несет ответственность микроизнос, который происходит при установке имплантата и трении его об окружающие ткани. Mohr (1957) смог установить, что частицы титана попадают в лимфатические узлы в результате переноски их макрофагами. К такому же результату пришли Hilmann и Donath (1991). Они обнаружили фагоцитирующие мононуклеары с частицами титана в непосредственной близости от трущегося покрытия. С другой стороны, может наблюдаться ионизация металла, находящегося в контакте с окружающей тканью и биологическими жидкостями. Так, Fischer-Brandies et al. (1992) выявили Ti в непосредственном окружении тянущего винта и мини пластин. Schliephake et al. (1989) в опытах на животных установили накопление титана в паренхиматозных органах при использовании полированных винтовых титановых имплантатов, без участия макрофагов. По-видимому, в этом случае поступление титана в организм в значительной степени происходит в результате процессов коррозиционной ионизации Ti (Schliephake et al., 1989).

Легирующие добавки и термомеханическая обработка определяют структуру имплантируемого материала, и управление микроструктурой является средством для достижения желаемых свойств. Однако критерий выбора добавок основан не только на вкладе легирующего элемента в механическую прочность сплава, но должен учитывать биосовместимость и токсикологические свойства металла. В любом случае, легирующие добавки ухудшают биологические свойства чистого титана. Они способствуют выходу из него токсичных ионов, создают неблагоприятные электрохимические реакции, влияют на биосовместимость с окружающими тканями (Hillmann, Donath, 1992; Thull, 1996).

Легирующие элементы сплава Ti-6Al-4V, ванадий и алюминий, были обнаружены в окружающих тканях при условиях высокого износа, хотя явных токсических эффектов, связанных с этими обломками, выявлено не было. Тем не менее, нельзя исключить их опосредованное негативное влияние на костную и мягкую ткань (Русин, 1977; Работникова, 1977). Так, известно, что сам алюминий является малотоксичным соединением, но его отдельные формы могут вызывать фиброз, анемию, местно-раздражающую реакции и нарушение нервной функции (Ligacs, Paradowsky, 1977).

Коммерчески чистый титан является материалом выбора для имплантата из-за своей высокой биосовместимости. Однако его средняя предельная прочность составляет приблизительно 480 МПа. Разрабатываемые нанотехнологии обработки чистого титана позволяют приблизить его механические параметры к тем, которые наблюдаются в случае применения легирующих добавок (Kolobov et al., 2000).

Комбинация биосовместимости и высокой специфичной прочности у титана и его сплавов позволяет широко использовать данный материал в качестве покрытия имплантатов в ортопедической и стоматологической практике. Титан и его сплавы являются более устойчивыми к коррозии, чем другие металлы, включая нержавеющую сталь, кобальт-хром-молибденовые и кобальт-хром-никелевые сплавы. Кроме того, они не вызывают, как сталь, выраженную резорбцию костной ткани и стрессорного влияния (Bobyn et al., 1990, 1992). По сравнению со сталью титан и его сплавы, применяемые для лечения переломов длинных трубчатых костей, показали более высокую устойчивость к изнашиванию и не подвергались коррозии (Ungersbock A. et al., 1996).

Как уже было сказано выше, ионы Al, V, Со и других металлов, входящих в титановые сплавы, используемые в ортопедической практике, сами по себе могут вызывать развитие многочисленных неблагоприятных реакций (металлозы, неврологические расстройства, развитие опухоли и др.), что в какой-то мере ограничивает их применение по сравнению с чистым Ti (Laing et al., 1967; McLachlan, 1983; Perl, Brody, 1980; Mishra et al., 1996). Устойчивость к коррозии обусловлена наличием на поверхности титана тонкой оксидной пленки, которую, следует отметить, можно наносить практически на любой материал. Наиболее стойким соединением является TiO2, затем идут Ti2O3, TiO (Imam, Fraker, 1996). Попытки использовать другие покрытия: TiN, TiB, TiC, VC, WC, B4C, SiC, BN, Al2O3, ZrO2 и BeO были менее успешными, так как все они имели более высокую изнашиваемость и низкую прочность (Mishra, Davidson, 1992).

Цитотоксический тест и подкожная имплантация титана

Цитотоксический анализ при подкожном введении титановых материалов животным не выявил развития локальных биологических реакций на имплантаты, что делает их весьма перспективными для использования в клинической практике (Авцын и др., 1991; Zardiackes et al., 1996). В наших опытах при проведении цитотоксического теста титана марок ВТ1-0, ВТ5, ВТ6 и ВТ16 на жизнеспособность клеток костного мозга при часовой инкубации в среде DI-MEM (ISN) с 1% бычьего сывороточного альбумина при 37 °С в СO2-инкубаторе, выживаемость составила 93-96% (контроль 98%, Р>0,5).

Тенденция к уменьшению жизнеспособности клеток в опытной группе, по-видимому, была связана с наличием в тестируемом материале техногенных примесей, которые легко удалялись путем кипячения и обезжириванием. При этом анодированный титан и его сплавы лучше поддерживали жизнеспособность клеток, чем обычные его формы.

На 50 мышах линии Balb/с было изучено влияние чистого и оксидированного титана, имплантированных под кожу на 1 месяц. Параллельно исследовали остеокондуктивные и остеоиндуктивные свойства данного материала. Установлено, что величина воспалительной реакции на титановые материалы была в пределах 0,2-0,5%, развитие фиброза 1,2-1,75% и некротических реакций 0-1,0%. При анодировании титана процессов воспаления и некроза отмечено не было. Металл и его сплавы не проявляли остеоиндуктивных и остеокондуктивных свойств. В некоторых случаях (до 10-15%) на дисках определялась тонкая капсула.

В опытах на кроликах породы Шиншилла массой 2,5-3,1 кг обоего пола исследовали влияние титановых дисков из чистого и оксидированного титана, вводимых под кожу, а также стержней из этого металла, имплантированных в позвоночник. Установлено, что как чистый, так и анодированный титан не вызывает развитие воспалительной реакции, выраженного фиброза через 1 и 2 месяца после имплантации. На 3-й месяц опыта на титановых имплантатах отмечалось образование тонкой стромальной капсулы. Имплантаты хорошо переносились животными и не вызывали неблагоприятных реакций. При введении в тело позвонка оксидированные титановые стержни не приводили к развитию воспаления и были более прочно фиксированы с костной тканью по сравнению с чистым титаном.

Эти результаты хорошо согласуются с литературными данными. Так, было показано, что при введении титановых имплантатов в большеберцовую кость кроликов образуется прочный контакт с костной тканью, который примерно в 2 раза превышал таковой для стальных и кобальт-хром-молибденовых сплавов (Mishra et al., 1996). Кроме того, если прочность фиксации в бедренной кости для стальных имплантатов составила 0,31 Н/м, то для титановых материалов она была равна 1,36 Н/м (р=0,001) (Mishra et al., 1996). Один миллион нагрузочных циклов равен примерно одному году жизни больных с бедренными протезами. При этом изнашиваемость трущихся поверхностей, выполненных из титана и его сплавов, была меньше, чем для стальных сплавов (McKellop et al., 1996). При введении титановых имплантатов в организм из них выходят ионы металла, которые обнаруживаются через 1-12 месяцев опыта локально в костной ткани. Кроме того, отмечается увеличение уровня Ti в сыворотке, крови и моче. При этом механизме выход титана из имплантата, вероятно, осуществляется за счет пассивного растворения металла (Bianco et al., 1996). По-видимому, увеличение толщины пленки из TiO2 может препятствовать этому процессу и защитить имплантат от потери титана. Как правило, биодеградация многих металлов - Со, V, Cd, Ni может вызывать нарушения метаболизма, работы многих ферментных систем, процессов минерализации костной ткани, локальные воспалительные, иммунологические, аллергические реакции и, наконец, проявлять мутагенную или канцерогенную активности (Авцын и др., 1991). В то же время, как показала практика, по сравнению с другими металлами и сплавами титановые имплантаты проявляют высокую биосовместимость, вызывая минимальные изменения со стороны соединительной, мягкой и костной тканей, низкую скорость биодеградации и отсутствие аллергических и иммунологических реакций на фоне снижения риска развития инфекционных осложнений (Авцын и др., 1991; Sinibaldi et al., 1976; Sunderman, 1979; Bravo et al., 1990; Jacobs et al., 1996; Kraay et at., 1996).

Выживаемость клеток костного мозга (цитотоксический тест) при краткосрочной их инкубации на чистом титане и его сплаве с или без анодно-искрового анодирования (м, Ри)

Наночастицы титана могут вызывать рак!

Несколько лет назад я уже поднимал тему о влиянии титана на здоровье человека и вот на днях нашел на просторах интернета весьма любопытный материал. Ни кого ни хочу пугать (итак все пуганные), но присутствие рядом с Салдой Титановой магнитки не способствует оздоровлению местного населения. о чем красноречиво говорит расширяющееся каждый год новое салдинское кладбище.

Наночастицы титана могут вызывать рак!

Нанотехнологии, безусловно, способствуют техническому прогрессу человечества - ученые регулярно рапортуют о новых успехах, способных изменить жизнь и быт людей к лучшему. Однако проблема нанотехнологий в экологии по-прежнему актуальна и исследования в этой сфере - тревожный сигнал к тому, что следует аккуратно относиться к каждой инновации. "Нано Дайджест" уже не раз писал о том, что лекарства, разработанные с использованием нанотехнологий, могут помочь в лечении раковых заболеваний (см. Нагретые наночастицы убивают раковые опухоли и Водоросли избавят человечество от рака). Однако некоторые наночастицы, напротив, могут вызывать рак в организме человека. Недавно высказали свое мнение по проблеме нанотехнологий в экологии и ученые из Онкологического центра Йонссона при Университете Калифорнии. По их словам, наночастицы из диоксида титана (TiO2), которые сейчас встречаются во множестве продуктов, накапливаются в организме и приводят к системным генетическим повреждениям.

Как сообщает Роберт Шистл (Robert Schiestl), профессор университета, специалист по патологиям, радиационной онкологии, воздействии среды на живые организмы, наночастицы из диоксида титана (TiO2) приводят к разрыву одно- и двухцепочечных ДНК, а также приводят к повреждению хромосом.

Попадая в организм титановые наночастицы накапливаются в различных органах, поскольку в организме нет механизмов их выведения. Вследствие своих малых размеров они легко проникают в клетки и начинают влиять на их элементы.

Ранее наночастицы диоксида титана считались безопасными, поскольку они не вступают ни в какие химические реакции. На самом деле, заявляет Роберт Шистл, эти наночастицы вступают в поверхностные взаимодействия, которые, как показали опыты на лабораторных мышах, приводят к генетическим повреждениям. В частности, наночастицы вызывают так называемый оксидативный стресс - физиологический стресс или повреждение организма, вследствие протекания нехарактерных для собственного метаболизма окислительных реакций. Таким образом, ученым следует исследовать новый источник опасности для организма – физико-химические реакции.

В ходе исследований лабораторные мыши получали воду с наночастицами диоксида титана. На пятый день у них появились признаки генетических повреждений. В случае человека аналогичное количество наночастиц диоксида титана накопится в организме в течение 1,6 года при современном их содержании в различной продукции.

Как сообщается в результатах исследования, «полученные данные заставляют задуматься о риске возникновения раковых заболеваний или генетических нарушений в случае регулярного получения организмом большого количества наночастиц диоксида титана, а также о необходимости ограничения использования таких наночастиц в лекарствах, добавках, красителях и т.д.». Ученый отметил: «Сам по себе титан химически инертен. Однако чем меньше частицы, тем больше их суммарная поверхность и вследствие контакта окружения клетки с ней возникает оксидитативный стресс. Вследствие роста применения этих наночастиц повсюду наше исследование поднимает вопрос об их небезопасности».

Производство наночастиц диоксида титана представляет собой целую индустрию. Их создается уже около двух миллионов тонн в год. Они находятся в красках, косметике, витаминах, зубной пасте, пищевых красителях, добавках и сотнях других повседневных продуктов. А ведь именно они, утверждает Шистл, могут быть источником определенного количества раковых заболеваний.

В настоящее время группа ученых под руководством Роберта Шистла ведет дальнейшие исследования на лабораторных мышах с целью выявить все аспекты воздействия на организм наночастиц диоксида титана а также найти способы защитить от него человека.

По материалам сайта Нано Дайджест

Здоровье

Титан: влияние и значение для организма, избыток титана, влияние титана на организм

Титан - один из тех химических элементов, влияние которого на человеческий организм хорошо не изучено. Между тем, нельзя сказать, что титан и его соединения - тайна за семью печатями для научных и медицинских кругов. Титан играет отведенную природой роль, исполнить которую другим элементам не под силу. И сбрасывать со счетов этот элемент только на том основании, что о нём мало известно, не нужно, приуменьшать его значимость не стоит.

Что это такое?

С химической точки зрения титан - элемент IV группы периодической системы Менделеева, атомный номер 22, атомная масса 48. Был открыт в 1791 году английским учёным В. Грегором. Титан - это легкий, плавкий и чрезвычайно прочный металл. Химически стоек благодаря наличию тонкой защитной пленки. По распространенности в природе занимает девятое место среди металлов. Основными поставщиками титана являются природные минералы рутил и анатаз.

Наверняка даже далёкие от техники люди слышали о том, что титан - «космический» металл. В том смысле, что титан широко используется в космических технологиях, в химической, авиационной и ракетной промышленности, в кораблестроении.

Широчайшее применение титан получил в медицине. Из титана изготавливается огромное количество медицинских инструментов, особенно хирургических: скальпели, пинцеты, зажимы. Но ещё более широкое распространение титан получил как материал для изготовления протезов благодаря своей прочности, легкости, коррозионной стойкости и биологической инертности. Титан применяется в качестве материала при изготовлении имплантантов в ортопедии, челюстно-лицевой хирургии и нейрохирургии. В стоматологии применяются титановые штифты, и титановые имплантанты, на которые крепятся зубные коронки.

Но не только «чистый» титан служит человечеству, широко используются его химические соединения. Так, при изготовлении различных красителей и пластиков, соусов и приправ, а также при обработке мяса птицы используется оксид титана. В медицине оксид титана применяется в дерматологической практике при лечении светочувствительного хейлита, герпеса простого, подростковой угревой сыпи в визе подсушивающих мазей, воспалений губ и полости рта. Компоненты окиси титана используют в косметологических кабинетах при удалении гемангиом лица методом татуировки.

Способность двуокиси титана не пропускать коротковолновое ультрафиолетовое излучение нашла широкое применение в косметологии. Это химическое соединение содержится в составе практически всех солнцезащитных кремов и спреев, а также в составе средств для ухода за кожей с защитными свойствами. А двуокись титана в виде компонента входит в состав различных лекарственных препаратов.

При такой обширной полезности, соединения титана могут стать опасными в руках пироманов или злодеев: пыль титана взрывоопасна. Однако, чтобы её добыть, пироману придётся очень сильно потрудиться. Да и добыть чистый титан для кустарного производства взрывчатки чрезвычайно затруднительно.

Титан в организме человека

Титан в человеческом организме - это не только штифты для зубов и мазь от герпеса на губах. Человеческий организм должен получать так называемый физиологический титан для нормального функционирования всех органов и систем. Содержание титана в организме человека составляет около 9 мг, причём лёгкие содержат около 2,4 мг. Титан совместно с кремнием и ванадием участвует в процессах восстановления костной ткани после переломов. Титан входит в состав хрусталика глаз, эпителиальной ткани, волос, ногтей, костей. Хорошо изучено глубокое влияние титана на восстановительные процессы в повреждённых суставах, при артритах, артрозах. Титан принимает непосредственное участие в регулировании окислительных процессов в сыворотке крови, стимулирует образование крови. В мозге, особенно в зрительно центре в центре равновесия (вестибулярном), обнаружены высокие концентрации титана.

Около 0,85 мг титана поступает в организм ежесуточно с пищей и жидкостями, с питьевой водой - 0,002 мг, с воздухом - 0,0007 мг. Всасывание соединений титана в желудочно-кишечный тракт составляет 1-3% от всего поступаемого количества. Менее 1% от поглощенной дозы поступает в организм ингаляционным путем, при этом до трети всего потребляемого вещества задерживается в легких.

Общепринятое мнение, что повышенное содержание титана в легких обусловлено его поступлением с пылью городских улиц, промышленных выбросов и автомобильных выхлопов. Чем старше человек, тем выше концентрация титана в организме. У пожилых людей количество титана в несколько раз выше, чем у детей - это плата за многолетнее вдыхание пыли. А курение увеличивает его содержание в лёгких в десятки раз.

Определить уровень содержания титана в организме можно на основании исследований крови, мочи и волос. Средний уровень содержания титана в волосах составляет 0,5-2,0 мкг/г. В крови концентрация титана достигает 0,07 мг/л, а в его компоненте - сыворотке - титана содержится 0,05 мг/л. Индикатором элементного статуса титана является определение его содержания в волосах и моче.

Выводится титан из организма в основном с калом (0,52 мг), в меньшей степени с мочой (0,33 мг).

Сколько вешать граммов?

Однозначно подтвержденных данных о существовании токсических или летальных доз для человека нет. Что будет, есть проглотить титановый зубной штифт, доподлинно неизвестно. По крайне мере, учёные умы об этом скромно умалчивают. Однако, учитывая, крайнюю инертность титана как химического элемента, можно предположить, что ничем трагическим такой казус не закончится. Штифт выйдет естественным путём, не вступая в химические соединения с жидкостями организма.

Нет однозначно достоверных данных и том, что существуют титано-дефицитные состояния, угрожающие здоровью или жизни человека. Разные медицинские школы дают свои описания состояний при дефиците титана. Так, по одним данным, дефицитом титана сопровождается большинство тяжелых заболеваний, причём при прогрессирующем течении заболевания заметно снижается содержание титана в поражённых тканях. Это состояние снимается введением в организм титансодержащих препаратов. После их введения наступает заметное улучшение.

По другим данным, оказалось, что титан - это мощный антиоксидант, которые, как известно, быстро расходуются организмом. Потребление титаносодержащих препаратов тормозит окислительные процессы в организме, защищая мелкие сосуды и клетки кожи от свободных радикалов.

Существует медицинская теория, согласно которой избыток титана в организме может привести к поражению дыхательной и лимфатической систем. По данным этой теории, избыток титана может спровоцировать воспаление легких, легочных и периферических лимфатических узлов, гранулематоз легких и плевры, альвеолит, трахеит. Серьёзный перечень, чтобы с осторожностью относиться к глотанию титановых протезов!

Дышите без титана!

Если о влиянии чистого титана на организм человека однозначных данных в медицинских и научных кругах нет, то о влиянии соединений титана нет никаких разногласий. Медики однозначны в своих оценках влияния двуокиси титана на дыхательную систему: это хуже курения! Вдыхание двуокиси титана вызывает как минимум раздражение легких у человека. На внедрение двуокиси титана в дыхательную систему организм реагирует кашлем, часто с мокротой и одышка.

А хроническое воздействие оксида титана приводит к его накоплению в легких (более 4 мг/кг сырого веса), а также в легочных (до 24 мг/кг сырого веса) и периферических (до 120 мг/кг сырого веса) лимфатических узлах. Это отнюдь не такое безопасное состояние, как при проглоченном штифте. При регулярном вдыхании окиси титана возможно развитие воспаления лёгких, а в некоторых случаях и гранулематоза легких и плевры, если это будет сочетаться с воздействием оксида титана с другими реагентами, например с асбестом, силикатами, никелем или алюминием. Такие состояния возможны у работающих на химических предприятиях, в металлургии.

Медики выявили прямую зависимость тяжести силикоза с накоплением титана в легких, и особенно прикорневых лимфоузлах. Тем не менее, есть основания полагать, что явления фиброза и воспаления в бронхо-легочной системе обусловлены в основном действием соединений кремния, а не титана.

Однако и этих данных должно быть достаточно для того, чтобы с большой ответственностью относится к качеству вдыхаемого воздуха и «вентиляции» лёгких. Если есть возможность выбирать жильё, старайтесь не селиться поблизости от металлургических заводов или автобанов. Чаще гуляйте в лесу, на свежем воздухе вдали от выхлопов большого города. И тогда никогда не придётся испытать на себе ни возможных отравлений титаном и его соединениями, ни дефицита этого малоизученного элемента.

Светлана Берестова, по материалам журнала «Женские посиделки»

Отравление титаном

Титан относится к редким металлам. Компактный титан - серебристо-белого цвета, химически устойчив. Порошкообразный титан очень активен, уже при комнатной температуре возможно его воспламенение с образованием окислов. Окись титана - белый порошок. Карбид титана может быть в компактном и порошкообразном состоянии. Борид титана - порошкообразное вещество. Хлорид титана - бесцветная жидкость с резким запахом, быстро гидролизуется с выделением хлористого водорода.

Титан широко применяется в черной и цветной металлургии, в порошковой металлургии, в производстве пластмасс, авиа- и моторостроении; двуокись титана - в лакокрасочной промышленности, в производстве искусственного волокна и др.

Титан - биоэлемент. Основной путь поступления в организм в виде пыли и паров - легкие. Металлический титан, двуокись и карбид титана оказывают нерезкое фиброгенное действие.

Симптомы

У рабочих отмечаются слабость, повышенная утомляемость, нарушение сна, хронический бронхит, часто с явлениями бронхоспазма, развитие дыхательной недостаточности, гипоксия миокарда (ЭКГ).

При длительном воздействии наблюдаются доброкачественно протекающие пневмокониозы интерстициального типа.

Хлорид титана оказывает раздражающее действие. Продукты гидролиза его более токсичны, чем чистый хлористый водород, вызывают развитие гипертрофических ринитов и фарингитов, бронхитов, диффузных пневмосклерозов (производство порошковой металлургии).

У работающих на производстве титана (при стаже более 3 лет) наблюдаются явления нейроинтоксикации: гиперрефлексия, нарушения чувствительности, гипергидроз, тремор.

10% раствор хлорида титана при попадании на кожу оказывает резкое прижигающее действие – трудно заживляющие ожоги II и III степени.

В производстве керамических конденсаторов (воздействие смешанной пыли, основные компоненты - двуокись титана и тальк) у рабочих выявлены субатрофические фарингиты, своеобразный гранулезный фарингит в виде единичных «чечевичных зерен» или скоплении их на задней стенке глотки; эмфизема легких; при стаже более 10-15 лет - двусторонний фиброз легких мелкоячеистого характера либо с наличием мелких узелковых теней, соответствующий пневмокониозу I стадии, без симптомов легочной недостаточности.

Профилактика

При работе с хлоридом титана - меры индивидуальной защиты: кислотоустойчивые костюмы, резиновые перчатки, фартуки, обувь, противогазы. При работе с пылью металлического титана (ввиду ее взрывоопасности) - применение соответствующих противопожарных мер. Предварительные и периодические медицинские осмотры.

Сайт Фармакология и медицина

Диоксид титана

Описание вещества

Диоксид титана (двуокись титана, Е171) – пищевая добавка, являющаяся белым красящим веществом. Представляет собой прозрачный кристаллический порошок, желтеющий при нагревании. Встречается в природе в трех вариациях: в виде минералов анатаза, рутила и брукита, имеющих различное кристаллическое строение. Для получения вещества используется только диоксид титана со структурой анатаза и рутила. Диоксид титана пищевой разрешен к использованию в промышленности с 1994 года в качестве красителя для придания продуктам питания отбеливающего эффекта. В товарной форме диоксид титана обычно является чистым веществом, в котором присутствует незначительное количество примесей диоксида кремния и оксида алюминия, улучшающих технологичность продукта.

К основным свойствам диоксида титана относятся: Высокая отбеливающая способность; Химическая стойкость; Нетоксичность; Высокая влаго- и атмосферостойкость. На запах и вкус продуктов диоксид титана влияния не оказывает, его главное предназначение заключается в придании продуктам более аппетитного внешнего вида. Пищевая добавка наделяет продукты идеальной белизной, столь привлекательной для потребителя.

Применение диоксида титана

В пищевой промышленности диоксид титана используется в качестве пищевой добавки E171, применяемой для производства быстрых завтраков, сухого молока, порошкообразных продуктов. С помощью двуокиси титана отбеливаются крабовые палочки и прочие аналоги рыбных изделий, жевательные резинки, майонез, а также осветляются глазурь, белый шоколад, конфеты и т.д. В производстве пельменей диоксид титана применяется для осветления муки. Дозировка Е171 подбирается в зависимости от необходимой белизны теста. При этом требуемое количество красителя вносится в массу вместе с мукой и тщательно перемешивается для максимального распределения вещества. Закладка диоксида титана составляет 100-200 грамм на 100 кг муки. В мясоперерабатывающей промышленности диоксид титана, к свойствам которого относятся хорошая диспергируемость (эмульгирование) и оптическая привлекательность, используется для отбеливания шпика, паштетов и деликатесной продукции. Применяется диоксид титана и в производстве растительных консервов, в частности в целях осветления тертого хрена.

Вред диоксида титана

Официальные клинические исследования до сегодняшнего дня не смогли выявить какие-либо негативные последствия от приема пищевой добавки E171. Согласно данным, диоксид титана не растворяется в желудочном соке и практически не всасывается организмом через стенки кишечника. Таким образом, двуокись титана не накапливается в тканях, полностью выводясь из организма. СанПин 2.3.2.1293-03 разрешает производителям продуктов, употребляемых в пищу, использовать диоксид титана в объемах, которые с точки зрения производителей позволяют им добиться необходимого технологического эффекта.

Однако, предположение о потенциальном вреде диоксида титана все же имеется: как показали исследования на крысах, вдыхание порошка двуокиси титана повышает вероятность возникновения раковых заболеваний, являясь канцерогенным и для человека. Некоторые ученые предполагают, что наночастицы вещества способны разрушать организм на клеточном уровне, разрушая их природное строение, однако точных подтверждений данному факту, кроме испытаний на грызунах, не имеется.

Несмотря на то, что применяемый в пищевых продуктах диоксид титана считается безвредным, изучение ее влияния на организм продолжаются. Превышать рекомендованную дозировку пищевого диоксида титана (1% в сутки) людям со слабым иммунитетом не желательно.

Читайте также: